Образование глинистых минералов. Состав и свойства основных глинистых минералов. Свойства связанной воды

Глины и глинистые минералы
Различают понятия "глинистые породы", "глинистые минералы", "глины". В то же время четких определений этих понятий не существует. У разных авторов они трактуются с теми или иными видоизменениями. Излагаемый ниже материал дается по работам П.П. Авдусина, Е.М. Сергеева, Р.Е. Гримма, Ж. Милло, Л.И. Кульчицкого, Н.Я. Денисова, В.Д. Ломтадзе, A.M. Ломтадзе, А.К. Ларионова и др.
Глинистые породы - это обширная группа тонкодисперсных осадочных пород, занимающая промежуточное положение между породами обломочного и химического происхождения. В их составе наряду с обломочными.частицами содержатся тонкодисперсные, размером менее 0,002 мм.
Среди пелитовой фракции обломочных пород, к которой относятся глинистые частицы, различают грубые пелиты (0,002-0,001 мм) и тонкие пелиты (менее 0,001 мм).
Именно у пород, состоящих из частиц размеры которых менее 0,002 мм, наиболее четко проявляются характерные "глинистые" свойства (пластичность, липкость,. низкая водопроницаемость, большая емкость поглощения).
По условиям образования глинистые породы могут быть континентальными, лагунными и морскими.
В работе дается классификация глинистых пород по отдельным признакам: 1) по степени литификации - глинистый ил, глина мягкая, глина уплотненная, аргиллит, аргиллит сланцевый; 2) по содержанию глинистых (менее 0,002 мм) и пылеватых (от 0,002 до 0,05 мм) частиц - глина, глина пылеватая, глина песчаная, суглинок, суглинок пылеватый, супесь; 3) по составу глинистых минералов - , гидрослюдистые, монтмориллонитовые, полиминеральные; 4) по содержанию карбонатного материала - глина, глина известковая мергелистая, мергель глинистый, мергель, мергель известковистый.
Глинами в инженерно-геологической практике называют токодисперсные осадочные породы, в составе которых содержится не менее 30 % частиц диаметром менее 0,002 мм. Глины обладают связностью и пластичностью в природном состоянии или при искусственном увлажнении водой, а при высыхании сохраняют приданную им форму. Из всех известных признаков глин только эти признаки являются устойчивыми и легко устанавливаемыми. Согласно Р.Е. Гримму, термин "глина" употребляется как название породы, а также для обозначения пород, имеющих определенный размер частиц (менее 2 мкм). В общем под глиной подразумевают природный землистый, тонкозернистый материал, который при смешении с ограниченным количеством воды обнаруживает пластичность.
Основную роль в формировании присущих глинам свойств играют глинистые минералы, под которыми понимаются компоненты, составляющие основу глин, представляющие собой группу слоистых и слоисто-ленточных силикатов и имеющие кристаллическую структуру.
Среди глинистых минералов наиболее распространены , гидрослюды (иллиты) и монтмориллониты. Между собой они различаются строением кристаллической решетки с вытекающими из этого различия особенностями свойств минералов и, следовательно, свойств глин и глинистых пород.
Глинистые минералы образуются в результате изменения первичных минералов (полевых шпатов, слюд, хлоритов и т. п.) а также в результате выпадения в виде гелей из коллоидных и химических рестворов.
С учетом преобладающего содержания того или иного глинистого минерала выделяют следующие основные типы глин: , гидрослюдистые и монтмориллонитовые. Каолинитовые глины имеют континентальное происхождение (глины коры выветривания, озерные, болотные, речные, опресненных лагун) и образуются обычно в кислой среде; гидрослюдистые могут быть как континентальными, так и морскими, формируются в кислой, нейтральной и щелочной средах; монтмориллонитовые имеют морское происхождение и образуются преимущественно в щелочной среде.
Свойства глин и их отличия от неглинистых материалов в значительной степени зависят от кристаллохимии их поверхностей. Этот фактор был включен в определение понятия "глинистый минерал", данное Е.М. Сергеевым и Р.И. Злочевской . Под глинистым минералом предлагается понимать высокодисперсные и относительно стабильные минеральные соединения групп водных силикатов слоистого или слоисто-ленточного строения, образовавшиеся преимущественно в процессе химического выветривания горных пород. Их высокая дисперсность, характеризующаяся коллоидными и близкими к ним размерами частиц, достигается благодаря специфике свойств базальных поверхностей микрокристаллов этих частиц.
Развернутое определение глинистого минерала с позиций гидратации базальных поверхностей дано Л.И. Кульчицким . Глинистыми минералами он называет кристаллические водные силикаты, характеризующиеся следующими критериями: 1) слоистым или цепочечно-слоистым типом структуры; 2) высокой степенью дисперсности (размеры кристаллов менее 1-5 мкм); 3) преобладанием адсорбционных центров относительно катионов и молекул воды на базальных поверхностях; 4) меньшей энергией адсорбции на центрах первой категории (базальных поверхностях) по сравнению с энергией адсорбции на центрах второй категории, что служит причиной относительно большой поверхностной дйссоциации глинистых минералов в воде; 5) поверхностной диссоциацией обменных катионов в водной среде, вследствие чего вблизи базисов развиваются глинистые частицы диффузно-гидратного слоя; 6) сильным набуханием при взаимодействии с водой и водными растворами электролитов. Считается, что такое многостороннее раскрытие понятия "глинистый минерал" определяет специфику этой группы минералов как с точки зрения крис-таллохимии и коллоидной химии, так и с точки зрения инженерной геологии.
Под глиной Л.И. Кульчицкий понимает высокодисперсную систему "глинистые минералы - вода", обладающую определенной коагуляционной структурой, все контакты между элементами которой могут осуществляться через прослойки воды с аномальными реологическими свойствами.
Каковы же форма и размеры глинистых частиц? Как уже отмечалось, к глинам относятся породы с преобладанием частиц размером менее 0,002 мм.
Приведем размеры глинистых частиц, полученные Р.Е. Гриммом с использованием электронной микрофотографии. Частицы каолинита представляют собой хорошо образованные шестиугольные чешуйки, часто с преобладающим удлинением в одном направлении. Наибольшие размеры в плоскости чешуек колеблются от 0,3 до 4 мкм, а толщина - от 0,05 до 2 мкм. Могут быть и более крупные частицы. Монтмориллонит на фотографиях предстает в виде беспорядочно расплывчатой массы чрезвычайно малых частиц. Отдельные частицы имеют толщину порядка 0,002 мкм. Некоторые монтмориллониты сравнительно легко разрушаются до чешуек с толщиной, приближащейся к высоте одной элементарной ячейки. Размеры поверхности чешуек примерно в 10-100 раз превышают толщину частиц. Иллит проявляется в виде небольших нечетко обозначенных чешуек, некоторые из, них имеют отчетливую гексагональную форму. Толщина самых тонких частиц приблизительно 3 нм, диаметр от 0,1 до 0,3 мкм. В целом, согласно Р.Е. ГримМу, для частиц каолинита отношение диаметра чешуйки к толщине составляет (2-25),:1, а для монтмориллонита -(100-300): 1.
Глинистая порода, как и любая горная порода, представляет собой естественную трехфазную систему, включающую минеральный компонент, воду и газовую составляющую . Эта система непрерывно изменяется во времени под влиянием внешних и внутренних причин (в основном температуры и давления). Как отмечают Г.К. Бондарик, A.M. Царева и В.В. Пономарев , состав, состояние и свойства горной породы (в том числе и проницаемость) зависят от условий ее формирования и последующей истории развития. Это особенно ярко проявляется в глинистых породах, которые по сравнению с другими породами представляют собой наиболее динамичные системы, достаточно интенсивно изменяющие свой облик на разных стадиях литогенеза и чрезвычайно восприимчивые в отношении структурно-текстурных особенностей и свойств к внешним и внутренним воздействиям. В этой связи кратко остановимся на понятиях структуры и текстуры глинистых пород, используя для этого представления, развитые в работе .
Под структурой горной породы вообще, и глинистой в частности, понимается ее строение, определяемое размером и формой структурных элементов (блоков, агрегатов, зерен и др.), характером их поверхностей и количественным соотношением между разными структурными элементами. Под текстурой горной породы понимается взаимное расположение структурных элементов и их пространственная ориентация. Структура системы, ее текстура и свойства взаимосвязаны.
Текстура породы наследует и отражает черты обстановки литогенеза. Поэтому заслуживает внимания установление зависимостей между коли-чественными показателями структуры породы и процессов, обусловивших формирование горной породы, в том числе ее текстуры. Это в свою очередь позволило бы подойти к реконструкции обстановки, в которой происходило формирование породы.
В работе высказывается интересная мысль о том, что деформация породы представляет собой как бы "память" породы, в которой запечатлены сведения об ее формировании и развитии,

