Формулы по теории вероятности из школьной программы. Особенности изучения основ теории вероятностей в школьном курсе математики. Примеры решения задач из ЕГЭ по математике на определение вероятности

(из опыта работы)

учитель математики

гимназии №8 им.Л.М. Марасиновой

Рыбинск, 2010 г.

Введение 3

1.Программно-содержательное конструирование стохастической линии в средней школе 4

3.Методические замечания: из опыта работы 10

4.Вероятностный граф – наглядное средство теории вероятностей 13

5. Модуль «Энтропия и информация» - метапредметность школьного курса Теория вероятностей 19

6.Организация проектной и исследовательской деятельности обучающихся при освоении курса теория вероятностей 24

Приложение1. Тематический сайт «Теория вероятностей». Аннотация и мультимедийное пособие 27

Приложение 2. Анализ учебно-методических комплексов для эффективности введения стохастической линии в школьное образование 31

Приложение 3. Контролирующий тест. Система электронного контроля 33

Приложение 4. Контрольная работа № 1 34

Приложение 5. Технологическая карта темы «Элементы теории вероятностей» 36

Приложение 7. Презентация к уроку «Предмет теории вероятностей. Основные понятия» 53

Приложение 8. Технологическая карта конструирования урока «Условная вероятность. Полная вероятность» 60

Приложение 9. Технологическая карта конструирования урока «Случайные события и азартные игры» 63

Приложение 10. Методическое пособие «Энтропия и информация. Решение логических задач». 36с. 66

Приложение 11. «Энтропия и информация» мультимедиа – комплекс. CD – диск, методическое пособие. 12с. 67

Приложение 12. Буклет тематического модуля «Энтропия и информация» 68

Приложение 13. Технологическая карта конструирования занятия «Решение логических задач с помощью подсчета энтропии и количества информации» 69

Приложение 14. Тематический реферат «История становления теории вероятностей» 73

Приложение 16. Презентация запуска проекта «Теория вероятностей и жизнь» 78

Приложение 17. Буклет «От теории вероятностей – к теории азартных игр» в рамках проекта «Теория вероятностей и жизнь» 80

Приложение 18. Презентация «Дети в мире пороков взрослых» в рамках проекта «Теория вероятностей и жизнь» 81

Приложение 19. Аннотация исследовательской работы «Вероятностные игры» учеников 8 класса 83

Приложение 20. Презентация к исследовательской работе «Вероятностные игры» 86

Введение


Современное общество предъявляет к своим членам довольно высокие требования, относящиеся к умению анализировать случайные факторы, оценивать шансы, выдвигать гипотезы, прогнозировать развитие ситуации, принимать решение в ситуациях, имеющих вероятностный характер, в ситуациях неопределенности, проявлять комбинаторное мышление, необходимое в нашем перенасыщенном информацией мире.

Наиболее эффективно эти умения и навыки позволяет формировать курс «Теория вероятностей и математическая статистика», о необходимости изучения которого в российской школе люди науки спорят на протяжении последнего столетия. В разные периоды становления Российского образования подходы к стохастической линии менялись от полного ее исключения из математического образования в средней школе до частичного и полного изучения основных понятий. Одним из основных аспектов модернизации российского школьного математического образования XXI века является включение теоретико-вероятностных знаний во всеобщее обучение. Стохастическая линия (соединение элементов теории вероятностей и математической статистики) призвана сформировать понимание детерминированности и случайности, помочь осознать, что многие законы природы и общества имеют вероятностный характер, реальные явления и процессы описываются вероятностными моделями.

Являясь студенткой Ярославского государственного педагогического университета им.К.Д. Ушинского, под руководством профессора В.В. Афанасьева я достаточно активно занималась именно данным курсом, методикой решения задач и изучения теоретических знаний, поиском прикладных возможностей. Введение теории вероятностей в стандарты второго поколения усилили актуальность сформированного объема знаний, понимания важности вероятностной культуры человека, необходимости поиска методических и дидактических «изюминок».

Практическая значимость и новизна представляемого опыта работы заключаются в его авторском эксклюзиве систематического использования графов при решении задач, в методической и дидактической метапредметности формирования информационной культуры. Программные требования стандартов нашли продолжение в проектной и исследовательской деятельности учителя и учащихся. Открытость опыта подтверждается работающим тематическим сайтом 1 , то есть возможностью многократной трансляции и интерпретации.

На страницах данной работы представлен опыт программно-содержательного конструирования стохастической линии математики вообще и теории вероятностей в частности, предложены методические советы по использованию методических и дидактических приемов изучения теории и применения на практике. Особенностью авторского опыта осовения курса теории вероятностей является изложение предмета с систематическим использованием графов, что делает более наглядным и доступным рассматриваемый материал. Предложены варианты использования современных интерактивных средств обучения и контроля знаний: интерактивная доска, системы электронного контроля знаний. В приложениях представлены конкретные результаты совместной работы учителя и учеников гимназии № 8 им.Л.М. Марасиновой.

  1. Программно-содержательное конструирование стохастической линии в средней школе

Обязательный минимум содержания образования предопределяет стандарт, некоторую рамку теоретических и практических знаний и умений. С этой точки зрения содержание раздела Вероятность и статистика предполагает изучение следующих вопросов: Представление данных, их числовые характеристики. Таблицы и диаграммы. Случайный выбор, выборочные исследования. Интерпретация статистических данных и их характеристик. Случайные события и вероятность. Вычисление вероятностей. Перебор вариантов и элементы комбинаторики. Испытания Бернулли. Случайные величины и их характеристики. Частота и вероятность. Закон больших чисел. Оценка вероятностей наступления событий в простейших практических ситуациях.

Актуальной становится проблема выбора соответствующего учебно-методического комплекса, наиболее полно сопровождающего образовательный процесс, и отбор тех дидактических приемов, которые позволят оптимально реализовать требуемые задачи стохастического образования. Подробный содержательный анализ действующих на момент 2007 года УМК, представлен на страницах авторского тематического сайта 2 (Приложение 2).

Анализ утвержденных учебно-методических комплексов показывает, что обязательное освоение стохастической линии математики в основной школе и на 3 ступени обучения, только учебник Г.В. Дорофеева и И.Ф. Шарыгина предполагает в следующем варианте:


  • 5 класс – в теме «Натуральные числа» - «Анализ данных»

  • 6 класс- Комбинаторика (6 часов) и Вероятность случайных событий (9 часов)

  • 7 класс - Частота и вероятность (6 часов);

  • 8 класс – Вероятность и статистика (5 часов)

  • 9 класс – Статистические исследования (9 часов)
Углубленное изучение предмета (по учебнику Н.Я. Виленкина для классов с углубленным изучением предмета) предполагает следующие программные требования к содержанию:

  • 8-9 класс: Множества и элементы комбинаторики.

  • 10-11класс – Элементы комбинаторики и теории вероятностей. Элементы теории вероятностей и математической статистики.
Профильный уровень математики предполагает изучение данных разделов по учебнику А.Г. Мордковича в 10 классе.

Чтобы компенсировать содержательный недостаток учебных пособий, авторы некоторых из них разработали дополнительные параграфы к курсу алгебры 7-9 классов, предлагая и поурочное планирование: А.Г. Мордкович и П.В. Семенов; М.В. Ткачева и Н.Е. Федорова «Элементы статистики и вероятность»

К другим учебно-методическим комплексам таких пособий пока не разработано. Выход для учителя – практика из создавшейся ситуации заключается в авторской разработке рабочей программы, элективного курса с учетом всех возникших противоречий по введению стохастической линии в курс средней школы и предлагаемых путей их разрешения.

