Дифракционный метод. Метод Дебая - Шерера

Многие исследователи считают, что физика не будет законченной, пока не сможет объяснить поведение пространства, времени и их происхождение.

"Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. В случае если это так, тогда все вокруг, весь трехмерный мир - это всего лишь иллюзия, информация, закодированная на двумерной поверхности".
- Марк ван раамсдонк - физик, университет британской Колумбии, Ванкувер, Канада.

Это сделало бы нашу вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

Этот "Голографический Принцип" довольно для теоретической физики необычен. Но ван раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже теория струн, описывающая элементарные нити энергии, не может этого сделать.

Ван раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство - время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие.

"Все Наши Опыты Свидетельствуют о том, что Вместо Двух Полярных Концепций Реальности, Должна Быть Найдена Одна Всеобъемлющая Теория".
- абэй аштекар - физик, университет штата пенсильвания, юниверсити - парк, штат пенсильвания.

Гравитация как термодинамика.
Но ради чего все эти попытки? И как найти то самое "Сердце" теоретической физики?

Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

В 1974 году Стивен хокинг из кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение хокинга действительно существует.

За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада хокинга в 1974 году Джейкоб бекенштейн, который в настоящее время работает в еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение.

В 1995 году Тед джекобсон, физик из мэрилендского университета в колледж - парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном "Горизонте Черной Дыры", который также подчиняется пропорции энтропия - площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством - временем.

"Возможно, это Позволит нам Узнать Больше о Происхождении Гравитации", - говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация - явление также статистическое (макроскопическое приближение к невидимым компонентам пространства - времени.

В 2010 году эта идея шагнула еще дальше. Эрик верлинде, специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону ньютона о гравитационном притяжении.

В другой работе Тану падманабан, космолог из межвузовского центра астрономии и астрофизики в пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение вселенной.

Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство - время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к земле от далеких космических объектов, таких как сверхновые и? - Всплески.

В апреле Джованни амелино - камелия, исследователь квантовой гравитации из римского университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от? - Всплеска. Как говорит амелино - камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями.

"Если теория не может быть проверена, то наука для меня не существует. Она превращается в религиозные убеждения, которые не представляют для меня никакого интереса".
- Джованни амелино - камелия - исследователь квантовой гравитации, римский университет.

Другие физики на лабораторных испытаниях концентрируются. В 2012 году, например, исследователи из венского университета и имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство - время в планковском масштабе приведет к изменению света, отраженного от зеркала.
Петлевая квантовая гравитация.

Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. В случае если пространство - время представляет собой ткань, то каковы ее нити?

Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х аштекар и его коллеги, описывает ткань пространства - времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства - времени, тогда как нити и есть пространство - время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

Петли - это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем. Они как бы выпадают из пространства - времени.

Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент большого взрыва или в центре черных дыр.

Воспользовавшись этим фактом, в 2006 году аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

В этом году Родольфо гамбини из республиканского университета Уругвая в Монтевидео и Хорхе пуйин из университета луизианы в Батон-руж представили аналогичные модели, но уже для черной дыры. Лишь в том случае, если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса.

Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как "Получилось" обычное пространство - время из информационной сети. Но Даниэле орити, физик из института гравитационной физики Макса планка в гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству - времени.

Причинный ряд.

Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем соркиным, теория постулирует, что строительные блоки пространства - времени - это простые математические точки, связанные либо с прошлым, либо с будущим.

Это "Скелетное" представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство - время.

"Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве".
- Рафаэль соркинфизик, институт теоретической физики "Периметр" в Ватерлоо, Канада.

В конце 1980-х соркин использовал эту структуру, чтобы представить число точек, которое должна включать вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. "Люди Часто Думают, что Квантовая Гравитация не Может Сделать Проверяемых Предсказаний, но Здесь Именно тот Случай", - говорит Джо хенсон, исследователь квантовой гравитации из имперского колледжа в Лондоне. "Если Значение Темной Энергии Было бы Больше или его не Было бы Совсем, Тогда Теория Причинного Ряда Была бы Исключена".

Причинная динамическая триангуляция.

Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства - времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

"Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства - времени были неудачными. Строительные блоки пространства - времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных "Вселенных", в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает. В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей".
- Рената Лолл физик, университет неймегена, Нидерланды.

Интересно, что моделирование также намекает на то, что вскоре после большого взрыва вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей вселенной появляется четвертое пространственное измерение.

Голография.

Между тем, ван раамсдонк предложил совсем другое представление о появлении пространства - времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном малдасеной, приверженцем теории струн из института передовых исследований в Принстоне. Он опубликовал свою модель голографической вселенной в 1998 году. В этой модели трехмерный "Интерьер" вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко. Но это никак не влияет на математику: все, что происходит в трехмерной вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот.

В 2010 году ван раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

Таким образом, трехмерное пространство делится снова и снова, в то время как двумерная граница остается "на Связи". Ван раамсдонк заключил, что трехмерная вселенная идет бок о бок с квантовой запутанностью на границе. Это означает, что, в некотором смысле, квантовая запутанность и пространство - время - это одно и то же.

Пространство-время. Атомы пространства-времени

Тепло - это случайное движение микроскопических частиц, вроде молекул газа. Поскольку черные дыры могут нагреваться и остывать, было бы разумно предположить, что они состоят из частей - или, если в общем, из микроскопической структуры. И поскольку черная дыра - это просто пустое пространство (согласно ОТО, падающая в черную дыру материя проходит через горизонт событий, не останавливаясь), части черной дыры должны быть частями самого пространства. И под обманчивой простотой плоского пустого пространства скрывается колоссальная сложность.

Даже теории, которые должны были сохранять традиционное представление о пространстве-времени, пришли к выводам, что что-то прячется под этой гладкой поверхностью. Например, в конце 1970-х годов Стивен Вайнберг, сейчас работающий в Техасском университете в Остине, попытался описать гравитацию так же, как описывают другие силы природы. И выяснил, что пространство-время радикально модифицировано в своих мельчайших масштабах.

Физики изначально визуализировали микроскопическое пространство как мозаику из небольших кусочков пространства. Если увеличить их до планковских масштабах, неизмеримо малых размеров в 10-35метра, ученые считают, что можно увидеть нечто вроде шахматной доски. А может и нет. С одной стороны, такая сеть линий шахматного пространства будет предпочитать одни направления другим, создавая асимметрии, которые противоречат специальной теории относительности. Например, свет разных цветов будет двигаться с разной скоростью - как в стеклянной призме, которая разбивает свет на составляющие цвета. И хотя проявления на малых масштабах будет весьма трудно заметить, нарушения ОТО будут откровенно очевидными.

Термодинамика черных дыр ставит под сомнение картину пространства в виде простой мозаики. Измеряя тепловое поведение любой системы, вы можете сосчитать ее части, по крайней мере в принципе. Сбросьте энергию и посмотрите на термометр. Если столбик взлетел, энергия должна распространяться на сравнительно немного молекул. Фактически, вы измеряете энтропию системы, которая представляет собой ее микроскопическую сложность.

Если проделать это с обычным веществом, количество молекул увеличивается вместе с объемом материала. Так, во всяком случае, должно быть: если увеличить радиус пляжного мяча в 10 раз, внутри него поместится в 1000 раз больше молекул. Но если увеличить радиус черной дыры в 10 раз, число молекул в ней умножится всего в 100 раз. Число молекул, из которых она состоит, должно быть пропорциональным не ее объему, а площади поверхности. Черная дыра может казаться трехмерной, но ведет себя как двумерный объект.