группа водных силикатов, слагающих основную массу глин и определяющих их физико-химические, механические и др. свойства. Г. м. являются продуктом выветривания преимущественно алюмосиликатов и силикатов магматических и метаморфических горных пород на дневной поверхности. В процессе выветривания Г. м. испытывают стадийные преобразования структуры и химического состава в зависимости от изменения физико-химических условий среды выветривания и седиментации. Размеры частиц Г. м. в глинах большей частью не превышают 0,01 мм . По кристаллической структуре Г. м. относятся к слоистым или псевдослоистым силикатам. В кристаллических решётках типичных Г. м. чередуются сетки кремнекислородных тетраэдров (ионы кремния в четверной координации) с сетками гидроксильных октаэдров, в центре которых располагается атом алюминия, железа или магния, причём двухвалентный магний выполняет все октаэдры (триоктаэдрические силикаты), а трёхвалентный алюминий только два из трёх (диоктаэдрические силикаты).

Г. м. с двухэтажной структурой образованы тетраэдрической и октаэдрической сетками - группа Каолинита, например каолинит, диккит, накрит, галлуазит; Г. м. с трёхэтажной структурой состоят иэ двух внешних тетраэдрических и средней октаэдрической сеток - группа гидрослюд (См. Гидрослюды), например гидромусковит и глауконит (в межслоевых промежутках расположен атом калия); группа Монтмориллонита, например Al-moнтмориллонит и Fe-moнтмориллонит (нонтронит) (в межслоевых промежутках - вода и обменные катионы); группа хлоритов (См. Хлориты) - в структуре чередуются трёхэтажные слои и межслоевые промежутки (октаэдрические сетки). Известны также Г. м. более сложной структуры.

Кристаллохимическим различиям в структуре Г. м. отвечают определённые отличия в их химическом составе. В силу этого свойства Г. м. резко различаются. Так, например, монтмориллонитовые минералы обладают очень высокой обменной способностью и адсорбционными свойствами, тогда как у каолинитовых минералов эти свойства выражены слабо. Г. м., относящиеся к группе гидрослюд, при нагревании резко увеличиваются в объёме. Для диагностики Г. м. используют инфракрасную спектроскопию, химический рентгеновский, электронографический, электронномикроскопический, термический методы.

Лит.: Гинзбург И. И., Рукавишникова И. А., Минералы древней коры выветривания Урала, М., 1951; Рентгеновские методы изучения и структура глинистых минералов, пер. с англ., М., 1965.

В. П. Петров.

  • - местные куры мясо-яичного направления. Выведены в Полтавской обл. Оперение палевое, концы маховых перьев и косицы хвоста чёрные...

    Сельско-хозяйственный энциклопедический словарь

  • - почвы, содержащие свыше 50-60% глины. Остальная часть состоит из песка, аморфной кремневой кислоты, гидрата окиси железа и обломков горных пород. Во влажном состоянии Г. п. пластичны...

    Сельскохозяйственный словарь-справочник

  • - см. также ПОРОДНЫЕ ГРУППЫ ГУСЕЙ Породная группа выведена в племзаводе "Пионер" Владимирской области...

    Породы сельскохозяйственных животных. Справочник

  • - см. также 14. ГУСИ Породная группа выведена в племзаводе “Пионер” Владимирской области...

    Генетические ресурсы сельскохозяйственных животных в России и сопредельных странах

  • - сложенные- преимущественно глинистыми м-лами. Термин часто неправильно применяется к осадкам, в составе которых преобладает пелитовая фракция. См. Илы пелитовые...

    Геологическая энциклопедия

  • - м-лы, хлориты, б. ч. богатые Fe и с повышенным содер. Аl. Мон. В совр. океанских осадках, в аргиллитах с гидрослюдами...