Учитывая, что ни одна наука не должна осваиваться учениками обособленно, в отрыве друг от друга, мною была предпринята попытка найти содержательное взаимопроникновение геометрии, алгебры, арифметики, информатики и стохастики.

Фундирование раздела математики основной школы

«Элементы логики, комбинаторики, статистики и теории вероятностей» (45 часов)

5
Арифметика:

действия с натуральными числами

Множества и комбинаторика
класс
6
Вероятность случайных событий
Арифметика:

действия с дробями;

среднее арифметическое
класс

Статистические данные, случайные величины

Информатика:

Работа с диаграммами (Exсel)

7 класс

Доказательство

Геометрия: доказательство теорем

8
Геометрическая вероятность

Геометрия:

площади фигур;


класс

Фундирование раздела математики средней школы

«Элементы комбинаторики, статистики, теории вероятностей»

20 часов – база, 25 часов – проф. гуманитарный,
Формулы комбинаторики

Решение комбинаторных задач

Табличное и графическое представление данных

Несовместные события,

их вероятность

Элементарные и сложные события

Решение практических задач с применением вероятностных методов, метода графов
20 часов – проф. математический

10 класс

Таким образом, творчески выстраивая рабочую программу, учитель имеет возможность использовать образовательную базу других разделов или науки, создавая условия для метапредметности каждого вопроса. Но творчество учителя на этом не завершается. Гораздо большие возможности для проявления авторства и, соответственно, творчества учителя математики появляется с выбором дидактических приемов введения и дальнейшего применения основных понятий курса стохастики . Конструктивно авторское видение спирали фундирования понятий теории вероятностей в средней школе в совокупности с дополнительным образованием выглядит следующим образом


  1. Основные понятия теории вероятностей
Данный раздел работы - необходимый содержательный минимум, которым должен владеть педагог, приступающий к освоению и преподаванию курса теория вероятностей.

Любая точная наука изучает не сами явления, протекающие в природе, в обществе, а их математические модели, т. е. описание явлений при помощи набора строго определенных символов и операций над ни­ми. При этом для построения математической модели реального явления во многих случаях достаточно учитывать только основные факторы, закономерности, которые позволяют предвидеть результат опыта (наблюдения, эксперимента) по его заданным начальным условиям. Однако есть множество задач, для решения которых приходится учитывать и случайные факторы, придающие исходу опыта элемент неопределенности.

Теория вероятностей - математическая наука, изучающая зако­номерности, присущие массовым случайным явлениям. При этом из­учаемые явления рассматриваются в абстрактной форме, независимо от их конкретной природы. То есть теория вероятностей рассматрива­ет не сами реальные явления, а их упрощенные схемы - математиче­ские модели. Предметом теории вероятностей являются математи­ческие модели случайных явлений (событий). При этом под случайным явлением понимают явление, предсказать исход которого невозможно (при не­однократном воспроизведении одного и того же опыта оно протекает каждый раз несколько по-иному). Примеры случайных явлений: вы­падение герба при подбрасывании монеты, выигрыш по купленному лотерейному билету, результат измерения какой-либо величины, дли­тельность работы телевизора и т. п. Цель теории вероятностей - осуществление прогноза в области случайных явлений, влияние на ход этих явлений, контроль их, огра­ничение сферы действия случайности. В настоящее время нет практи­чески ни одной области науки, в которой в той или иной степени не применялись бы вероятностные методы .

Случайным событием (или просто: событием) называется любой исход опыта, который может произойти или не произойти. События обозначаются, как правило, заглавными буквами латин­ского алфавита: А, В, С, ... .

Если появление одного события в единичном испытании исключает появление другого, такие события называются несовместными . Если при рассмотрении группы событий может произойти только одно из них, то его называют единственно возможным . Наибольшее внимание математиков в течение нескольких столетий привлекают равновозможные события (выпадение одной из граней кубика) .

Примеры: а) при подбрасывании игральной кости пространство элемен­тарных событий П состоит из шести точек: П={1,2,3,4,5,6}; б) подбрасываем монету два раза подряд, тогда П={ГГ, ГР, РГ, РР}, где Г - «герб», Р - «решетка» и общее число исходов (мощность П) |П| = 4; в) подбрасываем монету до первого появления «герба», тогда П={Г, РГ, РРГ, РРРГ,...}. В этом случае П называется дискретным пространством элементарных со­бытий.

Обычно интересуются не тем, какой конкретно исход имеет место в ре­зультате испытания, а тем, принадлежит ли исход тому или иному подмно­жеству всех исходов. Все те подмножества А, для которых по условиям экс­перимента возможен ответ одного из двух типов: «исход принадлежит А» или «исход не принадлежит А», будем называть событиями . В примере б) множество А={ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один «герб». Событие А со­стоит из трех элементарных исходов пространства П, поэтому |А| = 3.

Суммой двух событий А и В называется событие С=А+В, состоящее в вы­полнении события А или события В. Произведением событий А и В называется событие D=A·B, состоящее в совместном исполнении события А и события В. Противоположным по отношению к событию А называется событие , со­стоящее в непоявлении А и, значит, дополняющее его до П. Если каждое появление события А сопровождается появлением В, то пи­шут A В и говорят, что А предшествует В или А влечет за собой В.

Исторически первым определением понятия вероятности является то определение, которое в настоящее время принято называть классическим, или, классической вероятностью: классической вероятностью события А называется отношение числа благоприятных исходов (обязательно наступивших) к общему числу несовместных единственно возможных и равновозможных исходов : Р(А) = m/n, где m – число исходов, благоприятных для события А; n- общее число несовместных единственно возможных и равновозможных исходов. С точки зрения значения случайности все события можно классифицировать следующим образом:


Несколько событий называются совместными , если появление одного из них в единичном испытании не исключает появления других событий в этом же испытании. В противном случае события называются несовместными .

Два события называются зависимыми , если вероят­ность одного события зависит от появления или непояв­ления другого. Два события называются независимыми , если веро­ятность одного события не зависит от появления или не­появления другого. Несколько событий называются независимыми в со­вокупности, если каждое из них и любая комбинация остальных событий есть события независимые. Несколько событий называются попарно независимы­ми , если любые два из этих событий независимы.

Требование независимости в совокупности сильнее требования попарной независимости. Это значит, что несколько событий могут являться попарно независимы­ми, но при этом они не будут независимыми в совокуп­ности. Если же несколько событий независимы в совокуп­ности, то из этого следует их попарная независимость. В связи с тем , что в дальнейшем часто нужно будет рассматривать вероятности одних событий в зависимости от появления или непоявления других, то необходимо ввести еще одно понятие.

Условной вероятностью РА(В) называется вероят­ность события В, вычисленная при условии, что событие А уже произошло.

Одним из важнейших понятий теории вероятностей (наряду со случайным событием и вероятностью) является понятие случайной величины .

Под случайной величиной понимают величину, которая в результате опыта принимает то или иное значение, причем неизвестно заранее, какое именно. Примерами случайной величины могут служить: 1) X - число очков, появляющих­ся при бросании игральной кости; 2) Y - число выстрелов до первого попадания в цель; 3) Z - время безотказной работы прибора и т.п. Случайная величина, принимающая конечное или счетное множе­ство значений, называется дискретной . Если же множество возможных значений случайной величины несчетно, то такая величина называется непрерывной .