Этот странный эффект получил название голографического принципа, потому что напоминает голограмму, которая видится нам как трехмерный объект, а при ближайшем рассмотрении оказывается изображением, произведенным двумерной пленкой. Если голографический принцип учитывает микроскопические составляющие пространства и его содержимого - что физики допускают, хоть и не все - для создания пространства будет недостаточно простого сопряжения мельчайших его кусочков.

Пространство и время физика. Пространство и время в физике

Пространство и время в физике определяются в общем виде как фундаментальные структуры координации материальных объектов и их состояний: система отношений, отображающая координацию сосуществующих объектов (расстояния, ориентацию и т. д.), образует пространство, а система отношений, отображающая координацию сменяющих друг друга состояний или явлений (последовательность, длительность и т. д.), образует время. Пространство и время являются организующими структурами различных уровней физического познания и играют важную роль в межуровневых взаимоотношениях. Они (или сопряжённые с ними конструкции) во многом определяют структуру (метрическую, топологическую и т. д.) фундаментальных физических теорий, задают структуру эмпирические интерпретации и верификации физических теорий, структуру операциональных процедур (в основе которых лежат фиксации пространственно-временных совпадений в измерит. актах, с учётом специфики используемых физ. взаимодействий), а также организуют физ. картины мира. К такому представлению вёл весь исторический путь концептуального развития

Время это. Время

1) в парадигме современного естествознания - исходное и неопределенное понятие; 2) (в системе измерения) основано на наблюдении (или осуществлении периодически повторяющихся процессов) одинаковой длительности: так, для измерения больших интервалов времени пользуются годом. Суточное вращение Земли относительно звезд определяет звездное время, тогда как на практике в большинстве случаев пользуются солнечным временем. В конкретной географической точке (на определенной долготе, дуге большого круга) пользуются понятием местного времени, на практике заменяемого понятием условного поясного времени, отсчитываемого от Гринвичского меридиана. Так московское время оказывается временем 2-го часового пояса. Равномерная система счета времени - эфемеридное время - контролируется наблюдениями обращения Луны вокруг Земли; 3) (в философии) форма возникновения, становления, течения, разрушения в мире, а также его самого вместе со всем тем, что к нему относится. Объективное время, определенное в п. 2, следует отличать от субъективного, которое основано на осознании времени (см. Времени сознание).

Познание - это...

Цивилизация имеет тенденцию к развитию. Происходит это благодаря потребности человека в получении новых знаний: стремлению к пониманию неизвестного, духовному совершенствованию и любопытству.

Первым о теории познания заговорил Платон: он определил этот термин как получение знаний об окружающей среде и явлениях, в ней происходящих.

Познание – это деятельность, включающая в себя разные методы и приемы добывания информации о мире.

Как и все другие виды деятельности, познание имеет свою структуру:

  1. субъект – тот, кто совершает действия, направленные на получение знаний. Например, вы читаете эту статью, чтобы узнать, что представляет собой познание. В данном случае вы являетесь субъектом познавательной деятельности;
  2. объект – то, что изучается. То, на что направлена деятельность субъекта. Используя выше упомянутый пример, можно сказать, что объектом вашей познавательной деятельности является понятие «познание»;
  3. мотивы – простым языком это то, зачем мы что-то делаем (см. что такое мотивация). В данном контексте различают практические и теоретические мотивы.
    1. Первые сподвигают овладевать знаниями для дальнейшего использования с целью улучшения качества жизни (учеба в институте дает профессию, которая кормит).
    2. Вторые основываются на получении удовольствия просто от самого процесса познания (прочитать статью и пополнить закрома своих знаний);
  4. цель познавательной деятельности заключается в получении истинных, достоверных знаний о мире, понимании, как устроена реальность на самом деле;
  5. результат – это собственно само знание о предмете или явлении. Иногда получение результата происходит неосознанно, не запланировано. Например, если ребенок будет играть со стеклянным предметом и разобьет его, в ту же минуту он узнает, что стекло очень хрупкое и обращаться с ним нужно бережно, хотя изначально такой цели не было.

Пространство и время это. Что такое пространство и время?

Пространство и время традиционно рассматривались в философии и науке как основные формы существования материи, ответственные за расположение, структурность и протяженность отдельных элементов материи относительно друг друга и за закономерную координацию сменяющих друг друга явлений. Характеристиками пространства считались однородность - одинаковость свойств во всем пространстве и изотропность - независимость свойств от направления. Время также считалось однородным, т.е. любой процесс в принципе повторим через некоторый промежуток времени. С этим свойством связана симметрия мира, которая имеет большое значение для его познания. Пространство рассматривалось как трехмерное, а время как одномерное и идущее в одном направлении - от прошлого к будущему. Время необратимо, но во всех физических законах от перемены знака времени на противоположный ничего не меняется и, стало быть, физически будущее неотличимо от прошедшего.

Таким образом, пространство есть всеобщая объективная форма существования материи, являющаяся необходимым условием возникновения и движения конкретных материальных систем. Понятие «пространство» выражает:

  • - взаимное расположение материальных систем (объектов) впереди, позади, вне, внутри, около, далеко, близко и т. д.;
  • - способность их занимать определенный объем, иметь протяженность - длину, ширину и высоту;
  • - свойство материальных объектов иметь определенную форму, структуру.

Для определения положения в пространстве необходимо задать три координаты - широту, долготу и высоту. Это означает, что пространство трехмерно. Евклид построил геометрию трехмерного пространства, известную научном обиходе как евклидова геометрия. Для определения положения в пространстве Р. Декарт ввел прямоугольную систему координат -x,y,zДубнищева Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: учеб. пособие. Стр. 69..

«Я прекрасно знаю, что такое время, пока не думаю об этом. Но стоит задуматься -- и вот я уже не знаю, что есть время», -- слова, сказанные много веков назад Августином Блаженным, верны и в наши дни. Но это не значит, что над сущностью времени не надо вообще задумываться. И на пороге нового тысячелетия мы подводим итоги своих знаний о природе времени, чтобы затем вновь отправиться в путешествие сквозь годы, познавая суть времени все лучше и все глубже.

Время есть всеобщая объективная форма существования движущейся материи, являющаяся необходимым условием возникновения и изменения конкретных материальных систем и выражающая структурность, темп и длительность материальных процессов, и объективную последовательность событий. Следовательно, понятие «время» выражает также всеобщее свойство таких материальных систем и процессов, как:

  • - длительность существования предметов, систем и развития их отдельных фаз, сторон, ступеней и т.д.;
  • - порядок следования и смена состояний, известная последовательность процессов (до, после, одновременно и т.п.).

Несмотря на отдельное описание их свойств, пространство и время - это не самостоятельные сущности, а коренные формы бытия, существования движущихся материальных систем. Пространство и время представляют собой формы, в которых проявляется активность материи. Им присущи такие всеобщие свойства, как объективность, безграничность и бесконечность, единство абсолютности и относительности, прерывности и непрерывности. Так, например, они абсолютны в том смысле, что составляют всеобщие условия всякого бытия, они относительны, потому что в своих конкретных свойствах зависят от состояния движущейся материи.

Несмотря на наличие общих свойств, пространство и время имеют свою специфику, а в ряде существенных свойств они различны. Пространство трехмерно и обладает свойством симметрии, а время - одномерно и однонаправленно, течет от прошлого к настоящему и от него к будущему. В одномерном времени, его необратимости выражен непосредственный характер связи между меняющимися состояниями материальных объектов. А также охарактеризована общая тенденция следования одних материальных явлений за другими; переход от низших форм к высшим, от простых к более сложным системным образованиям.

Пространство есть единство бесконечного и конечного. Бесконечность пространства проявляется абсолютным характером движущейся материи, отсутствием каких - либо конечных, застывших состояний, неисчерпаемостью в структурном отношении и качественными превращениями материи. Бесконечность времени состоит в том, что материя вечна в прошлом и будущем, что время - это всеобщая форма существования бесконечной материи.