    Геологическая энциклопедия

  • - связанные в сухом состоянии грунты, для которых число пластичности > 0,01 ...

    Словарь геологических терминов

  • - вторичные водные силикаты, алюмосиликаты и ферросиликаты, а также простые окислы и гидраты окислов кремния, железа и алюминия, слагающие основную массу глин, аргиллитов и тонких фракций некоторых других осадочных...

    Словарь по гидрогеологии и инженерной геологии

  • - М., имеющие слоистую или слоисто-цепочечную структуру, класса водных силикатов и алюмосиликатов...
  • - гли́нистые пусты́ни обширные равнинные пространства, сложенные глинистыми или суглинистыми отложениями, поверхность которых испытала мощное дефляционное разрушение...

    Географическая энциклопедия

  • - см. Глины лечебные...

    Большой медицинский словарь

  • - Teofilak, 1965, - сложены в основном каолинитом, который иногда замещается сидеритом; присутствуют шамозит и кальцит. Ядром О. г. является преимущественно кварц. Встречены в батском ярусе Ще-тинского синклинория...

    Геологическая энциклопедия

  • - глинистые метам...

    Геологическая энциклопедия

  • - скопление глинистых частиц или их псевдокристаллов, не имеющее четких границ, на контактах тонкодисперсной массы с другими средами. Результат процесса сепарации...

    Толковый словарь по почвоведению

  • - содержащие около 35-45 % чистой глины, отличаются, в хозяйственном отношении, особыми характерными свойствами, которые довольно верно определяются самыми названиями этих почв: сырые, вязкие, липкие, холодные, тяжелые и,...

    Энциклопедический словарь Брокгауза и Евфрона

  • - группа водных силикатов, слагающих основную массу глин и определяющих их физико-химические, механические и др. свойства...

    Большая Советская энциклопедия

"Глинистые минералы" в книгах

МИНЕРАЛЫ

Из книги Вернадский: жизнь, мысль, бессмертие автора Баландин Рудольф Константинович

МИНЕРАЛЫ Минералогия XIX века во многом разделяла судьбу кристаллографии. Здесь также господствовали описания и классификации. Проводилась «бухгалтерская опись» минералов - занятие полезное, если оно не становится чрезмерным.Казалось, а чем еще заниматься минералогам?

Минералы любви

автора Гурвич Михаил Меерович

Минералы любви

Из книги Большая книга о питании для здоровья автора Гурвич Михаил Меерович

Минералы и антиоксиданты

автора Годуа Александра

Минералы и антиоксиданты

Из книги Ягоды годжи, семена чиа и зерна киноа для оздоровления и похудения автора Годуа Александра

Глинистые грунты

Из книги Современные работы по закладке фундамента. Виды работ, материалы, технологии автора Назарова Валентина Ивановна

Глинистые грунты Глинистые грунты – это связанные грунты, для которых число пластичности Jp > 0,01. По содержанию песчаных частиц и числа пластичности глинистые грунты подразделяются на супесь, суглинок, глину (табл. 1).Таблица 1 Числом пластичности называют разницу

41. Хлорофилл и минералы

Из книги Глубина 11 тысяч метров. Солнце под водой автора Пикар Жак

41. Хлорофилл и минералы Около 16.00, в ожидании новостей с Луны, определяю содержание хлорофилла и минералов в океанской воде, пользуясь прибором, который сконструировал для нас У. Иген, научный сотрудник Геоастрофизического отдела «Граммена».В океане хлорофилл

Минералы

Из книги Аюрведа и йога для женщин автора Варма Джульет

Минералы Минералы, так же, как и металлы, излучают электромагнитные волны, особого рода вибрации. С целью профилактики заболеваний и оздоровления можно носить ювелирные украшения с минералами или настаивать воду на минералах и пить ее. Минералы способствуют активизации

Тяжелые почвы: тяжелосуглинистые и глинистые

Из книги Золотая книга богатого урожая автора Самсонов Сергей Анатольевич

Тяжелые почвы: тяжелосуглинистые и глинистые В глинистых почвах мало воздуха, много воды, однако только небольшую ее часть растения могут использовать. Эти почвы, как правило, дренированы. При недостатке влаги на почве образуется прочная корка. Жизнедеятельность

МИНЕРАЛЫ

Из книги Салон красоты на дому автора Коробач Лариса Ростиславовна

МИНЕРАЛЫ Минералы – это неорганические вещества, которые нужны организму в небольших количествах. Минералы содержатся в почве и воде, в продуктах органического происхождения. В организме минералы играют важную роль в обменных процессах, а также в синтезе белков,

Глинистые почвы

Из книги Как повысить плодородие почвы автора Хворостухина Светлана Александровна

Глинистые почвы Глинистые почвы не случайно называются тяжелыми. Их главными отличительными свойствами являются повышенная плотность и вязкость. При увлажнении они чрезмерно слипаются и становятся почти непригодными для обработки и выращивания растений.Грунт данного

Глинистые минералы

Из книги Большая Советская Энциклопедия (ГЛ) автора БСЭ

V. Минералы.

Из книги Самоврачевание и скотолечение у русского старожилого населения Сибири автора Виноградов Георгий Семенович

V. Минералы. Глина. Б?лая (перфи?льская) глина прим?няется какъ жаропонижающее средство: ею, напр., обкладываютъ обожженныя или опаренныя м?ста; ее?дятъ отъ изжоги; всякая глина, въ соединеніи съ олифой, тоже признается полезной при ожогахъ.Громо?ва стр?ла „водится у кажной

Минералы

Из книги Симфония для позвоночника. Профилактика и лечение заболеваний позвоночника и суставов автора Котешева Ирина Анатольевна

Минералы Еще греческие ученые Платон, Геродот, Теофраст высказывали убеждение в целительных свойствах камня. Аристотель даже составил сборник легенд о камнях. Полный обзор имевшихся на то время сведений о камнях сделал в своей «Естественной истории в 37 книгах»

Минералы

Из книги Рельефный пресс за 3 месяца автора Толкачев Алексей Иванович

Минералы После воды самыми важными для жизнедеятельности клеток веществами являются минералы. Минералы, которым следует уделить внимание, – это калий, натрий, магний и кальций, потому что именно они нужны человеку в больших количествах.В жизни клетки, а также за ее

Конспект

книги «Гидрофильность глин и глинистых минералов» Ф.Д.Овчаренко, которая была издана в Киеве Украинской Академией Наук в 1961 году .