То есть дискретная случайная величина принимает отдельные изолированные друг от друга значения, а непрерывная случайная величина может принимать любые значения из некоторого промежутка (например, значения на отрезке, на всей числовой прямой и т.д.). Случайные величины X и Y (примеры 1) и 2)) являются дискретными. Случайная величина Z (пример 3)) является непрерывной: ее возможные значения принадлежат промежутку . Пример. Опыт состоит в бросании монеты 2 раза. Можно рассмотреть случайное событие – появление герба и случайную величину X - число появлений герба.

Основными характеристиками случайной величины являются характеристики положения (математическое ожидание, мода, медиана) и характеристики рассеивания (дисперсия, среднеквадратичное отклонение) .

Математическое ожидание вычисляется по формуле М[X]=Σxipi и характеризует среднее значение случайной величины.

Мода (М 0 ) – это такое значение случайной величины, для которого соответствующее значение вероятности максимально.

Медианой дискретной случайной величины (Ме) называется такое значение х k в ряду возможных значений случайной величины, которые она принимает с определенными значениями вероятностей, что приблизительно равновероятно закончится ли процесс до х k или продолжится после него.

Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D[Х]=М(Х-М[Х]) 2 = М[Х 2 ]-М 2 [Х].

Среднеквадратическим отклонением случайной величины Х называют положительное значение квадратного корня из дисперсии: σ[Х]=.

Задачи, связанные с понятиями случайного события и случайной величины, эффективно рассматривать через графическую иллюстрацию с применением вероятностного графа, на ребрах которого надписаны соответствующие значения вероятностей .


Пусть вероятность выигрыша одной игры для первого игрока равна 0,3, а вероятность выигрыша для второго игрока соответ-ственно равна 0,7. Как в таком случае разделить ставку?

Ответ: пропорционально вероятности выигрыша.


Х

х1

х2

……

хn

….

Р

р1

р2

……

рn

..
Л юбое правило (таблица, функция, график), позволяющее нахо­дить вероятности произвольных событий, в частности, указывающее вероятности отдель­ных значений случайной величины или множества этих значений, на­зывается законом распределения случайной величины (или просто: рас­пределением). Про случайную величину говорят, что «она подчиняется данному закону распределения» – соотношению, устанавливающему связь между возможными значениями случайной величины и соответствующими вероятностями. Закон распределения дискретной случайной величины обычно задается в виде таблицы, где в верхней строке записаны значения случайной величины, а в нижней – под каждым хi – соответствующие вероятности р i

Закон распределения может иметь геометрическую иллюстрацию в виде графа распределения .

Изучение элементов статистики и теории вероятностей начинается в 7 классе. Включение в курс алгебры начальных сведений из статистики и теории вероятностей направлено на формирование у учащихся таких важных в современном обществе умений, как понимание и интерпретация результатов статистических исследований, широко представленных в средствах массовой информации. В современных школьных учебниках понятие вероятности случайного события вводятся с опорой на жизненный опыт и интуицию учащихся.

Хотелось бы заметить, что в 5-6 классах учащиеся уже должны получить представления о случайных событиях и их вероятностях, поэтому в 7-9 классах можно было бы быстрее знакомить с основами теории вероятности, расширить круг сообщаемых им сведений.

Наше образовательное учреждение апробирует программу «Начальная школа 21 века». И я как учитель математики решила продолжить апробацию этого проекта в 5-6 классах. Курс реализован на базе учебно-методического комплекта М.Б.Воловича «Математика. 5-6 классы». В учебнике «Математика. 6 класс» на изучение элементов теории вероятностей отводится 6 часов. Здесь даются самые первые предварительные сведения о таких понятиях, как испытание, вероятность появления случайного события, достоверные и невозможные события. Но самое главное, что ученики должны усвоить, – при небольшом числе испытаний невозможно предсказать результат случайного события. Однако, если испытаний много, то результаты становятся вполне предсказуемыми. Чтобы учащиеся осознали, что вероятность появления события может быть подсчитана, дается формула, позволяющая вычислить вероятность наступления событий в случае, когда все рассматриваемые исходы «одинаковы».

Тема: «Понятие «вероятность». Случайные события».

Цели урока:

  • обеспечить знакомство с понятием «испытание», «исход», «случайное событие», «достоверное событие», «невозможное событие», дать начальное представление о том, что такое «вероятность наступления события», сформировать умение подсчитывать вероятность наступления события;
  • развивать умение определять достоверность, невозможность событий;
  • повышать познавательный интерес.

Оборудование:

  1. М.Б. Волович Математика, 6 класс, М.: Вентана-Граф, 2006.
  2. Ю.Н.Макарычев, Н.Г.Миндюк Элементы статистики и теории вероятностей, М.: Просвещение, 2008.
  3. Монета в 1 рубль, игральная кость.

ХОД УРОКА

I. Организационный момент

II. Актуализация знаний учащихся

Решите ребус:

(Вероятность)

III. Объяснение нового материала

Если монету, например рубль, подбросить вверх и позволить ей упасть на пол, то возможны только два исхода: «монета упала гербом вверх» и «монета упала решкой вверх». Случай, когда монета падает на ребро, подкатывается к стене и упирается в нее, бывает очень редко и обычно не рассматривается.
Издавна в России играли в «орлянку» – подбрасывали монету, если надо было решить спорную проблему, у которой не было очевидно справедливого решения, или разыгрывали какой-нибудь приз. В этих ситуациях прибегали к случаю: одни загадывали выпадение «орла», другие – «решки».
К подбрасыванию монеты иногда прибегают даже при решении весьма важных вопросов.
Например, полуфинальный матч на первенство Европы в 1968 году между командами СССР и Италии закончился вничью. Не выявился победитель ни в дополнительное время, ни в серии пенальти. Тогда было решено, что победителя определит его величество случай. Бросили монету. Случай был благосклонен к итальянцам.
В повседневной жизни, в практической и научной деятельности мы часто наблюдаем те или иные явления, проводим определенные эксперименты.
Событие, которое может произойти, а может не произойти в процессе наблюдения или эксперимента, называют случайным событием .
Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей .

Проведем опыт 1: Петя 3 раза подбросил монету вверх. И все 3 раза выпал «орел» – монета упала гербом вверх. Догадайтесь, возможно ли это?
Ответ: Возможно. «Орел» и «решка» выпадают совершенно случайно.

Опыт 2: (учащиеся работают в парах) Подбросить монету в 1 рубль 50 раз и подсчитать, сколько раз выпадет орел. Записать результаты в тетради.
В классе подсчитать, сколько всеми учениками было проведено опытов и каково общее число выпадений орла.

Опыт 3: Ту же самую монету подбрасывали вверх 1000 раз. И все 1000 раз выпал «орел». Догадайтесь, возможно ли это?
Обсудим этот опыт.
Подбрасывание монеты называют испытанием . Выпадение «орла» или «решки» – исходом (результатом) испытания. Если испытание повторяют много раз при одних и тех же условиях, то сведения об исходах всех испытаний называют статистикой .
Статистика фиксирует как число m интересующих нас исходов (результатов), так и общее число N испытаний.
Определение: Отношение называется статистической частотой появления интересующего нас результата.