Конечность пространства выражается в прерывности движения, дискретности и дифференцированности материальных систем. Точно так же время складывается из бесконечного множества длительностей существования отдельных материальных систем, где протекают необратимые процессы.

В физике теория пространства и времени с метафизических позиций была основана Ньютоном. Он различал абсолютные и относительные пространство и время. Относительные пространство и время - это чувственно воспринимаемые зависимости между материальными телами, абсолютные - это математические пространство и время, которые независимы от материи, друг от друга и составляют пустые вместилища для материи. Тела, находясь в пространстве и двигаясь в нем, не взаимодействуют с ним. Пространство, по Ньютону, является абсолютной системой отсчета и остается всегда неподвижным, однородным, обладает всюду, во всех точках и направлениях одинаковыми геометрическими свойствами. Время Ньютон определял как чистую длительность и считал, что оно, также как пространство, служит абсолютной системой отсчета, благодаря чему якобы становится возможным изменение во времени тех или иных реальных процессов, происходящих в пустом пространстве. Но эти реальные процессы, происходящие во времени, не взаимодействуют с абсолютным временем. Это был метафизических взгляд на пространство и время применительно к механическим процессам Гусейханов М.К. Концепции современного естествознания: Учебник. Стр. 70- 72.. О том, как развивались дальнейшие представления и целостная картина представлений о пространстве и времени самых изящных умов разных эпох будет сказано в следующем разделе.

Видео Пространство и время. Что это такое? Квантовая физика

С понятием пространственно-временного континуума сталкивается каждый человек, который изучает физику. Современная теория пространства-времени основывается на том, что все 4 измерения, куда входит и время, равноправны и взаимозаменяемы в расчетах.

Пространственно-временной континуум, или чаще употребляемый в «неофициальной» обстановке термин пространство-время – это физическая модель, описывающая понятие о среде, в которой пребывают все объекты изучаемого физикой мира. Это теоретическая конструкция, которая не является исчерпывающим описанием действительности, но, по возможности, приближается к ней наиболее полно. В настоящее время общепринятой теорией пространственно-временного континуума является описание Эйнштейна, оно обусловлено теорией относительности. Как говорил сам Альберт Эйнштейн, наиболее правильное описание пространства-времени должно быть «так просто, как возможно, но не проще этого». Современная теория пространства-времени имеет 4 измерения, 3 из которых пространственные и одно временное. При этом три координаты пространства и одна времени равноправны, и только от наблюдателя зависит, какая из них будет принята за систему отсчета. То есть, они взаимозаменяемы. Пространство-время имеет динамическую природу, а инструмент, с помощью которого измерения взаимодействуют с физическими телами и объектами – это гравитация. Согласно положениям современной физики, пространственно-временной континуум – это непрерывное многообразие, оно не плоское, но может изменять кривизну динамически, в зависимости от условий. Для многих шокирующим фактом является то, что время ставится в этой теории наравне с остальными координатами. Причина этого в том, что теория относительности основывается на том, что время зависит от скорости наблюдателя, который находится в точке отсчета. Время вовсе не является независимым от измерений пространства, оно неотделимо от них. Наиболее привычной системой является четырехмерное пространство-время, оно оказывается достаточным для решения многих задач. Но в теориях описания Вселенной измерений гораздо больше. Например, бозонный вариант теории суперструн (наиболее старый из ее вариантов) требовал наличия 27 измерений. Сегодня эта теория усовершенствована, количество измерений сведено к 10. Ученые надеются, что удастся компактифицировать теорию до наблюдаемых 4 измерений. Возможно, что остальные дополнительные измерения просто свернуты и имеют панковские размеры. Но в этом случае они все же должны как-то проявляться. Этот вопрос активно изучается физиками в настоящее время.

Время и Пространство. Что есть время?

В 19-ом веке были понятия пространства и времени. Оба описывались координатами, а с помощью некоторых математических формализмов появлялись схожим путем. Однако мысль о том, что пространство и время в некотором роде есть одно и то же, не была в ходу. Но потом появился Эйнштейн с ОТО, и люди начали, в котором пространство и время есть грани некоего единого понятия.Оно вносит множество смыслов в СТО, в которой, к примеру, перемещение с переменной скоростью есть суть вращение в четырехмерном пространстве-времени. И весь этот век физики полагали пространство-время некоей сущностью, в которой пространство и время не имеют фундаментальных различий.Ноработать в контексте сетевой модели пространства? Конечно, можно ввести четырёхмерную сеть, в которой время будет работать так же, как и пространство. А потом просто сказать, что нашей вселенной соответствует некоторая пространственно-временная сеть (или семейство сетей). Каждая сеть должна определяться некоторыми ограничениями: наша вселенная обладает такими и такими свойствами, и, получается, удовлетворяет таким и таким уравнениям. Однако это представляется неконструктивным подходом - он не говорит о том, как вселенная ведет себя, а лишь о том, что если что-то обладает таким-то поведением, то это что-то может быть вселенной.И, к примеру, в контексте программ пространство и время проявляются весьма по-разному. В клеточных автоматах, к примеру, клетки располагаются в пространстве, однако поведение системы возникает в пошаговых изменениях времени. Но вот какой момент: из того, что низкоуровневые правила сильно разграничивают поведения пространства и времени, не следует, что на больших масштабах они не будут вести себя схожим образом - как и полагается в современной физике.

Классическая физика сложилась до возникновения теории относительности Эйнштейна и квантовой теории. Согласно классической концепции времени, время – непрерывная величина, которая не определяется чем-либо и является априорной характеристикой мира. Время – основное условие протекания каких-либо процессов в мире. Такое время одинаково течет для всех процессов и во всех точках мира, при этом нет ничего, что способно повлиять на ход времени. Несмотря на то, что тела и процессы могут ускоряться и замедляться, течение времени равномерно. В связи с этим с точки зрения классической физики время называют абсолютным. Эти свойства времени описал Исаак Ньютон в своем труде «Математические начала натуральной философии» 1687-го года.

«Математические начала натуральной философии» Исаака Ньютона

В классической механике переход от одной системы отсчета (инерциальной) к другой описывается так называемыми преобразованиями Галилея. Уравнения механики Ньютона по отношению к данным преобразованиям являются инвариантными, из чего выплывает абсолютность времени.

Следует отметить, что в классической физике для времени не выделяется определенная ось, так как в рамках данной концепции течение времени в обратную сторону равносильно обычному его течению.

Пространство и время

всеобщие формы существования материи (См. Материя). П. и в. не существуют вне материи и независимо от неё.

Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы между различными пространственными направлениями (отдельные объекты характеризуются протяжённостью и формой, которые определяются расстояниями между частями объекта и их ориентацией). Временные характеристики - «моменты», в которые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространственными и временными величинами называются метрическими. Существуют также и топологические характеристики П. и в. - «соприкосновение» различных объектов, число направлений. С чисто пространственными отношениями имеют дело лишь в том случае, когда можно отвлечься от свойств и движения тел и их частей: с чисто временными - в случае, когда можно отвлечься от многообразия сосуществующих объектов.

Однако в реальной действительности пространственные и временные отношения связаны друг с другом. Их непосредственное единство выступает в движении материи; простейшая форма движения - перемещение - характеризуется величинами, которые представляют собой различные отношения П. и в. (скорость, ускорение) и изучаются кинематикой (См. Кинематика). Современная физика обнаружила более глубокое единство П. и в. (см. Относительности теория), выражающееся в совместном закономерном изменении пространственно-временных характеристик систем в зависимости от движения последних, а также в зависимости этих характеристик от концентрации масс в окружающей среде.