Строение глин и конструкция глинистых минералов

П. А. Земятченский дает такое определение глины – это землистая минеральная масса, которая в смеси с водой может образовывать пластическое тесто, сохраняющее форму после высыхания и получающее твёрдость камня после обжига.

Другие авторы, такие как И. И. Гинзбург, В. И. Вернадский, и А. Е. Ферсман под термином «глина» понимали определённый минералогический состав и степень дисперсности массы. Они относили к глинам тонкодисперсные породы, которые состоят в основном из водных силикатов глинозема.

Различают:

  • Минералы крупных частиц, размер которых 0,01 мм и более. Это – минералы, которые перешли в осадочные породы из метаморфических и массивно-кристаллических или материнских пород и сохранились в процессе их разрушения. К ним можно отнести: полевые шпаты, кварц, слюды, пироксены и т. д., которые можно назвать первичными минералами, и которые совсем не присущи глине и глинистым породам.
  • Минералы мелких фракций, размер которых меньше 0,01 мм. Это тонкие частицы вторичных минералов, которые возникли в процессе разрушения первичных минералов. К тонким частицам относятся: монтмориллонит, нонтронит, иллит, каолинит, галлуазит и др. Это специфические минералы, которые присущи глинам и глинистым породам. Поэтому их называют глинистыми минералами. Глинистые минералы в разной степени имеют коллоидно-химические свойства. К этим свойствам относят: пептизацию, коагуляцию, адсорбцию, ионный обмен и др.

Глинистые минералы обладают поглотительной способностью и пластичностью.

По Гинзбургу и Петрову глиноземистые минералы систематизируются по группам:

  • группа каолинита: каолинит, накрит, диккит, монотермит, галлуазит;
  • группа монтмориллонита: бейделлит, монтмориллонит;
  • группа пирофиллита: пирофиллит;
  • группа аллофана: аллофан;
  • группа гидрослюды: гидромусковит, ливерьерит.

Р. Грим составил следующую классификацию глинистых минералов.

  • Аморфные глинистые минералы , включают в себя группу аллофанов.
  • Кристаллические глинистые минералы , которые имеют несколько видов:

Двухслойный тип.

Слоистые структуры минералов содержат слой кремнекислородных тетраэдров и слой алюмокислородных октаэдров. Они могут быть:

1) Изометрическими. Это группа каолинита – накрит, каолинит, и т.д.

2) Удлинёнными. Это группа галлуазита.

Трёхслойный тип.

Слоистые структуры таких минералов имеют два слоя кремнекислородных тетраэдров с расположенными между ними алюмокислородными октаэдрическими, диоктаэдрическими и триоктаэдрическими слоями. Они бывают:

1)С разбухающей кристаллической решеткой:

a)для изометрических: группа монтмориллонита (соконит, монтмориллонит, и др.), вермикулит;

b)для удлинённых: группа монтмориллонита, сапонит, нонтронит, гекторит.

2)С неразбухающей решеткой: группа иллита.

Смешано-слоистый тип.

Этот тип глинистых минералов состоит из группы хлорита.

Цепочные структуры

Это роговообманковые цепочки из кремнекислородных тетраэдров, соединенные между собой октаэдрическими группами, которые состоят из магния и алюминия в окружении гидроксила и кислорода.

Почти все глины рассматриваются как полиминеральные горные породы, глинистые минералы которых обладают характерными признаками, обусловливающими специфические физико-химические свойства глин.

Конституционная вода в глине показывает принадлежность минерала к установленной группе.

Свойства глинистых минералов определяются их высокодисперсным составом, строением кристаллической решетки, ионообменной и адсорбционной способностью, упругопластичностью и тиксотропностью.

Структура частицы минерала оказывает влияние на технические и физико-химические свойства глин и задает способ их взаимодействия с водой.

Взаимодействие глинистых частиц с водой является важнейшим условием при использовании глин в практических целях.

Гидросиликатные минералы состоят в основном из Al 2 O 3 SiO 2 H 2 O. Кремний и алюминий взаимосвязаны посредством кислородных атомов.

Ионная решетка глинистых минералов включает две структурные единицы. Первая — глинозем, состоящий из двух пластов атомов кислорода либо гидроксилов. Между ними заключены в октаэдрической координации атомы алюминия, которые находятся на равном расстоянии от кислорода или гидроксила.

Структурная единица такого типа соответствует гидраргиллиту Al 2 (ОН) 6 . Гидраргиллит — это пластинчатые, развитые кристаллы, которые плотно окружены атомами гидроксила. Между этими слоями находятся атомы алюминия.

Схематическое изображение отдельного октаэдра (а) и октаэдрической сетки структуры (б):

1- гидроксилы; 2 – алюминий, магний и т. д.

Если в структуре гидраргиллита алюминий заменить на магний – то получится слой брусита, который подобен минералу бруситу с элементарной ячейкой Mg(OH) 2 .

Второй единицей является гидрат кремнезёма, который состоит из тетраэдрических групп (SiO 4).

При образовании пространственной структуры атомы подчиняются правилу Паулинга, согласно которому заряды уравновешиваются зарядами атомов, находящихся с ними в непосредственной близости в кристалллической решетке.

Атом кремния имеет положительную валентность 4 и координационное число 4, поэтому взаимодействует с атомами кислорода с отрицательной электровалентностью (-2) и образует соединение SiO 4 .

По Р.Е. Гриму, в кремнекислородном слое каждый тетраэдр своими вершинами направлен в одну сторону, а основания расположены на одной плоскости. В структуре слоя выделяются три уровня: в первом уровне плоскости расположены атомы кислорода, во втором – кремния, в третьем уровне вершин тетраэдров – гидроксильные группы, расположенные над атомами кремния.

Схематический рисунок (по Гриму Р.Е.): (а) – одиночный кремнекислородный тетраэдр и (б) — сетка из кремнекислородных тетраэдров, которые расположены по гексагональному мотиву.