В XVIII веке французский ученый, почетный член петербургской академии наук Бюффон для проверки правильности подсчета вероятности выпадения «орла» подкинул монету 4040 раз. «Орел» у него выпал 2048 раз.
В XIX веке английский ученый Пирсон подкинул монету 24 000 раз. «Орел» у него выпал 12 012 раз.
Подставим в формулу , позволяющую подсчитать статистическую частоту появления интересующего нас результата, m = 12 012, N = 24 000. Получим = 0,5005.

Рассмотрим пример подбрасывания игрального кубика. Будем считать, что этот кубик имеет правильную форму и сделан из однородного материала и поэтому при его бросании шансы выпадения на его верхней грани любого числа очков от 1 до 6 одинаковы. Говорят, что существует шесть равновозможных исходов этого испытания: выпадение очков 1, 2, 3, 4, 5 и 6.

Вероятность того или иного события проще всего подсчитать, если все n возможных исходов «одинаковы» (ни один из них не имеет преимуществ перед остальными).
В этом случае вероятность P вычисляется по формуле Р = , где n – число возможных исходов.
В примере подбрасывании монеты есть лишь два исхода («орел» и «решка»), т.е. п = 2. Вероятность Р выпадения «орла» равна .
Опыт 4: Каковавероятностьтого, что при бросании игральной кости выпадет:
а) 1 очко; б) более 3 очков.
Ответ: а) , б) .

Определение : Если событие при рассматриваемых условиях происходит всегда, то оно называется достоверным . Вероятность появления достоверного события равна 1.

Есть события, которые при рассматриваемых условиях не происходят никогда. Например, Буратино по совету лисы Алисы и кота Базилио решил зарыть свои золотые монеты на поле Чудес, чтобы из них появилось денежное дерево. Какой будет вероятность того, что их посаженных монет вырастет дерево? Вероятность вырастания денежного дерева из монет, «посаженных» Буратино, равна 0.

Определение: Если событие при рассматриваемых условиях не происходит никогда, то оно называется невозможным . Вероятность невозможного события равна 0.

IV. Физкультминутка

«Волшебный сон»

Все умеют танцевать, бегать, прыгать и играть,
Но не все пока умеют расслабляться, отдыхать.
Есть у них игра такая, очень легкая, простая.
Замедляется движенье, исчезает напряженье,
И становится понятно: расслабление приятно.
Реснички опускаются, глазки закрываются
Мы спокойно oтдыxaeм, сном волшебным засыпаем.
Дышится легко, ровно, глубоко.
Напряженье улетело и расслаблено все тело.
Будто мы лежим на травке...
На зеленой мягкой травке...
Греет солнышко сейчас, руки теплые у нас.
Жарче солнышко сейчас, ноги теплые у нас.
Дышится легко, вольно, глубоко.
Губы теплые и вялые, но нисколько не усталые.
Губы чуть приоткрываются, и приятно расслабляются.
И послушный наш язык быть расслабленным привык».
Громче, быстрее, энергичнее:
«Было славно отдыхать, а теперь пора вставать.
Крепко пальцы сжать в кулак,
И к груди прижать – вот так!
Потянуться, улыбнуться, глубоко вдохнуть, проснуться!
Распахнуть глаза по шире – раз, два, три, четыре!»
Дети встают и хором с учителем произносят:
«веселы, бодры мы снова и к занятиям готовы».

V. Закрепление

Задача 1:

Какие из следующих событий являются достоверными, а какие невозможными:

а) Бросили две игральные кости. Выпало 2 очка. (достоверное)
б) Бросили две игральные кости. Выпало 1 очко. (невозможное)
в) Бросили две игральные кости. Выпало 6 очков. (достоверное)
г) Бросили две игральные кости. Выпало число очков, меньше, чем 13. (достоверное)

Задача 2:

В коробке лежит 5 зеленых, 5 красных и 10 черных карандашей. Достали 1 карандаш. Сравните вероятности следующих событий, используя выражения: более вероятное, менее вероятное, равновероятные.

а) Карандаш оказался цветным;
б) карандаш оказался зеленым;
в) карандаш оказался черным.

Ответ :

а) равновероятные;
б) более вероятное, что карандаш оказался черным;
в) равновероятные.

Задача 3: Петя подбросил игральную кость 23 раза. Однако 1 очко выпало 3 раза, 2 очка выпало 5 раз, 3 очка выпало 4 раза, 4 очка выпало 3 раза, 5 очков выпало 6 раз. В остальных случаях выпало 6 очков. Выполняя задание, округлите десятичные дроби до сотых.

  1. Посчитайте статистическую частоту появления наибольшего числа очков, вероятность того, что выпадет 6 очков, и поясните, почему статистическая частота существенно отличается от вероятности появления 6 очков, найденной по формуле.
  2. Посчитайте статистическую частоту появления четного числа очков, вероятность того, что выпадет четное число очков, и поясните, почему статистическая частота существенно отличается от вероятности появления четного числа очков, найденной по формуле.

Задача 4: Для украшения елки принесли коробку, в которой находится 10 красных, 7 зеленых, 5 синих и 8 золотых шаров. Из коробки наугад вынимают один шар. Какова вероятность того, что он окажется: а) красным; б) золотым; в) красным или золотым?

VI. Домашнее задание

  1. Из коробки, в которой лежат зеленые и красные шары, достают 1 шар, а потом кладут его обратно в коробку. Можно ли считать, что вынимание шара из коробки – испытание? Что может быть результатом испытания?
  2. В коробке лежат 2 красных и 8 зеленых шаров.

а) Найдите вероятность того, что вытащенный наугад шар будет красным.
б) Найдите вероятность того, что вытащенный наугад шар будет зеленым.
в) Из коробки вытащили наугад 2 шара. Может ли так оказаться, что оба шара будут красными?

VII. Итог

– Вы узнали самые сведения из теории вероятностей – что такое случайное событие и статистическая частота результата испытания, как вычислить вероятность случайного события при равновозможных исходах. Но надо помнить, что не всегда удается оценить результаты испытаний со случайным исходом и найти вероятность события даже при большом числе испытаний. Например, нельзя найти вероятность заболевания гриппом: слишком много факторов каждый раз влияет на исход этого события.