По мере углубления знаний о материи и движении (См. Движение) углубляются и изменяются научные представления о П. и в. Поэтому понять физический смысл и значение вновь открываемых закономерностей П. и в. можно только путём установления их связей с общими закономерностями взаимодействия и движения материи.

Понятия П. и в. являются необходимой составной частью картины мира в целом, поэтому входят в предмет философии. Учение о П. и в. углубляется и развивается вместе с развитием естествознания (См. Естествознание) и прежде всего физики (См. Физика). Из остальных наук о природе значительную роль в прогрессе учения о П. и в. сыграла Астрономия и в особенности Космология .

Развитие физики, геометрии и астрономии в 20 в. подтвердило правильность положений диалектического материализма о П. и в. В свою очередь диалектико-материалистическая концепция П. и в. позволяет дать правильную интерпретацию современной физической теории П. и в., вскрыть неудовлетворительность как субъективистского ее понимания, так и попыток «развить» её, отрывая П. и в. от материи.

Пространственно-временные отношения подчиняются не только общим закономерностям, но и специфическим, характерным для объектов того или иного класса, поскольку эти отношения определяются структурой материального объекта и его внутренними взаимодействиями. Поэтому такие характеристики, как размеры объекта и его форма, Время жизни , ритмы процессов, типы симметрии, являются существенными параметрами объекта данного типа, зависящими также от условий, в которых он существует. Особенно специфичны пространственные и временные отношения в таких сложных развивающихся объектах, как организм или общество. В этом смысле можно говорить об индивидуальных П. и в. таких объектов (например, о биологическом или социальном времени).

Основные концепции пространства и времени. Важнейшие философские проблемы, относящиеся к П. и в., - это вопросы о сущности П. и в., об отношении этих форм бытия к материи, об объективности пространственно-временных отношений и закономерностей.

На протяжении почти всей истории естествознания и философии существовали 2 основные концепции П. и в. Одна из них идёт от древних атомистов - Демокрит а, Эпикур а, Лукреция (См. Лукреций), которые ввели понятие пустого пространства и рассматривали его как однородное (одинаковое во всех точках) и бесконечное (Эпикур полагал, что оно не изотропно, т. е. неодинаково по всем направлениям); понятие времени тогда было разработано крайне слабо и рассматривалось как субъективное ощущение действительности. В новое время в связи с разработкой основ динамики (См. Динамика) эту концепцию развил И. Ньютон , который очистил её от Антропоморфизм а. По Ньютону, П. и в. суть особые начала, существующие независимо от материи и друг от друга. Пространство само по себе (абсолютное пространство) есть пустое «вместилище тел», абсолютно неподвижное, непрерывное, однородное и изотропное, проницаемое - не воздействующее на материю и не подвергающееся её воздействиям, бесконечное; оно обладает 3 измерениями. От абсолютного пространства Ньютон отличал протяжённость тел - их основное свойство, благодаря которому они занимают определённые места в абсолютном пространстве, совпадают с этими местами. Протяжённость, по Ньютону, если говорить о простейших частицах (атомах), есть начальное, первичное свойство, не требующее объяснения. Абсолютное пространство вследствие неразличимости своих частей неизмеримо и непознаваемо. Положения тел и расстояния между ними можно определять только по отношению к др. телам. Др. словами, наука и практика имеют дело только с относительным пространством. Время в концепции Ньютона само по себе есть нечто абсолютное и ни от чего не зависящее, чистая длительность, как таковая, равномерно текущая от прошлого к будущему. Оно является пустым «вместилищем событий», которые могут его заполнять, но могут и не заполнять; ход событий не влияет на течение времени. Время универсально, одномерно, непрерывно, бесконечно, однородно (везде одинаково). От абсолютного времени, также неизмеримого, Ньютон отличал относительное время. Измерение времени осуществляется с помощью часов, т. е. движений, которые являются периодическими. П. и в. в концепции Ньютона независимы друг от друга. Независимость П. и в. проявляется прежде всего в том, что расстояние между 2 данными точками пространства и промежуток времени между 2 событиями сохраняют свои значения независимо друг от друга в любой системе отсчёта, а отношения этих величин (скорости тел) могут быть любыми.

Ньютон подверг критике идею Р. Декарт а о заполненном мировом пространстве, т. е. о тождестве протяжённой материи и пространства.

Концепция П. и в., разработанная Ньютоном, была господствующей в естествознании на протяжении 17-19 вв., т.к. она соответствовала науке того времени - евклидовой геометрии, классической механике и классической теории тяготения. Законы ньютоновой механики справедливы только в инерциальных системах отсчёта (См. Инерциальная система отсчёта). Эта выделенность инерциальных систем объяснялась тем, что они движутся поступательно, равномерно и прямолинейно именно по отношению к абсолютному П. и в. и наилучшим образом соответствуют последним.

Согласно ньютоновой теории тяготения, действия от одних частиц вещества к Другим передаются мгновенно через разделяющее их пустое пространство. Ньютонова концепция П. и в., т. о., соответствовала всей физической картине мира той эпохи, в частности представлению о материи как изначально протяжённой и по природе своей неизменной. Существенным противоречием концепции Ньютона было то, что абсолютное П. и в. оставались в ней непознаваемыми путём опыта. Согласно принципу относительности классической механики, все инерциальные системы отсчёта равноправны и невозможно отличить, движется ли система по отношению к абсолютному П. и в. или покоится. Это противоречие служило доводом для сторонников противоположной концепции П. и в., исходные положения которой восходят ещё к Аристотелю; это представление о П. и в. было разработано Г. Лейбниц ем, опиравшимся также на некоторые идеи Декарта. Особенность лейбницевой концепции П. и в. состоит в том, что в ней отвергается представление о П. и в. как о самостоятельных началах бытия, существующих наряду с материей и независимо от неё. По Лейбницу, пространство - это порядок взаимного расположения множества тел, существующих вне друг друга, время - порядок сменяющих друг друга явлений или состояний тел. При этом Лейбниц в дальнейшем включал в понятие порядка также и понятие относительной величины. Представление о протяжённости отдельного тела, рассматриваемого безотносительно к другим, по концепции Лейбница, не имеет смысла. Пространство есть отношение («порядок»), применимое лишь ко многим телам, к «ряду» тел. Можно говорить только об относительном размере данного тела в сравнении с размерами других тел. То же можно сказать и о длительности: понятие длительности применимо к отдельному явлению постольку, поскольку оно рассматривается как звено в единой цепи событий. Протяжённость любого объекта, по Лейбницу, не есть первичное свойство, а обусловлено силами, действующими внутри объекта; внутренние и внешние взаимодействия определяют и длительность состояния; что же касается самой природы времени как порядка сменяющихся явлений, то оно отражает их причинно-следственную связь. Логически концепция Лейбница связана со всей его философской системой в целом.

Однако лейбницева концепция П. и в. не играла существенной роли в естествознании 17-19 вв., т.к. она не могла дать ответа на вопросы, поставленные наукой той эпохи. Прежде всего воззрения Лейбница на пространство казались противоречащими существованию вакуума (только после открытия физического поля в 19 в. проблема вакуума предстала в новом свете); кроме того, они явно противоречили всеобщему убеждению в единственности и универсальности евклидовой геометрии; наконец, концепция Лейбница представлялась непримиримой с классической механикой, поскольку казалось, что признание чистой относительности движения не даёт объяснения преимущественной роли инерциальных систем отсчёта. Т. о., современное Лейбницу естествознание оказалось в противоречии с его концепцией П. и в., которая строилась на гораздо более широкой философской основе. Только два века спустя началось накопление научных фактов, показавших ограниченность господствовавших в то время представлений о П. и в.