Связь между алюмокислородным и кремнекислородным слоями внутри пакета осуществляется электростатическими силами, а между пакетами – силами Ван-дер-Ваальса.

Основные типы решеток: 1:1 состоящий из одного слоя кремнезёма и одного слоя глинозёма; 2:1 состоящий из внутреннего слоя глинозёма и двух наружных слоёв кремнезёма. Расстояние между атомами кислорода в тетраэдрическом слое 2,55Å. Толщина такого элемента структуры 4,93Å.

При условии, когда четыре атома кислорода являются общими для нескольких атомов кремния, возникает пространственная решетка структуры, при этом образуются отрицательные заряды, которые компенсируются другими катионами.

Изоморфное замещение в кристалле одного атома другим, возможно при условии, когда эти атомы имеют сходные размеры, координационное число и одинаковую валентность.

В силикатах имеется отличие, при замещении решающее значение имеют размер и координация, а не валентность. Это наблюдается у цеолита, полевых шпатов, монтмориллонита и др. В этих минералах трёхвалентный алюминий замещает в центре тетраэдра четырёх валентный кремний. Алюминий замещается ионом меньшей валентности, например, двухвалентным магнием.

Такие замещения уравновешиваются адсорбированием катионов или другими зарядами решетки – гидроксильные группы замещаются атомами кислорода.

Глинистые минералы с типом решетки 1:1

Имеют сходные свойства. К таким минералам можно отнести галлуазит, каолинит и др.

Каолинит имеет структурную формулу (OH) 8 Si 4 Al 4 O 10 и слоистую структуру, которая состоит из одного кремнекислородного и одного алюмокислородного слоя, соединенных с помощью вершин тетраэдров и октаэдров в одну элементарную ячейку.

Галлуазит с такой же структурой как каолинит, но в гидратированном состоянии. Структурная формула имеет вид (OH) 8 Si 4 Al 4 O 10 ·4H 2 O. Длина элементарной ячейки в плоскости кислорода равна 8,93Å, а в плоскости гидроксила равна 8,62Å, что способствует образованию изогнутого, трубчатого строения структуры галлуазита. При дегидратации и потере двух молекул H 2 O, трубки разворачиваются, и структура приближается к типу структуры каолинита.

Глинистые минералы с типом решетки 2:1

Монтмориллонит имеет структурную формулу (OH) 4 Si 8 Al 4 O 20 ·nH 2 O. Во внешних слоях располагаются слои атомов кислорода, из-за чего между соседними структурными пакетами образуется очень слабая связь.

Такую связь легко нарушить внедрением в пространство между пакетов полярных молекул, которыми являются молекулы воды.

При внедрении полярных молекул происходит значительное расширение и набухание решетки относительно оси с , до полного отрыва отдельных пакетов. Разбухание монтмориллонита зависит от рода обменных катионов.

В Na-форме набухания значительны, в Н-форме и Са-форме набухание проявляется меньше. Это указывает на наличие в группе монтмориллонита минералов с различными соотношениями Si:Al. Так бейделлит с отношением Si:Al = 2, обозначается монтмориллонит-2, обычный бейделлит – монтмориллонит-3, а монтмориллонит с соотношением 4, как монтмориллонит-4 и т.д.

Конструкция SiO 2:Al 2 O 3 не всегда является тем фактором, по которому минерал можно отнести к определённой группе. Монтмориллонит и пирофиллит имеют одинаковое отношение SiO 2:Al 2 O 3 , но они имеют различную структуру.

У безводного монтмориллонита параметр с имеет 9,95Å, а у пирофиллита – 18,54Å. Такое изменение в размерах отображается на связях с водой: у монтмориллонита соседние пакеты связаны межпакетной водой, у пирофиллита нет.

В работах Маршалла и Гендрикса отмечается, что состав монтмориллонита отличается от теоретической формулы. Причиной этого является замещение в тетраэдрической решетке атома кремния на атом алюминия, а в октаэдрической решетке атома алюминия на атом магния, или атом железа, или атом цинка. Тогда структурная формула монтмориллонита выглядит следующим образом (OH) 4 Si 8 (Al 3,34 Mg 0,66)O 20 ·nH 2 O Na 0,66

В сапоните алюминий замещается на магний, в нонтроните алюминий замещается на железо, в волконскоите – алюминий на хром, в соконите – на цинк. В результате замещения появляется результирующий отрицательный заряд решетки, который уравновешивается обменными катионами, адсорбированными вокруг краёв структурных слоёв и между ними.

В минерале пирофиллит замещения отсутствуют, поэтому у него низкая способность к обмену ионов.

Физические и химические свойства любого дисперсного минерала связаны с кристаллохимической структурой. В глинистых минералах преобладают структуры со слоистыми решетками. Форма и размер глинистых частиц служат качественной характеристикой для оценки дисперсного минерала.

Для оценки глинистых материалов используется гранулометрический анализ. У глин содержание частиц диаметром менее 5 мкм больше 30%, у суглинков варьирует от 30 до 10%, у супесей менее 10%.

Минералогический состав исследуемых глин

Молекулярное отношение SiO 2:Al 2 O 3 для определения минералогического состава глин:

  • для монтмориллонитового состава SiO 2:Al 2 O 3 ≥ 4;
  • для бейделлитового SiO 2:Al 2 O 3 < 3;
  • для каолинитового SiO 2:Al 2 O 3 = 2

Минералогический состав глинистого вещества определяется пересчетом химического состава на структурные формулы.

Исходной расчетной формулой:

  • для минерала монтмориллонита является R 2 +3 (Si 4 О 10) (OH) 2 , где R +3 – Al 3+ и Fe 3+ ;
  • для каолинита Al 2 (Si 4 О 8)(ОН) 8 ;
  • для монотермита 0,2R·Al 2 О 3 ·3SiO 2 ·2H 2 O где R – К 2 О, Na 2 О, СаО, MgО

Для определения минералогического состава глинистого сырья применяется оптический, рентгенографический и термографический методы и метод органических красителей.

Применяемые органические красители: метиловый голубой, хризоидин и бензидин.

Каолины и каолинитовые глины окрашиваются метиловым голубым в светло-фиолетовый цвет. При добавлении двух-трёх капель насыщенного раствора хлористого калия, изменения фиолетового цвета не происходит.