В повседневной жизни, в практической и научной деятельности мы часто наблюдаем те или иные явления, проводим определенные эксперименты. Событие, которое может произойти, а может и не произойти в процессе наблюдения или эксперимента, называют случайным событием. Например, под потолком висит лампочка - никто не знает, когда она перегорит. Каждое случайное событие - есть следствие действия очень многих случайных величин (сила, с которой брошена монета, форма монеты и многое другое). Невозможно учесть влияние на результат всех этих причин, так как число их велико и законы действия неизвестны. Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей. Теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет - она просто не в силах это сделать. Если же речь идет о массовых однородных случайных событиях, то они подчиняются определенным закономерностям, а именно вероятностным закономерностям. Для начала давайте рассмотрим классификацию событий. Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие A - выпадание трех очков на первой игральной кости, событие B - выпадание трех очков на второй кости. A и B - совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие A - наудачу взятая коробка окажется с обувью черного цвета, событие B - коробка окажется с обувью коричневого цвета, A и B - несовместные события. Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта. Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным. Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления. События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны. Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. A - появление красного шара при одном извлечении, B - появление белого шара, C - появление шара с номером. События A,B,C образуют полную группу совместных событий. Событие может быть противоположным, или дополнительным. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие A. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие A, либо бракованным - событие. Рассмотрим пример. Бросают игральный кубик (т.е. небольшой куб, на гранях которого выбиты очки 1, 2, 3, 4, 5, 6). При бросании игрального кубика на его верхней грани может выпасть одно очко, два очка, три очка и т.д. Каждый из этих исходов является случайным. Провели такое испытание. Игральный кубик бросали 100 раз и наблюдали, сколько раз произойдет событие «на кубике выпало 6 очков». Оказалось, что в данной серии экспериментов «шестерка» выпала 9 раз. Число 9, которое показывает, сколько раз в этом испытании произошло рассматриваемое событие, называют частотой этого события, а отношение частоты к общему числу испытаний, равное, называют относительной частотой этого события. Вообще пусть определенное испытание проводится многократно в одних и тех же условиях и при этом каждый раз фиксируется, произошло или нет интересующее нас событие A. Вероятность события обозначается большой латинской буквой P. Тогда вероятность события А будем обозначать: Р(А). Классическое определение вероятности: Вероятность события A равна отношению числа случаев m, благоприятствующих ему, из общего числа n единственно возможных, равновозможных и несовместных случаев к числу n, т. е. Следовательно, для нахождения вероятности события необходимо: рассмотреть различные исходы испытаний; найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать их общее число n, число случаев m, благоприятствующих данному событию; выполнить расчет по формуле. Из формулы следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев: Рассмотрим еще один пример. В коробке находится 10 шаров. 3 из них красные, 2 - зеленые, остальные белые. Найти вероятность того, что вынутый наугад шар будет красным, зеленым или белым. Появление красного, зеленого и белого шаров составляют полную группу событий. Обозначим появление красного шара - событие А, появление зеленого - событие В, появление белого - событие С. Тогда в соответствием с записанными выше формулами получаем: ; ; Отметим, что вероятность наступления одного из двух попарно несовместных событий равна сумме вероятностей этих событий. Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов. Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота - после опыта. Так в рассмотренном выше примере, если из коробки наугад извлечено 5 шаров и 2 из них оказались красными, то относительная частота появления красного шара равна: Как видно, эта величина не совпадает с найденной вероятностью. При достаточно большом числе произведенных опытов относительная частота изменяется мало, колеблясь около одного числа. Это число может быть принято за вероятность события. Геометрическая вероятность. Классическое определение вероятности предполагает, что число элементарных исходов конечно, что также ограничивает его применение на практике. В случае, когда имеет место испытание с бесконечным числом исходов, используют определение геометрической вероятности - попадание точки в область. При определении геометрической вероятности полагают, что имеется область N и в ней меньшая область M. На область N наудачу бросают точку (это означает, что все точки области N «равноправны» в отношении попадания туда брошенной случайно точки). Событие A - «попадание брошенной точки на область M». Область M называют благоприятствующей событию A. Вероятность попадания в какую-либо часть области N пропорциональна мере этой части и не зависит от ее расположения и формы. Область, на которую распространяется геометрическая вероятность, может быть: отрезок (мерой является длина) геометрическая фигура на плоскости (мерой является площадь) геометрическое тело в пространстве (мерой является объем) Дадим определение геометрической вероятности для случая плоской фигуры. Пусть область M является частью области N. Событие A состоит в попадании случайно брошенной на область N точки в область M. Геометрической вероятностью события A называется отношение площади области M к площади области N: При этом вероятность попадания случайно брошенной точки на границу области считается равной нулю. Рассмотрим пример: Механические часы с двенадцатичасовым циферблатом сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 5, но не дошла до отметки 8 часов. Решение. Число исходов бесконечно, применим определение геометрической вероятности. Сектор между 5 и 8 часами составляет часть площади всего циферблата, следовательно, . Операции над событиями: События А и В называются равными, если осуществление события А влечет за собой осуществление события В и наоборот. Объединением или суммой событий называется событие A, которое означает появление хотя бы одного из событий. A= Пересечением или произведением событий называется событие А, которое заключается в осуществлении всех событий. A=? Разностью событий А и В называется событие С, которое означает, что происходит событие А, но не происходит событие В. C=AB Пример: A + B - «выпало 2; 4; 6 или 3 очка» A B - «выпало 6 очков» A - B - «выпало 2 и 4 очка» Дополнительным к событию А называется событие, означающее, что событие А не происходит. Элементарными исходами опыта называются такие результаты опыта, которые взаимно исключают друг друга и в результате опыта происходит одно из этих событий, также каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие. Совокупность всех элементарных исходов опыта называется пространством элементарных событий. Свойства вероятностей: Свойство 1. Если все случаи являются благоприятствующими данному событию A, то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления, так как в этом случае Свойство 2. Если нет ни одного случая, благоприятствующего данному событию A, то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления, так как в этом случае m=0: Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице. Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события A: где (n-m) - число случаев, благоприятствующих появлению противоположного события. Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A: Сложение и умножение вероятностей. Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записываем A?B. События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В. Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В. Теорема о сложении вероятностей 1. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий. P=P+P Заметим, что сформулированная теорема справедлива для любого числа несовместных событий: Если случайные события образуют полную группу несовместных событий, то имеет место равенство P+P+…+P=1 Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события. Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле P=P+P-P Примеры задач на теорему сложения. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. Решение. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35. Ответ: 0,35. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. Решение. Рассмотрим события А - «кофе закончится в первом автомате», В - «кофе закончится во втором автомате». Тогда A·B - «кофе закончится в обоих автоматах», A + B - «кофе закончится хотя бы в одном автомате». По условию P(A) = P(B) = 0,3; P(A·B) = 0,12. События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятности их произведения: P(A + B) = P(A) + P(B) ? P(A·B) = 0,3 + 0,3 ? 0,12 = 0,48. Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 ? 0,48 = 0,52. Ответ: 0,52. События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет. Условной вероятностью P(A|B) события А называется вероятность, вычисленная при условии, что событие В произошло. Аналогично, через P(B|A) обозначается условная вероятность события В при условии, что А наступило. Для независимых событий по определению P(A|B) = P(A); P(B|A) = P(B) Теорема умножения для зависимых событий Вероятность произведения зависимых событий равна произведению ве0,01 = 0,0198 + 0,0098 = 0,0296. Ответ: 0,0296.