Понятия пространства и времени в философии и естествознании 18-19 вв. Философы-материалисты 18-19 вв. решали проблему П. и в. в основном в духе концепции Ньютона или Лейбница, хотя, как правило, полностью не принимали какую-либо из них. Большинство философов-материалистов выступало против ньютоновского пустого пространства. Ещё Дж. Толанд указывал, что представление о пустоте связано со взглядом на материю как на инертную, бездеятельную. Таких же воззрений придерживался и Д. Дидро . Ближе к концепции Лейбница стоял Г. Гегель . В концепциях субъективных идеалистов и агностиков проблемы П. и в. сводились главным образом к вопросу об отношении П. и в. к сознанию, восприятию. Дж. Беркли отвергал ньютоновское абсолютное П. и в., но рассматривал пространственные и временные отношения субъективистски, как порядок восприятий; у него не было и речи об объективных геометрических и механических законах. Поэтому берклианская точка зрения не сыграла существенной роли в развитии научных представлений о П. и в. Иначе обстояло дело с воззрениями И. Кант а, который сначала примыкал к концепции Лейбница. Противоречие этих представлений и естественнонаучных взглядов того времени привело Канта к принятию ньютоновой концепции и к стремлению философски обосновать её. Главным здесь было объявление П. и в. априорными формами человеческого созерцания, т. е. обоснование их абсолютизации. Взгляды Канта на П. и в. нашли немало сторонников в конце 18 - 1-й половине 19 вв. Их несостоятельность была доказана лишь после создания и принятия неевклидовой геометрии (См. Неевклидовы геометрии), которая по существу противоречила ньютоновому пониманию пространства. Отвергнув его, Н. И. Лобачевский и Б. Риман утверждали, что геометрические свойства пространства, будучи наиболее общими физическими свойствами, определяются общей природой сил, формирующих тела.

Воззрения диалектического материализма на П. и в. были сформулированы Ф. Энгельсом. По Энгельсу, находиться в пространстве - значит быть в форме расположения одного возле другого, существовать во времени - значит быть в форме последовательности одного после другого. Энгельс подчёркивал, что «... обе эти формы существования материи без материи суть ничто, пустые представления, абстракции, существующие только в нашей голове» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 550).

Кризис механистического естествознания на рубеже 19-20 вв. привёл к возрождению на новой основе субъективистских взглядов на П. и в. Критикуя концепцию Ньютона и правильно подмечая её слабые стороны, Э. Мах снова развил взгляд на П. и в. как на «порядок восприятий», подчёркивая опытное происхождение аксиом геометрии. Но опыт понимался Махом субъективистски, поэтому и геометрия Евклида, и геометрии Лобачевского и Римана рассматривались им как различные способы описания одних и тех же пространственных соотношений. Критика субъективистских взглядов Маха на П. и в. была дана В. И. Лениным в книга «Материализм и эмпириокритицизм».

Развитие представлений о пространстве и времени в 20 в. В конце 19 - начале 20 вв. произошло глубокое изменение научных представлений о материи и, соответственно, радикальное изменение понятий П. и в. В физическую картину мира вошла концепция поля (см. Поля физические) как формы материальной связи между частицами вещества, как особой формы материи. Все тела, т. о., представляют собой системы заряженных частиц, связанных полем, передающим действия от одних частиц к другим с конечной скоростью - скоростью света. Полагали, что поле - это состояние Эфир а, абсолютно неподвижной среды, заполняющей мировое абсолютное пространство. Позже было установлено (Х. Лоренц и др.), что при движении тел с очень большими скоростями, близкими к скорости света, происходит изменение поля, приводящее к изменению пространственных и временных свойств тел; при этом Лоренц считал, что длина тел в направлении их движения сокращается, а ритм происходящих в них физических процессов замедляется, причём пространственные и временные величины изменяются согласованно.

Вначале казалось, что таким путём можно будет определить абсолютную скорость тела по отношению к эфиру, а следовательно, по отношению к абсолютному пространству. Однако вся совокупность опытов опровергла этот взгляд. Было установлено, что в любой инерциальной системе отсчёта все физические законы, включая законы электромагнитных (и вообще полевых) взаимодействий, одинаковы. Специальная теория относительности (см. Относительности теория) А. Эйнштейна, основанная на двух фундаментальных положениях - о предельности скорости света и равноправности инерциальных систем отсчёта, явилась новой физической теорией П. и в. Из неё следует, что пространственные и временные отношения - длина тела (вообще расстояние между двумя материальными точками) и длительность (а также ритм) происходящих в нём процессов - являются не абсолютными величинами, как утверждала ньютонова механика, а относительными. Частица (например, нуклон) может проявлять себя по отношению к медленно движущейся относительно неё частице как сферическая, а по отношению к налетающей на неё с очень большой скоростью частице - как сплющенный в направлении движения диск. Соответственно, время жизни медленно движущегося заряженного π-мезона составляет Пространство и время 10 -8 сек , а быстро движущегося (с околосветовой скоростью) - во много раз больше. Относительность пространственно-временных характеристик тел полностью подтверждена опытом. Отсюда следует, что представления об абсолютном П. и в. несостоятельны. П. и в. являются именно общими формами координации материальных явлений, а не самостоятельно существующими (независимо от материи) началами бытия. Теория относительности исключает представление о пустых П. и в., имеющих собственные размеры. Представление о пустом пространстве было отвергнуто в дальнейшем и в квантовой теории поля с его новым понятием вакуума (см. Вакуум физический). Дальнейшее развитие теории относительности (см. Тяготение) показало, что пространственно-временные отношения зависят также от концентрации масс. При переходе к космическим масштабам геометрия П.-в. не является евклидовой (или «плоской», т. е. не зависящей от размеров области П.-в.), а изменяется от одной области космоса к другой в зависимости от плотности масс в этих областях и их движения (см. Космология , где изложен также вопрос о конечности или бесконечности П. и в.). В масштабах метагалактики геометрия пространства изменяется со временем вследствие расширения метагалактики. Т. о., развитие физики и астрономии доказало несостоятельность как априоризма Канта, т. е. понимания П. и в. как априорных форм человеческого восприятия, природа которых неизменна и независима от материи, так и ньютоновой догматической концепции П. и в.

Связь П. и в. с материей выражается не только в зависимости законов П. и в. от общих закономерностей, определяющих взаимодействия материальных объектов. Она проявляется и в наличии характерного ритма существования материальных объектов и процессов - типичных для каждого класса объектов средних времён жизни и средних пространственных размеров.

Из изложенного следует, что П. и в. присущи весьма общие физические закономерности, относящиеся ко всем объектам и процессам. Это касается и проблем, связанных с топологическими свойствами П. и в. Проблема границы (соприкосновения) отдельных объектов и процессов непосредственно связана с поднимавшимся ещё в древности вопросом о конечной или бесконечной делимости П. и в., их дискретности или непрерывности. В античной философии этот вопрос решался чисто умозрительно. Высказывались, например, предположения о существовании «атомов» времени (Зенон). В науке 17-19 вв. идея атомизма П. и в. потеряла какое-либо значение. Ньютон считал, что П. и в. реально разделены до бесконечности. Этот вывод следовал из его концепции пустых П. и в., наименьшими элементами которых являются геометрическая точка и момент времени («мгновения» в буквально смысле слова). Лейбниц полагал, что хотя П. и в. делимы неограниченно, но реально не разделены на точки - в природе нет объектов и явлений, лишённых размера и длительности. Из представления о неограниченной делимости П. и в. следует, что и границы тел и явлений абсолютны. Представление о непрерывности П. и в. более укрепилось в 19 в. с открытием поля; в классическом понимании поле есть абсолютно непрерывный объект.