Хризоидином осадок окрашивается в желтый цвет и прибавление двух-трёх капель 10% HCl вызывает изменения желтого осадка в красно-терракотовый. Бензидин окрашивает суспензию в серый цвет, что показывает наличие гидрослюды.

Метиловый голубой окрашивает монтмориллонитовые глины в интенсивно фиолетовый или фиолетово-синий цвет, который при добавлении КCl переходит в голубой или зеленовато-голубой цвет. Бейделлитовые глины в присутствии метилового голубого дают яркие и чистые зелёные цвета и слабо изменяются в сторону усиления зелёной окраски при добавке КCl.

Гидрослюдные глины при воздействии метилового голубого окрашиваются в фиолетово-синие и синие цвета, которые мало изменяются при добавлении КCl.

Связанная вода в глинах

Природа взаимодействия воды и глины

Существует несколько точек зрения относительно взаимодействия воды с глинистым минералом.

В. Брэгг убежден, что связи воды с глиной находятся в тесной взаимосвязи со структурой глинистого минерала. Для монтмориллонитовых глин присоединение воды поверхностью минерала вызывает увеличение длины оси С в кристаллической ячейке. Увеличивается количество молекул воды в отдельной ячейке с 8 до 21. Связывание молекул воды в кристаллической решетке сопровождается их уплотнением, и плотность такого слоя увеличивается до 1,3. Молекулы воды соединяются атомами кислорода на поверхности кристалла или проникают вглубь кристаллической решетки.

Терцаги исходит из того, что молекула воды это диполь и считает, что взаимодействие воды с отрицательно заряженной поверхностью глинистых частиц происходит путём наслоения положительных диполей воды на отрицательно заряженную поверхность глинистой частицы. Происходит послойное наложение диполей воды на поверхность глины. На первый слой ориентированных молекул наслаивается второй, затем третий. С удалением от поверхности глины процесс наслаивания ослабевает из-за теплового движения молекул воды и из-за снижения потенциала заряда поверхности.

Такая модель адсорбции полимолекулярной воды на поверхности был бы близок к реальности, если бы отдельные глинистые частицы имели плоскую поверхность. Но глинистые частицы не имеют такой поверхности из-за сложности структур в глинистых агрегатах.

П. П. Лазарев считает, что происходит не только смачивание твёрдых частиц глины, но еще происходит химическое притяжение воды глиной и возникают новые соединения.

И. В. Гребенщиков утверждает, что при взаимодействии с водой, на поверхности горных силикатных пород происходит образование слоя кремневой кислоты. Прочность связи плёнки с поверхностью составляет 200-700 кг/см 2 . Коллоидные плёнки кремневой кислоты имеют свойства схватываемости и цементации. Например, тонкоизмельченный кварц при воздействии на него воды, схватывается.

Н. Я. Денисов отмечает, что результатом взаимодействия воды с глинистыми гидрофильными минералами является образование на поверхности последних не плёнок из чистой воды, а плёнок более и менее структурированного коллоидного раствора. Материал для образования такого коллоидного раствора извлекается из разрыхлённого поверхностного слоя самих частиц. Такое гелеобразование на поверхности частиц, в виде коллоидных плёнок кремневой кислоты, ведет к возникновению тиксотропных структур.

В. С. Шаров считает, что распад глинистых частиц в воде это результат их химического взаимодействия с водой, при котором образуется коллоидгидрат. Скрепление частиц в куске высушенной глины является следствием того, что поверхностный слой глинистых частиц в тесте породы имеет растворённое состояние, и при высыхании частицы склеиваются друг с другом. Автор считает, что между поверхностью частицы и водой происходит химическое взаимодействие, на что указывает теплота смачивания и уменьшение объёма воды после смешивания двух материалов.

При растворении глина диссоциируется на катионы и макроанионы и образуются электролиты. Оводнённая масса глины представляет собой однофазный раствор, в котором невозможно разделить глинистые в виде твёрдой фазы и, соответственно, воду в виде жидкой фазы. В таком растворе присутствуют макроанионы, состоящие из мелких анионов, в которые переходят глинистые частицы после отделения от них катионов. В таком растворе нет воды, как отдельного вещества, а находятся слои катионного раствора, в котором вода имеет ориентацию и сжимается в электростатических полях катионов. Свойства такой воды отличаются от свойств вода в свободном состоянии.

Н. А. Огильви применил термодинамику растворов, и поэтому рассматривает глину как сложную однофазную молекулярно-коллоидную смесь с водой. Глинистые минералы – соли алюмокремниевых кислот, которые содержатся в определённых местах кристаллической решетки и способные к катионному обмену. В водной среде такие минералы распадаются на катионы и кристаллические анионы. Диссоциация происходит на столько ступеней, сколько слоёв имеется в структурном пакете. В раствор глин входят следующие компоненты: кристаллические частицы глинистого минерала, глинистые анионы, а также катионы с таким зарядом, который уравновешивает все анионы, в том числе и анионы воды и молекулы растворённых недиссоциированных веществ.

Кюн предложил теорию связывания воды не глинистыми частицами, а гидратированными обменными катионами, которые адсорбируются на поверхности глинистых частиц. Данная теория не подтвердилась исследованиями С. Н. Алёшина, Келли и др.

П. Фагелер поддерживает теорию Кюна и утверждает, что поглощение воды не обуславливается характером поверхности частиц, а зависит от числа и заряда ионов, адсорбированных частицами.

Янерт доказывал катионную теорию связывания воды глинами, но полученные им константы оказались не постоянными, и были опровергнуты А. А. Роде.

Альтен и Курмис предлагают концепцию адсорбции воды обменно-связанными, способными к гидратации катионами. И. Е. Дудавский и А. В. Терещенко поддерживают эту теорию.

А. А. Роде опровергает выводы Фагелера, Альтена, Курмиса и Маттсона и пишет, что обменные катионы в удержании воды играют подчинённое и второстепенное значение. Первенство в связывании воды играет гидратация самой поверхности глинистых частиц.

Гендрикс, Нельсон и Александер применили в исследованиях поглощенной воды дифференциально-термический анализ. Они довели, что на поверхности глинистых частиц находится несколько гидратных слоёв воды, в частности монтмориллонита.

А. В. Думанский : отмечает существенное значение водородных связей в процессе взаимодействия между водой и поверхностью твёрдых фаз.