В 2003 г. было принято решение о включении элементов теории вероятностей в школьный курс математики общеобразовательной школы (инструктивное письмо № 03-93ин/13-03 от 23.09.2003 Министерства образования РФ «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы», «Математика в школе», № 9 за 2003 г.). К этому моменту элементы теории вероятностей уже более десяти лет в разнообразном виде присутствовали в известных школьных учебниках алгебры для разных классов (например, И.Ф. «Алгебра: Учебники для 7-9 классов общеобразовательных учреждений» под редакцией Г.В.Дорофеева; «Алгебра и начала анализа: Учебники для 10- 11 классов общеобразовательных учреждений» Г.В.Дорофеев, Л.В.Кузнецова, Е.А.Седова»), и в виде отдельных учебных пособий. Однако изложение материала по теории вероятности в них, как правило, не носило систематического характера, а учителя, чаще всего, не обращались к этим разделам, не включали их в учебный план. Принятый Министерством образования в 2003 г. документ предусматривал постепенное, поэтапное включение этих разделов в школьные курсы, давая возможность преподавательскому сообществу подготовиться к соответствующим изменениям. В 2004-2008 гг. выходит ряд учебных пособий, дополняющих существующие учебники алгебры. Это издания Тюрин Ю.Н., Макаров А.А., Высоцкий И.Р., Ященко И.В. «Теория вероятностей и статистика», Тюрин Ю.Н., Макаров А.А., Высоцкий И.Р., Ященко И.В. «Теория вероятностей и статистика: Методическое пособие для учителя», Макарычев Ю.Н., Миндюк Н.Г. «Алгебра: элементы статистики и теории вероятностей: учеб. Пособие для учащихся 7-9 кл. общеобразоват. учреждений», Ткачева М.В., Федорова Н.Е. «Элементы статистики и вероятность: Учеб. Пособие для 7- 9 кл. общеобразоват. учреждений». В помощь учителям также вышли методические пособия. В течение ряда лет все эти учебные пособия проходили апробацию в школах. В условиях, когда переходный период внедрения в школьные программы завершился, и разделы статистики и теории вероятностей заняли свое место в учебных планах 7-9 классов, требуется анализ и осмысление согласованности основных определений и обозначений, используемых в этих учебных пособиях. Все эти учебные пособия создавались в условиях отсутствия традиций преподавания этих разделов математики в школе. Такое отсутствие вольно или невольно провоцировало авторов учебных пособий на сравнение с имеющимися учебниками для вузов. Последние же в зависимости от сложившихся традиций по отдельным специализациям высшей школы часто допускали существенный терминологический разнобой и различия в обозначениях основных понятий и записи формул. Анализ содержания указанных выше школьных учебных пособий показывает, что они на сегодняшний день унаследовали от учебников высшей школы эти особенности. С большей степенью точности можно утверждать, что выбор конкретного учебного материала по новым для школы разделам математики, касающихся понятия «случайного», происходит в настоящий момент самым что ни на есть случайным образом, вплоть до названий и обозначений. Поэтому коллективы авторов ведущих школьных учебных пособий по теории вероятностей и статистики решили объединить свои усилия под эгидой Московского института Открытого Образования для выработки согласованных позиций по унификации основных определений и обозначений, используемых в учебных пособиях для школы по теории вероятностей и статистике. Проведем анализ введения темы «Теория вероятностей» в школьных учебниках. Общая характеристика: Содержание обучения теме "Элементы теории вероятностей", выделенное в "Программе для общеобразовательных учреждений. Математика", обеспечивает дальнейшее развитие у учащихся их математических способностей, ориентации на профессии, существенным образом связанных с математикой, подготовку к обучению в ВУЗе. Специфика математического содержания рассматриваемой темы позволяет конкретизировать выделенную основную задачу углубленного изучения математики следующим образом. 1. Продолжить раскрытие содержания математики, как дедуктивной системы знаний. - построить систему определений основных понятий; - выявить дополнительные свойства введенных понятий; - установить связи введенных и ранее изученных понятий. 2. Систематизировать некоторые вероятностные способы решения задач; раскрыть операционный состав поиска решений задач определенных типов. 3. Создать условия для понимания и осознания учащимися основной идеи практической значимости теории вероятностей путем анализа основных теоретических фактов. Раскрыть практические приложения изучаемой в данной теме теории. Достижению поставленных образовательных целей будет способствовать решение следующих задач: 1. Сформировать представление о различных способах определения вероятности события (статистическое, классическое, геометрическое, аксиоматическое) 2. Сформировать знание основных операций над событиями и умения применять их для описания одних событий через другие. 3. Раскрыть сущность теории сложения и умножения вероятностей; определить границы использования этих теорем. Показать их применения для вывода формул полной вероятности. 4. Выявить алгоритмы нахождения вероятностей событий а) по классическому определению вероятности; б) по теории сложения и умножения; в) по формуле0,99 + 0,98P(A|Bn) Рассмотрим пример: Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована. Решение. Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A - «батарейка действительно неисправна и забракована справедливо» или В - «батарейка исправна, но по ошибке забракована». Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем: P (A+B) = P(A) + P(B) = 0,02P(A|B3) + … + Р(Вn)P(A|B2) + Р(В3)P(A|B1) + Р(В2)роятности одного из них на условную вероятность другого, при условии, что первое произошло: P(A B) = P(A) P(B|A) P(A B) = P(B) P(A|B) (в зависимости от того, какое событие произошло первым). Следствия из теоремы: Теорема умножения для независимых событий. Вероятность произведения независимых событий равна произведению их вероятностей: P(A B) = P(A) P(B) Если А и В независимы, то независимы и пары: (;), (; В), (А;). Примеры задач на теорему умножения: Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. Решение. Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156. Ответ: 0,156. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен. Решение. Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 ? 0,0025 = 0,9975. Ответ: 0,9975. Формула полной вероятности Следствием теорем сложения и умножения вероятностей является формула полной вероятности: Вероятность P(А) события А, которое может произойти только при условии появления одного из событий (гипотез) В1, В2, В3 … Вn, образующих полную группу попарно несовместных событий, равна сумме произведений вероятностей каждого из событий (гипотез) В1, В2, В3, …, Вn на соответствующие условные вероятности события А: P(А) = Р(В1) полной вероятности. 5. Сформировать предписание, позволяющее рационально выбрать один из алгоритмов при решении конкретной задачи. Выделенные образовательные цели для изучения элементов теории вероятностей дополним постановкой развивающих и воспитательных целей. Развивающие цели: формировать у учащихся устойчивый интерес к предмету, выявлять и развивать математические способности; в процессе обучения развивать речь, мышление, эмоционально-волевую и конкретностно-мотивационную области; самостоятельное нахождение учащимися новых способов решения проблем и задач; применение знаний в новых ситуациях и обстоятельствах; развивать умение объяснить факты, связи между явлениями, преобразовывать материал из одной формы представления в другую (вербальная, знако-символическая, графическая); учить демонстрировать правильное применение методов, видеть логику рассуждений, сходство и различие явлений. Воспитательные цели: формировать у школьников нравственные и эстетические представления, систему взглядов на мир, способность следовать нормам поведения в обществе; формировать потребности личности, мотивы социального поведения, деятельности, ценностей и ценностных ориентаций; воспитывать личность, способную к самообразованию и самовоспитанию. Проведем анализ учебника по алгебре за 9 класс «Алгебра: элементы статистики и теории вероятностей» Макарычев Ю.Н. Это учебное пособие предназначено для учащихся 7-9 классов, оно дополняет учебники: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. «Алгебра 7», «Алгебра 8», «Алгебра 9», под редакцией Теляковского С.А. Книга состоит из четырех параграфов. В каждом пункте содержатся теоретические сведения и соответствующие упражнения. В конце пункта приводятся упражнения для повторения. К каждому параграфу даются дополнительные упражнения более высокого уровня сложности по сравнению с основными упражнениями. Согласно «Программе для общеобразовательных учреждений» на изучение темы «Теория вероятностей и статистика» в школьном курсе алгебры отводится 15 часов. Материал по данной теме приходится на 9 класс и излагается в следующих параграфах: §3 «Элементы комбинаторики» содержит 4 пункта: Примеры комбинаторных задач. На простых примерах демонстрируется решение комбинаторных задач методом перебора возможных вариантов. Этот метод иллюстрируется с помощью построение дерева возможных вариантов. Рассматривается правило умножения. Перестановки. Вводится само понятие и формула подсчета перестановок. Размещения. Понятие вводится на конкретном примере. Выводится формула числа размещений. Сочетания. Понятие и формула числа сочетаний. Целью данного параграфа является дать учащимся различные способы описания всех возможных элементарных событий в различных типах случайного опыта. §4 «Начальные сведения из теории вероятностей». Изложение материала начинается с рассмотрения эксперимента, после чего вводят понятие «случайное событие» и «относительная частота случайного события». Вводится статистическое и классическое определение вероятности. Параграф завершается пунктом «сложение и умножение вероятностей». Рассматриваются теоремы сложения и умножения вероятностей, вводятся связанные с ними понятия несовместные, противоположные, независимые события. Этот материал рассчитан на учащихся, проявляющих интерес и склонности к математике, и может быть использован для индивидуальной работы или на внеклассных занятиях с учащимися. Методические рекомендации к данному учебнику даны в ряде статей Макарычева и Миндюка («Элементы комбинаторики в школьном курсе алгебры», «Начальные сведения из теории вероятностей в школьном курсе алгебры»). А также некоторые критические замечания по данному учебному пособию содержатся в статье Студенецкой и Фадеевой, которая поможет не допустить ошибок при работе с данным учебником. Цель: переход от качественного описания событий к математическому описанию. Тема «Теория вероятностей» в учебниках Мордковича А.Г., Семенова П.В. за 9-11 классы. На данный момент одним из действующих учебников в школе является учебник Мордковича А.Г., Семенова П.В. «События, вероятности, статистическая обработка данных», к нему также имеются дополнительные главы для 7-9 классов. Проведем его анализ. Согласно «Рабочей программе по алгебре» на изучение темы «Элементы комбинаторики, статистики и теории вероятностей» отводится 20 часов. Материал по теме «Теория вероятностей» раскрывается в следующих параграфах: § 1. Простейшие комбинаторные задачи. Правило умножения и дерево вариантов. Перестановки. Начинается с рассмотрения простых комбинаторных задач, рассматривается таблица возможных вариантов, которая показывает принцип правила умножения. Затем рассматриваются деревья возможных вариантов и перестановки. После теоретического материала идут упражнения по каждому из подпунктов. § 2. Выбор нескольких элементов. Сочетания. Сначала выводится формула для 2-ух элементов, затем для трех, а потом общая для n элементов. § 3. Случайные события и их вероятности. Вводится классическое определение вероятности. Плюсом данного пособия является то, что оно одно из немногих содержит пункты, в которых рассматриваются таблицы и деревья вариантов. Эти пункты необходимы, так как именно таблицы и деревья вариантов учат учащихся представлению и первоначальному анализу данных. Так же в этом учебнике удачно вводится формула сочетаний сначала для двух элементов, затем для трех и обобщается для n элементов. По комбинаторике материал изложен так же удачно. Каждый параграф содержит упражнения, что позволяет закреплять материал. Замечания по данному учебному пособию содержатся в статье Студенецкой и Фадеевой. В 10 классе на данную тему отводится три параграфа. В первом из них «Правило умножения. Перестановки и факториалы», кроме собственно правила умножения, основной акцент делался на вывод из этого правила двух основных комбинаторных тождеств: для числа перестановок и для числа всевозможных подмножеств множества, состоящего из n элементов. При этом факториалы введены как удобный способ сокращенной записи ответа во многих конкретных комбинаторных задачах раньше самого понятия «перестановка». Во втором параграфе 10 класса «Выбор нескольких элементов. Биномиальные коэффициенты»рассматривались классические комбинаторные задачи, связанные с одновременным (или поочередным) выбором нескольких элементов из заданного конечного множества. Наиболее существенным и действительно новым для российской общеобразовательной школы был заключительный параграф «Случайные события и их вероятности». В нем была рассмотрена классическая вероятностная схема, разобраны формулы P(A+B)+P(AB)=P(A)+P(B), P()=1-P(A), P(A)=1-P() и способы их применения. Заканчивался параграф переходом к независимым повторениям испытания с двумя исходами. Это наиболее важная с практической точки зрения вероятностная модель (Испытания Бернулли), имеющая значительное число приложений. Последний материал образовывал переход между содержанием учебного материала в 10 и 11 классах. В 11 классе теме «Элементы теории вероятностей» посвящены два параграфа учебника и задачника. В § 22 речь идет о геометрических вероятностях, в § 23 повторяются и расширяются знания о независимых повторениях испытаний с двумя исходами.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.


Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать. Методы теории вероятностей широко применяются в различных отраслях науки и техники: в теории надёжности, теории массового обслуживания, теоретической физике, геодезии, астрономии, теории ошибок, теории управления, теории связи и во многих других теоретических и прикладных науках. Теория вероятностей служит для обоснования математической статистики.














Примеры событий досто- верные слу- чайные невоз- можные 1. ПОСЛЕ ЗИМЫ НАСТУПАЕТ ВЕСНА. 2. ПОСЛЕ НОЧИ ПРИХОДИТ УТРО. 3. КАМЕНЬ ПАДАЕТ ВНИЗ. 4. ВОДА СТАНОВИТСЯ ТЕПЛЕЕ ПРИ НАГРЕВАНИИ. 1. НАЙТИ КЛАД. 2. БУТЕРБРОД ПАДАЕТ МАСЛОМ ВНИЗ. 3. В ШКОЛЕ ОТМЕНИЛИ ЗАНЯТИЯ. 4. ПОЭТ ПОЛЬЗУЕТСЯ ВЕЛОСИПЕДОМ. 5. В ДОМЕ ЖИВЕТ КОШКА. 1. З0 ФЕВРАЛЯ ДЕНЬ РОЖДЕНИЯ. 2. ПРИ ПОДБРАСЫВАНИИ КУБИКА ВЫПАДАЕТ 7 ОЧКОВ. 3. ЧЕЛОВЕК РОЖДАЕТСЯ СТАРЫМ И СТАНОВИТСЯ С КАЖДЫМ ДНЕМ МОЛОЖЕ.


Определение вероятности. Вероятность события А это отношение числа благоприятствующих этому событию исходов к общему числу несовместных элементарных исходов, которые образуют полную группу: P(A) = m / n, где m число элементарных исходов, которые благоприятствуют А; n число всех возможных элементарных исходов испытания.


Следовательно, можно записать следующие три свойства. 1. Вероятность достоверного события равна единице. Следовательно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию, тогда m = n, и Р(A) = m / n = n / n = Вероятность невозможного события равна нулю. Следовательно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию, тогда m = 0, и Р (А) = m / n = 0 / n = Вероятность случайного события есть положительное число, заключенное между нулем и единицей. Следовательно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания, тогда 0


Противоположное событие По отношению к рассматриваемому событию А – это событие, которое не происходит, если А происходит. И наоборот. Например, событие А – «выпало четное число очков» и B – «выпало нечетное число очков» при бросании игрального кубика – противоположные. Теорема: Сумма вероятностей противоположных событий равна 1. Т.е.: или p+q=1. Пример: Вероятность того, что день будет дождливым p=0,7. Найти вероятность того, что день будет ясным. Решение: События «день будет дождливым» и «день будет ясным» противоположные. Поэтому искомая вероятность: q=1-p=1-0,7 = 0,3.