Проблема реальной делимости П. и в. была поставлена только в 20 в. в связи с открытием в квантовой механике неопределённостей соотношения (См. Неопределённостей соотношение), согласно которому для абсолютно точной локализации микрочастицы необходимы бесконечно большие импульсы, что физически не может быть осуществлено. Более того, современная физика элементарных частиц показывает, что при очень сильных воздействиях на частицу она вообще не сохраняется, а происходит даже множественное рождение частиц. В действительности не существует реальных физических условий, при которых можно было бы измерить точное значение напряжённостей поля в каждой точке. Т. о., в современной физике установлено, что невозможна не только реальная разделённость П. и в. на точки, но принципиально невозможно осуществить процесс их реального бесконечного разделения. Следовательно, геометрическое понятия точки, кривой, поверхности являются абстракциями, отражающими пространственные свойства материальных объектов лишь приближённо. В действительности объекты отделены друг от друга не абсолютно, а лишь относительно. То же справедливо и по отношению к моментам времени. Именно такой взгляд на «точечность» событий вытекает из т. н. теории нелокального поля (см. Нелокальная квантовая теория поля). Одновременно с идеей нелокальности взаимодействия разрабатывается гипотеза о квантовании П. и в., т. е. о существовании наименьших длины и длительности (см. Квантование пространства-времени). Сначала предполагали, что «квант» длины - 10 -13 см (порядка классического радиуса электрона или порядка «длины» сильного взаимодействия (См. Сильные взаимодействия)). Однако с помощью современных ускорителей заряженных частиц (См. Ускорители заряженных частиц) исследуются явления, связанные с длинами 10 -14 -10 -15 см; поэтому значения кванта длины стали отодвигать ко всё меньшим значениям (10 -17 , «длина» слабого взаимодействия (См. Слабые взаимодействия), и даже 10 -33 см ).

Решение вопроса о квантовании П. и в. тесно связано с проблемами структуры элементарных частиц (См. Элементарные частицы). Появились исследования, в которых вообще отрицается применимость к субмикроскопическому миру понятий П. и в. Однако понятия П. и в. не должны сводиться ни к метрическим, ни к топологическим отношениям известных типов.

Тесная взаимосвязь пространственно-временных свойств и природы взаимодействия объектов обнаруживается также и при анализе симметрии П. и в. Ещё в 1918 (Э. Нётер) было доказано, что однородности пространства соответствует закон сохранения импульса, однородности времени - закон сохранения энергии, изотропности пространства - закон сохранения момента количества движения. Т. о., типы симметрии П. и в. как общих форм координации объектов и процессов взаимосвязаны с важнейшими сохранения законами (См. Сохранения законы). Симметрия пространства при зеркальном отражении оказалась связанной с существенной характеристикой микрочастиц - с их Чётность ю.

Одной из важных проблем П. и в. является вопрос о направленности течения времени. В ньютоновой концепции это свойство времени считалось само собой разумеющимся и не нуждающимся в обосновании. У Лейбница необратимость течения времени связывалась с однозначной направленностью цепей причин и следствий. Современная физика конкретизировала и развила это обоснование, связав его с современным пониманием причинности (См. Причинность). По-видимому, направленность времени связана с такой интегральной характеристикой материальных процессов, как Развитие , являющееся принципиально необратимым.

К проблемам П. и в., также обсуждавшимся ещё в древности, относится и вопрос о числе измерений П. и в. В ньютоновой концепции это число считалось изначальным. Однако ещё Аристотель обосновывал трехмерность пространства числом возможных сечений (делений) тела. Интерес к этой проблеме возрос в 20 в. с развитием топологии (См. Топология). Л. Брауэр установил, что размерность пространства есть топологический инвариант - число, не изменяющееся при непрерывных и взаимно однозначных преобразованиях пространства. В ряде исследований была показана связь между числом измерений пространства и структурой электромагнитного поля (Г. Вейль), между трехмерностью пространства и спиральностью элементарных частиц. Всё это показало, что число измерений П. и в. неразрывно связано с материальной структурой окружающего нас мира.

Лит.: Энгельс Ф., Диалектика природы, Маркс К., Энгельс Ф., Соч., 2 изд., т. 20; его же, Анти-Дюринг, там же; Ленин В. И., Материализм и эмпириокритицизм, Полное собрание соч., 5 изд., т. 18; Эйнштейн А., Основы теории относительности, 2 изд., М. - Л., 1935; Ньютон И., Математические начала натуральной философии, М. - Л., 1936; Марков М. А., Гипероны и К-мезоны, М., 1958, § 34; Свидерский В. И., Пространство и время, М., 1958; Полемика Г. Лейбница и С. Кларка по вопросам философии и естествознания (1715-1716 гг.), [Л.], 1960; Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961; Штейнман Р. Я., Пространство и время, М., 1962; Грюнбаум А., Философские проблемы пространства и времени, пер. с англ., М., 1969; Мостепаненко А. М., Пространство и время в макро-, мега- и микромире, М., 1974; Jammer М., Concepts of space, Camb., 1954.

Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.

Квантовая механика устранила абсолютную грань между волной и частицей. Основным положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции, - только на основе представления о волнах. Идея "волн материи" была высказана французским физиком Л. де Бройлем в 1924 и вскоре получила подтверждение в опытах по дифракции частиц. пестицид рентгенография дифракционный реакция

Согласно квантовой механике, свободное движение частицы с массой m и импульсом

(где V - скорость частицы) можно представить как плоскую монохроматическую волну y 0 (волну де Бройля) с длиной волны

распространяющуюся в том же направлении (например, в направлении оси х), в котором движется частица. Здесь h - постоянная Планка. Зависимость y 0 от координаты х задаётся формулой

y 0 ~ cos (k 0 x) (2)

где k 0 = |k 0 | = 2p/l - так называемое волновое число, а волновой вектор направлен в сторону распространения волны, или вдоль движения частицы.

Таким образом, волновой вектор монохроматической волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

При взаимодействии частицы с некоторым объектом - с кристаллом, молекулой и тому подобное - её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны l с расстоянием d между рассеивающими центрами: l Ј d.

Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кристаллической решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах параллельных кристаллографических плоскостей, на которых в строгом порядке расположены рассеивающие центры.

При более высоких ускоряющих электрических напряжениях (десятках кв) электроны приобретают достаточную кинетическую энергию, чтобы проникать сквозь тонкие плёнки вещества Тогда возникает так называемая дифракция быстрых электронов на прохождение.

Для лёгких атомов и молекул (Н, H2, Не) и температур в сотни градусов Кельвина длина волны l также составляет около 1 А. Дифрагирующие атомы или молекулы практически не проникают в глубь кристалла; поэтому можно считать, что их дифракция происходит при рассеянии от поверхности кристалла, т. е. как на плоской дифракционной решётке.

Выпущенный из сосуда и сформированный с помощью диафрагм молекулярный или атомный пучок направляют на кристалл и тем, или иным способом фиксируют "отражённые" дифракционные пучки.

Позже наблюдалась дифракция протонов, а также дифракция нейтронов, получившая широкое распространение как один из методов исследования структуры вещества. Так было доказано экспериментально, что волновые свойства присущи всем без исключения микрочастицам.

В широком смысле слова дифракционное рассеяние всегда имеет место при упругом рассеянии различных элементарных частиц атомами и атомными ядрами, а также друг другом. С другой стороны, представление о корпускулярно-волновом дуализме материи укрепилось при анализе явлений, всегда считавшихся типично волновыми, например дифракции рентгеновских лучей - коротких электромагнитных волн с длиной волны l " 0,5-5 Е. В то же время начальный и рассеянный пучки рентгеновских лучей можно рассматривать и регистрировать как поток частиц - фотонов, определяя с помощью счётчиков фотонов число фотонов рентгеновского излучения в этих пучках.