А. В. Кисилёв : рассматривает теорию адсорбции паров воды на поверхности силикагеля за счет водородных связей. Он высказал предположение, что на поверхности силикагеля образуется ксерогель кремневой кислоты. Ксерогель появляется в растворе и быстро конденсируется в виде мономеров ортокремневой кислоты. Конденсация происходит на вершинах кремнекислородных тетраэдров и далее идет полимеризация в большие цепи кремневой кислоты:

А. В. Кисилёв после исследований сделал вывод, что поверхность силикагеля покрыта гидроксилами. Адсорбционная способность зависит от количества гидроксилов, расположенных на ребрах и внешних углах кремнекислородных тетераэдров. Гидроксилы вступают в водородные связи с дипольными молекулами воды, связывают их и образуют адсорбционный монослой.

Комплексы на поверхности образуются из-за взаимодействия водородных связей молекул воды с протонизированным водородом гидроксилов алюмосиликатов.

При прокаливании происходит удаление гидроксилов и адсорбционная способность значительно снижается.

Прокаливание изменяет молекулярную структуру силикатов, но восстановление адсорбционной способности произойдёт при их обратной гидратации.

Выводы А. В. Кисилёва распространяются и на природные глинистые минералы.

С. П. Жденов : подтверждает теорию А. В. Кисилёва и добавляет, что за счет водородных связей протекают и более глубокие химические реакции. Количество водородных связей обуславливается удельной поверхностью и размерами пор.

Гендрикс и Джефферсон : вода адсорбируется на поверхности глинистых минералов в виде гексагональных групп. Возникновение гидроксильных групп вызвано тетераэдрическим расположением зарядов вокруг молекулы воды.

На рисунке изображено размещение кислорода и водорода в сетках воды (по Гендриксу и Джефферсону).

Гексагональная структура воды на поверхности глинистых минералов удерживается водородными связями между атомами водорода воды и кислорода поверхностного слоя минерала.

Так образуется несколько слоёв до тех пор, пока давление диссоциации для завершающего слоя будет уравновешено силами отрыва воды от поверхности минерала (тепловое движение молекул, давление паров над поверхность и т.д.).

На рисунке изображение сетки воды, которая согласно теории Гендрикса и Джефферсона, через водород связана с поверхностью глинистого минерала.

Баршад : показал, что молекулы воды с молекулами кислорода поверхностного слоя монтмориллонита образуют тетраэдры с рыхлой упаковкой молекул. Если степень гидратации высокая, то вода на поверхности монтмориллонита связывается в гексагональные конфигурации, которые соответствуют гексагональным кольцам кислорода на базальной поверхности монтмориллонита. Такая укладка молекул воды плотная, так как увеличивается количество молекул воды до шести на каждую элементарную ячейку монтмориллонита. Описанная Бардашом теория для чистой поверхности монтмориллонита и практически мало применима.

Определение смачиваемости дисперсных минералов

Смачиваемость твёрдых тел определяется поверхностным натяжением жидких сред и углом краевого смачивания.

Для образование новой поверхности совершается работа на преодоление сил внутреннего давления.

A = S · σ ,где:

A – работа образования новой поверхности;

S – образовавшаяся поверхность;

σ – поверхностное натяжение или удельная поверхностная энергия.

Для твёрдых тел нет достаточно точного метода измерения поверхностного натяжения.

Краевой угол смачивания θ .

Граница раздела трёх фаз: жидкость или 1; газ или 2; твёрдое тело или 3. Поверхностное натяжение обусловлено нескомпенсированностью молеулярных сил в поверхностных слоях. Поверхностное натяжение:

  • σ 32 – на границе раздела таких фаз, как твёрдое тело-газ;
  • σ 12 – на границе раздела таких фаз, как жидкость-газ;
  • σ 31 – на границе раздела таких фаз, как твёрдое тело-жидкость.

cos θ = (σ 32 — σ 31)/σ 32

Гидрофильные твёрдые тела θ 12 <90°.

Гидрофобные твёрдые тела θ 12 >90°.

Краевой угол смачивания очень трудно определить с достаточной точностью, т.к. на его величину оказывает влияние и структура поверхности, и адсорбированный на ней воздух, и электрический заряд поверхности, и загрязнённость её поверхности.

Б. В. Дегтярёвым предложена формула для определения краевого угла смачивания для порошков

cos θ = (l 2 8ηδ)/(4 rσt ) ,где:

l 2 – глубина пропитанного слоя, см;

η – вязкость пропитывающей жидкости, г/см·сек;

δ – пористость или отношение объёма пор ко всему объёму тела;

r – радиус капилляра, см;

σ – поверхностное натяжение пропитывающей жидкости, дин/см;

t – время пропитки.

Если известна удельная поверхность, то

cos θ = (l 2 dg δ )/(S 0 σ) ,где:

S 0 – удельная поверхность порошкового материала, см/см 3 ;

l 2 dg = ∆Р – капллярное давление, дин/см 2 .

Молекулярная поверхность, наличие присоединительных центров или радикалов и кристаллохимическая структура твёрдых тел напрямую связаны со смачиваемостью этих тел.

П. А. Ребиндер доказал, что очень мелкие порошки смачиваются жидкостью на границе с фазой воздуха хуже, чем тот же материал, но более крупнодисперснее. Это объясняется прочным удержанием на мелкодисперсных частицах адсорбированных воздушных плёнок.

Различные глинистые материалы характеризуются краевым углом смачивания на поверхности вода-воздух.

П. Е. Ребиндер с коллективом разработал критерий связности воды по величине свободной энергии связи через теплоту смачивания различных твёрдых тел в жидких средах.

Тепловой эффект связан со строением вещества, количеством полярных групп, через которые происходит связь молекул дисперсной среды.

О природе связанной воды

А. Ф. Лебедев различает следующие формы связанной влаги: вода кристаллическая, химически связанная вода, гигроскопическая вода, плёночная вода, гравитационная вода в фиде пара или в конденсированном состоянии. Автор не учитывал коллоидно-химического фактора, играющего основное значение.

Буйюкос различает такие типы воды:

1) воду гравитационную;

2) свободную воду (которая при температуре 0°С замерзает);

3) несвободную воду;

4) капиллярно-поглощенную воду (которая при температуре -4°С замерзает);

5) связанную воду (которая не замерзает до -78°С).