Действия над событиями 1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. На диаграмме Венна сумма А+В изображается: Если события А и В совместны, то сумма А+В означает, что наступает событие А, или событие В, или оба события вместе. Если события несовместны, то событие А+В заключается в том, что должны наступить только А или В, тогда + заменяется словом «или». Действия над событиями 1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. На диаграмме Венна сумма А+В изображается: Если события А и В совместны, то сумма А+В означает, что наступает событие А, или событие В, или оба события вместе. Если события несовместны, то событие А+В заключается в том, что должны наступить только А или В, тогда + заменяется словом «или».


Теорема сложения вероятностей совместных событий. Теорема: Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления: Р(А+В)=Р(А)+Р(В) – Р(АВ) Пример: Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны р1=0,7 и р2=0,8. Найти вероятность попадания при одном залпе хотя бы одним из орудий. Решение: Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А (попадание первого орудия) и В (попадание второго орудия) независимы. Вероятность события А*В (оба орудия дали попадание) Р(А*В)=Р(А)*Р(В)=0,7*0,8=0,56 Искомая вероятность Р(А+В)=Р(А)+Р(В)-Р(АВ) = 0,7+0,8-0,56=0,94


Данный пример можно было бы решить другим способом, используя формулу вероятности появления хотя бы одного события. Допустим, в результате испытания могут появиться 2 независимых в совокупности событий или некоторые из них. При этом вероятности появления каждого из этих событий даны. Для нахождения вероятности того, что наступит хотя бы одно из этих событий, воспользуемся следующей теоремой. Теорема. Вероятность появления хотя бы одного из событий A1 и А2, которые независимы в совокупности, равняется разности между единицей и произведением вероятностей противоположных событий: P(A) = 1q1*q2.


Теорема сложения вероятностей несовместных событий Если события А и В несовместны, то событие А+В заключается в том, что должны наступить А или В, тогда + заменяется словом «или». Теорема: Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р(А+В)=Р(А)+Р(В).


Пример: В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара. Решение: Появление цветного шара означает появление либо красного, либо синего шара. Соб. А – появление красного шара. Вероятность появления соб. А: Р(А)=10/30=1/3. Соб. В – появление синего шара. Вероятность появления соб. В: Р(В) = 5/30=1/6. События А и В несовместны (появление шара одного цвета исключает появление шара другого цвета), поэтому теорема сложения применима. Искомая вероятность: Р(А+В)= Р(А)+Р(В)= 1/3+1/6=1/2.




Пример. Пусть имеются следующие события: А – «из колоды карт вынута дама», В – «из колоды карт вынута карта пиковой масти». Значит, А*В означает «вынута дама пик». Пример. Бросается игральный кубик. Рассмотрим следующие события: А – « число выпавших очков 2», С – «число выпавших очков четное». Тогда А*В*С – «выпало 4 очка».


Если случайное событие представлено как событие, которое при осуществлении совокупности условий S может произойти или не произойти, и если при вычислении вероятности события, кроме условий S, никаких других ограничений нет, то такая вероятность называется безусловной. Если же налагаются и другие дополнительные условия, то в таком случае вероятность события будет условной. Например, нередко подсчитывают вероятность события В при дополнительном условии, что совершилось событие А. Если случайное событие представлено как событие, которое при осуществлении совокупности условий S может произойти или не произойти, и если при вычислении вероятности события, кроме условий S, никаких других ограничений нет, то такая вероятность называется безусловной. Если же налагаются и другие дополнительные условия, то в таком случае вероятность события будет условной. Например, нередко подсчитывают вероятность события В при дополнительном условии, что совершилось событие А.


Вероятность события В, подсчитанная в предположении, что событие А уже наступило, называется условной вероятностью и обозначается Условная вероятность события В при условии, что событие А уже наступило вычисляется: = Р(А*В) / Р(А), если Р(А) > 0. 0."> 0."> 0." title="Вероятность события В, подсчитанная в предположении, что событие А уже наступило, называется условной вероятностью и обозначается Условная вероятность события В при условии, что событие А уже наступило вычисляется: = Р(А*В) / Р(А), если Р(А) > 0."> title="Вероятность события В, подсчитанная в предположении, что событие А уже наступило, называется условной вероятностью и обозначается Условная вероятность события В при условии, что событие А уже наступило вычисляется: = Р(А*В) / Р(А), если Р(А) > 0.">


2. Теорема умножения вероятностей. Допустим известны вероятности Р(А) и двух событий А и В. Для нахождения вероятности того, что появится и событие А, и событие В можно воспользоваться теоремой умножения. Теорема. Вероятность совместного появления двух событий равняется произведению вероятности одного из них на условную вероятность другого, подсчитанную в догадке, что первое событие уже наступило: Р(А*В) = Р(А)*


Независимые события. Теорема умножения для независимых событий. Положим, что вероятность события В не зависит от появления события А. Событие В называется независимым от события А в том случае, если появление события А не меняет вероятности события В, другими словами, если условная вероятность события В равняется его безусловной вероятности: = Р(В). Теорема умножения Р(А*В) = Р(А)* для независимых событий выглядит следующим образом: Р(А*В) = Р(А)*Р(В).




Если осуществляется несколько испытаний, к тому же вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания носят название независимых относительно события А. Событие А в различных независимых испытаниях может иметь или различные вероятности, или одну и ту же вероятность.


Допустим, делается n независимых испытаний. В каждом из них событие А может появиться или не появиться. Будем думать, что во всяком испытании вероятность события А одна и та же, равная р. Значит, вероятность того, что событие А не наступит в каждом испытании также постоянна, причем равна она q = 1p. Пусть необходимо подсчитать вероятность того, что при n испытаниях событие А произойдет ровно k раз, а не осуществится (n k) раз.
















Формула полной вероятности Вероятность события А, которое может наступить лишь при появлении одного из несовместных событий, образующих полную группу, равна сумме произведений вероятностей каждой из событий на соответствующую условную вероятность события А.




Причем: а) если число np-q – дробное, то существует одно наивероятнейшее число; б) если число np-q – целое, то существует два наивероятнейших числа, а именно и; в) если число np – целое, то наивероятнейшее число = np Причем: а) если число np-q – дробное, то существует одно наивероятнейшее число; б) если число np-q – целое, то существует два наивероятнейших числа, а именно и; в) если число np – целое, то наивероятнейшее число = np




Перестановками из n элементов называются такие соединения, из которых каждое содержит все n элементов и которые отличаются друг от друга лишь порядком их расположения Размещениями из n элементов по k элементов называются такие соединения, состоящие из k элементов, взятых в определённом порядке из данных n элементов. (Порядок важен) Сочетаниями из n элементов по k называются такие соединения, составленные из k элементов, выбранных из данных n элементов. (Порядок не важен).




ПЕРЕСТАНОВКИ С ПОВТОРЕНИЯМИ Пусть даны элементов первого типа, второго типа,..., k-го типа, всего n элементов. Способы разместить их по различным местам называются перестановками с повторениями. Их количество обозначается Число перестановок с повторениями есть


Правило произведения Пусть требуется выполнить одно за другим k действий. При этом первое действие можно выполнить n1 способами, второе n2 способами и так до k-го действия. Тогда число m способов, которыми могут быть выполнены все k действий, по правилу произведения комбинаторики равно