Следует подчеркнуть, что волновые свойства присущи каждой частице в отдельности. Образование дифракционной картины при рассеянии частиц интерпретируется в квантовой механике следующим образом. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от своего первоначального движения и попадает в некоторую точку фотопластинки, установленной за кристаллом для регистрации электронов. Войдя в фотографическую эмульсию, электрон проявляет себя как частица и вызывает фотохимическую реакцию. На первый взгляд попадание электрона в ту или иную точку пластинки носит совершенно произвольный характер. Но при длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл.

Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется волновой функцией электрона y, точнее квадратом её модуля (т.к. н - комплексная функция) |y| 2 . Однако, поскольку вероятность при больших числах испытаний реализуется как достоверность, при многократном прохождении электрона через кристалл или, как это имеет место в реальных дифракционных экспериментах, при прохождении через образец пучка электронов, содержащего громадное количество частиц, величина |y| 2 определяет уже распределение интенсивности в дифрагированных пучках. Таким образом, результирующая волновая функция электрона y, которую можно рассчитать, зная y 0 и потенциальную энергию взаимодействия электрона с кристаллом, даёт полное описание дифракционного опыта в статистическом смысле.

Специфика дифракции различных частиц. Атомная амплитуда рассеяния. Вследствие общности геометрических принципов дифракции теория дифракции частиц многое заимствовала из развитой ранее теории дифракции рентгеновских лучей. Однако взаимодействие разного рода частиц - электронов, нейтронов, атомов и т.п. - с веществом имеет различную физическую природу. Поэтому при рассмотрении дифракции частиц на кристаллах, жидкостях и т.д. существенно знать, как рассеивает различные частицы изолированный атом вещества. Именно в рассеянии частиц отдельными атомами проявляется специфика дифракции различных частиц.

Дифракцию на любой системе атомов (молекуле, кристалле и т.п.) можно рассчитать, зная координаты их центров r i и атомные амплитуды f i для данного сорта частиц.

Наиболее ярко эффекты дифракции частиц выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристалле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла J в формуле (6) уменьшается. При дифракции частиц жидкостями, аморфными телами или молекулами газов, упорядоченность которых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

Электронография (от электрон и...графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Электронографии - дифракция электронов; при прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.

Электронографические исследования проводятся в специальных приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от нескольких в до сотен в).

Электронография принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и так далее. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв максимальная толщина несколько мкм).

Электронография позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в электронографии).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг. Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) - параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков. Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:

где L - расстояние от рассеивающего образца до фотопластинки, l - дебройлевская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в электронографии аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Fhkl|. Распределение электростатического потенциала j(x, у, z) кристалла представляется в виде ряда Фурье. Максимальные значения j(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла. Таким образом, расчёт значений j(x, у, z), который обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и другие характеристики.

Методами электронографии были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи электронографии можно также изучать строение дефектных структур. В комплексе с электронной микроскопией электронография позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стеклах и жидкостях.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10- 8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся, как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением: рентгеном называется международная единица дозы ионизирующего излучения; снимок, сделанный в рентгеновском аппарате, называется рентгенограммой; область радиологической медицины, в которой используются рентгеновские лучи для диагностики и лечения заболеваний, называется рентгенологией.

Тема: Кристаллическое состояние силикатных материалов. Методы изучения структуры кристаллических веществ. Основные правила построения ионно-ковалентных структур.

Лекция № 4.

1. Силикаты в кристаллическом сосотянии.

2. Методы изучения структуры кристаллических веществ.a

3. Основные правила построения ионно-ковалентных структур.

ДТА - дифференциальный термический анализa

ТГ - термогравиметрический анализ

К дифракционным методам исследования структуры относятся рентгенография, электронография и нейтронография. Методы ос­нованы на использовании излучений с длиной волны, соизмеримой с расстоянием между структурными элементами кристаллов. Про­ходя через кристалл, лучи дифрагируют, возникающая дифракци­онная картина строго соответствует структуре исследуемого ве­щества.

Метод дифракции рентгеновского излучения .

Развитие рентгеноструктурного анализа началось со знаменитого опыта М. Лауэ (1912), показавшего, что пучок рентгеновского излучения, проходя
через кристалл, испытывает дифракцию, причем симметрия, рас­пределения дифракционных максимумов соответствует симметрии
кристалла. Дифракционные максимумы возникают во всех направлениях, отвечающих основному закону рентгеноструктурного ана­лиза- уравнению Вульф а - Брэгга

Дифракционные методы можно условно разделить на две группы: 1) угол падения луча на кристалл постоянный, а длина излуче­ния меняется; 2) длина волны постоянная, а угол падения меняется.

К методам первой группы относится метод Лауэ, заключа­ющийся в том, что полихроматическое рентгеновское излучение на­правляется на неподвижный монокристалл, за которым располага­ется фотопленка. Из множества длин волн, имеющихся в полихро­матическом излучении, всегда найдется такая волна, которая удовлетворяет условиям уравнения Вульфа - Брзгга. Метод Лауэ дает возможность выявить симметрию кристалла. К методам вто­рой группы относятся методы вращения монокристалла и поликристаллического образца. В методе вращения монокристалла
монохроматический луч направляется на монокристалл, вращаю­щийся вокруг оси, нормальной к направлению луча. При этом раз­личные плоскости кристалла попадают в положение, соответству­ющее условиям дифракции, что приводит к образованию соответст­вующей дифракционной картины. Измерением интегральной интенсивности и определением набора структурных амплитуд мож­но расшифровать структуру кристалла.

При изучении поликристаллических материалов образец осве­щается монохроматическим излучением. В множестве произвольно ориентированных кристаллов всегда найдется такой, ориентировка которого отвечает уравнению Вульфа-Брэгга. Отраженный луч регистрируется фотоспособом (рис.2) либо ионизационными или сцинтилляционными счетчиками, сигнал через систему усилителей и пересчетных устройств подается на потенциометр, записывающий кривую распре­деления интенсивности (рис.3). По расположению дифракционных максимумов судят о геометрии решетки, а по их интенсивности - о распределении электронной плотности, т. е. о вероятности нахожде­ния электронов в той или иной точке кристалла (рис. 4). Распреде­ление электронной плотности дает возможность определять не толь­ко положение атомов в решетке, но и тип химической связи. Высо­котемпературные приставки к дифрактометрам позволяют регист­рировать полиморфные превращения при нагревании, следить за твердофазовыми реакциями.


Рентгенография дает также возможность изучать дефекты в кристаллах.

выход луча; 4 - область малых углов 9

Рис. 2. Съемка рентгенограммы по­ликристаллических образцов методом фоторегистрации:

Рис. 3. Рентгенограмма кварца, по­лученная на установке со сцинтилляционным методом регистрации

Метод дифракции электронов (электронография). Метод осно­ван на том, что при взаимодействии с электростатическим полем атомов происходит рассеяние пучка электронов. В отличие от рент­геновского, электронное излучение может проникать лишь на небольшую глубину, поэтому исследуемые образцы должны иметь вид тонких пленок. При помощи электронографии можно, помимо определения межплоскостных расстояний в кристалле, изучать положение легких атомов в решетке, чего нельзя сделать при помо­щи рентгеновского излучения, слабо рассеивающегося легкими атомами.

Метод дифракции нейтронов . Для получения пучка нейтронов необходим атомный реактор, поэтому данный метод используется сравнительно редко. При выходе из реактора пучок значительно ослаблен, поэтому необходимо использовать широкий пучок и со­ответственно увеличивать размер образца. Преимуществом метода является возможность определения пространственного положения атомов водорода, что невозможно сделать другими дифракционны­ми методами.

Рис. 4. Распределение электронной плотности (о) и структура (б) кри­сталла с ковалентной связью (ал­маз)

Традиционными методами изучения структуры и структурных дефектов кристаллов являются рентгеновские дифракционные методы. С их помощью определяют структуру и состав образца, распределение дефектов по его площади. В отличие от электронов, рентгеновские кванты обладают намного большей глубиной проникновения в кристалл, что дает возможность получать информацию о плотности дефектов в объеме кристалла. Рентгеновские методы позволяют выявлять отдельные дислокации, мозаичность блоков, дефекты упаковки (ДУ), механические напряжения на границах раздела двух сред (например, диэлектрик - полупроводник). На практике наибольшее распространение получили следующие методы рентгеноструктурного анализа:

    метод Лауэ - для определения ориентации монокристаллов;

    метод Дебая - Шерера - для исследования поликристаллов и порошков монокристаллов;

    метод вращения образца с использованием дифрактометрических измерений - для исследования монокристаллов.

Все рентгенодифракционные методы основаны на законе Вульфа - Брэгга и анализе интенсивности рентгеновского луча после взаимодействия с образцом.

Закон Вульфа – Брэгга:

n λ=2d sinθ ,

где λ - длина волны рентгеновского излучения; d - межплоскостное расстояние; θ - угол Брэгга; n - целое число).

Дифракция рентгеновского излучения дает важную информацию о твердых телах, их атомной структуре и форме кристаллов, а также о жидкостях, аморфных телах и больших молекулах. Дифракционный метод применяется также для точного (с погрешностью менее 1∙10 -5) определения межатомных расстояний, выявления напряжений и дефектов и для определения ориентации монокристаллов. По дифракционной картине можно идентифицировать неизвестные материалы, а также обнаружить присутствие в образце примесей и определить их. Значение рентгеновского дифракционного метода для прогресса современной физики трудно переоценить, поскольку современное понимание свойств материи основано в конечном счете на данных о расположении атомов в различных химических соединениях, о характере связей между ними и о дефектах структуры. Главным инструментом получения этой информации является дифракционный рентгеновский метод.

Метод Лауэ

В методе Лауэ применяется непрерывный "белый" спектр рентгеновского излучения, которое направляется на неподвижный монокристалл. Для конкретного значения периода d из всего спектра автоматически выбирается соответствующее условию Брэгга - Вульфа значение длины волны. Получаемые таким образом лауэграммы дают возможность судить о направлениях дифрагированных пучков и, следовательно, об ориентациях плоскостей кристалла, что позволяет также сделать важные выводы относительно симметрии, ориентации кристалла и наличия в нем дефектов. При этом, однако, утрачивается информация о пространственном периоде d . На рис.1 приводится пример лауэграммы. Рентгеновская пленка располагалась со стороны кристалла, противоположной той, на которую падал рентгеновский пучок из источника. Дифракционным пучкам соответствуют светлые пятна на лауэграмме.

Таким образом, пучок "белого" рентгеновского излучения, отражаясь от плоскостей, для которых выполняется закон Вульфа - Брэгга, дает множество дифрагированных лучей, которые, попадая на рентгеновскую фотопластину, вызывают появление рефлексов (дифракционных максимумов). Каждый рефлекс соответствует отражению от системы параллельных плоскостей с фиксированными индексами Миллера (hkl ). Характер и симметрия распределения этих точек, лежащих на гиперболах, определяются ориентацией кристалла. Анализ ускоряется при сравнении с эталонами.

На рис.2 представлена лауэграмма ориентированного монокристалла берилла. Первичный пучок рентгеновских лучей направлен вдоль оси симметрии 2-го порядка. Дифракционным пучкам соответствуют темные пятна на лауэграмме. Монокристалл состоит из двух несколько разориентированных блоков, поэтому некоторые пятна двойные.

Метод Дебая - Шерера

При анализе поликристаллов и порошков монокристаллов (метод Дебая - Шерера) рентгеночувствительную фотопленку располагают по поверхности цилиндрической камеры. При облучении образца монохроматическим рентгеновским излучением дифрагированные лучи располагаются по поверхности коаксиальных конусов, каждый из которых соответствует дифракции от семейства плоскостей с индексами (hkl ) (рис.1)

В отличие от предыдущего метода, здесь используется монохроматическое излучение (=const), а варьируется угол . Это достигается использованием поликристаллических образцов или порошков монокристаллов, состоящих из многочисленных мелких кристаллитов случайной ориентации, среди которых имеются и удовлетворяющие условию Брэгга - Вульфа. Дифрагированные пучки образуют конусы, ось которых направлена вдоль пучка рентгеновского излучения. Для съемки обычно используется узкая полоска рентгеновской пленки в цилиндрической кассете, а рентгеновские лучи распространяются по диаметру через отверстия в пленке (рис.3).

При пересечении конуса с фотопленкой возникает линия почернения. Оси конусов совпадают с направлением первичного пучка, а угол раствора конуса равен учетверенному углу Брэгга для плоскостей (hkl ). По линиям на рентгенограмме определяют межплоскостные расстояния и идентифицируют материал по стандартным таблицам d hkl . Точность определения d hkl составляет 0.001 нм. При наличии текстуры в пленках на кривых почернения появляются штрихи и точки большей интенсивности.

Полученная таким образом дебаеграмма (рис.4, а) содержат точную информацию о периоде d hkl , то есть о структуре кристалла, но не дает информации, которую содержит лауэграмма. Поэтому методы Лауэ и Дебая-Шерера взаимно дополняют друг друга.

В современных дифрактометрах для регистрации дифрагированных пучков рентгеновских лучей используются сцинтилляционные или пропорциональные счетчики (рис.4, б). На таких установках производится автоматическая регистрация данных, что весьма существенно, так как сложные структуры могут давать большое число отражений (до 10 000).

Некоторые применения метода Дебая – Шеррера.

Идентификация химических элементов и соединений. По определенному из дебаеграммы углу можно вычислить характерное для данного элемента или соединения межплоскостное расстояние d hkl . В настоящее время составлено множество таблиц значений d , позволяющих идентифицировать не только тот или иной химический элемент или соединение, но и различные фазовые состояния одного и того же вещества, что не всегда дает химический анализ. Можно также в сплавах замещения с высокой точностью определять содержание второго компонента по зависимости периода d от концентрации.

Анализ механических напряжений. По измеренной разнице межплоскостных расстояний для разных направлений в кристаллах можно, зная модуль упругости материала, с высокой точностью вычислять малые напряжения в нем.

Исследования преимущественной ориентации в кристаллах. Если малые кристаллиты в поликристаллическом образце ориентированы не совсем случайным образом, то кольца на дебаеграмме будут иметь разную интенсивность. При наличии резко выраженной преимущественной ориентации максимумы интенсивности концентрируются в отдельных пятнах на снимке, который становится похож на снимок для монокристалла. Например, при глубокой холодной прокатке металлический лист приобретает текстуру - выраженную ориентацию кристаллитов. По дебаеграмме можно судить о характере холодной обработки материала.

Исследование размеров зерен. Если размер зерен поликристалла более 1∙10 -3 см, то линии на дебаеграмме будут состоять из отдельных пятен, поскольку в этом случае число кристаллитов недостаточно для того, чтобы перекрыть весь диапазон значений углов q. Если же размер кристаллитов менее 1∙10 -5 см, то дифракционные линии становятся шире. Их ширина обратно пропорциональна размеру кристаллитов. Уширение происходит по той же причине, по которой при уменьшении числа щелей уменьшается разрешающая способность дифракционной решетки. Рентгеновское излучение позволяет определять размеры зерен в диапазоне от 1·10 -7 – до 1·10 -6 см.