П. И. Андрианов предлагает схему различения почвенной влаги по количеству удерживающих влагу сил:

1) свободная влага (удерживающая сила менее 980 дин);

2) несвободная вода:

а) капиллярная (удерживающая сила 980-70000 дин);

б) агрегатообразная вода;

в) плёночная вода (70000 дин);

г) завядания;

д) гигроскопическая (>330000 дин).

Н. А. Качинский выделяет занятые поры:

1) прочносвязанная вода;

2) рыхлосвязанная вода;

3) капиллярная вода;

3) воздух.

С. И. Долганов подразделяет почвенную влагу:

1) вода, которая удерживается поверхностными силами почвы и сорбированными ионами – сорбированная вода;

2) вода, которая удерживается капиллярными силами – свободная влага;

3) вода, которая держится в порах почвы из-за различной упругости паров.

А. А. Роде разделяет так:

1) кристаллизационная влага;

2) вода в виде твёрдой фазы (лёд);

3) вода в виде пара;

4) прочно связанная вода, которая удерживается адсорбционными силами с выделением теплоты смачивания. Адсорбционная вода образует полимолекулярный слой с высокой плотностью и по механическим свойствам близка к твёрдому телу;

5) рыхлосвязанная вода. Этот тип складывается ориентированным расположением молекул воды третьего типа и воздействием обменных катионов, так называемая осмотическая вода. Этот слой имеет толщину десяток-сотен, а иногда и тысяч диаметров молекул воды. Плотность воды в этом слое, близка к плотности обычной воды;

6) свободная влага.

В. А. Приклонский различает связаную и свободную воду. Связаная вода подразделяется:

1) на воду, которая находится в кристаллической решетке минерала и входит в его химическую формулу;

2) вода, которая связывается на поверхности минерала;

3) вода, которая связана капиллярными силами.

И. И. Гинзбург определяет категории воды в монтмориллоните: гигроскопическая вода на поверхности минерала; межпакетная вода; конституционная или гидроксильная вода.

Гигроскопическая и межпакетная в сумме представляют собой воду набухания или сорбированную воду, конституционная вода – координационная, т.е. связана с иными компонентами кристаллической решетки.

А. В. Думанский разделяет: вода, связанная химически; вода, связанная физически; вода свободная. Физическая вода – вода, удерживаемая молекулярными силами с выделением теплоты смачивания. Прочно связанная вода – вода мономолекулярного адсорбционного слоя, которая обладает упругостью форм.

П. А. Ребиндерт предложил метод квалификации связи – определение величины энергии связи, т.е. энергии обезвоживания, принятой в физико-химической термодинамике.

Свободная изотермическая энергия связи определяется

– ∆ F = RTln P s / P (w ) = – RTlnφ , где:

P s – величина давления насыщенного пара воды при температуре;

P(w ) – давление пара равновесного при этой же температуре над материалом указанной степени оводнения w . При уменьшении этой величины прочность связи, при данной степени оводнения — прочнее.

Если P(w ) = P s , или если в системе присутствует свободная влага, то отсутствует прочно связанная вода и тогда А = 0.

П. А. Ребиндер разделяет четыре вида связи воды с дисперсным матераилом:

1) химически связанная вода гидроксильных ионов, гидратов и кристаллогидратов;

2) связанная адсорбционно вода мономолекулярного слоя;

3) капиллярно связанная вода. Эта вода рассматривается как свободная, за исключением мономолекулярного слоя у стенки капилляра;

4) свободная влага или механически схваченная дисперсной структурой и вода, заполняющая пористое пространство.

Рассматривается толщина слоя связанной воды.

Дисперсные частицы удерживают на поверхности сольватную оболочку, которая состоит от десятков до десятков тысяч слоёв молекул воды и удержанию таких оболочек даются различные объяснения.

С. Н. Рыжов : толщина слоя связанной воды находится в зависимости от кривизны поверхности и от напряжения силового поля. При удалении от поверхности напряжение уменьшается больше у мелких частиц, т.к. у них больше радиус кривизны над поверхностью.

Видсое : с удалением от поверхности сила притяжения уменьшается и когда эта сила не способна удерживать слои воды, то прибавляемая вода становится свободной, сходит с поверхности и становится свободной.

А. В. Думанский, С. Бредли : в результате поляризации молекул воды образуется первый мономолекулярный слой, и последующие слои воды наращиваются под влиянием силового поля нижележащих слоёв.

Уравнение образования многослойной плёнки:

Tlg(P 0 / P a ) = K 1 K 3 а где:

P a – равновесная упругость пара над адсорбированным слоем;

P 0 – упругость, которую имеет пар над поверхностью свободной воды при такой же температуре;

K 1 – константа, зависящая от температуры;

K 3 – константа, которая не зависит от температуры (K 3 = 0,83);

а – число грамм-молей адсорбированных.

Для глин со сложной структурой формула Эйнштейна показывает на большую вязкость воды ультрапор, что подтверждает полимолекулярное строение слоёв адсорбированных слоёв воды.

Н. М. Чирков, Н. В. Фок и В. И. Гольданский : объяснили образование полимерных адсорбированных плёнок на поверхности слюды действующими на близком расстоянии силами ван-дер-ваальса и за счет дальнодействующих сил электрического двойного слоя.

А. В. Киселёв : считает, что толщина полимерных плёнок не превышает двух-трёх молекулярных слоёв.

Гаркис и Джура : считают, что энергия взаимодействия в системе твёрдая фаза – вода относится не только к одному мономолекулярному, но и нескольким последующим слоям.

Родевальд и Митчерлих : утверждают, что возникновение мономолекулярного слоя в наружном слое глинистых частиц вызвано крепкой водородной связью. Только вода мономолекулярного слоя имеет изменённое качество и удерживается особенно сильно. Полимолекулярные слои состоят из молекул воды, которая по физико-химическим свойствам не отличается от свойств несвязанной воды.

Свойства связанной воды

Из общего количества воды, в системе глина-вода, количество адсорбированной воды незначительно, но с повышение дисперсности, т.е. при увеличении удельной поверхности, удельный вес мономолекулярной воды увеличивается.

Поверхность минеральной глинистой частицы не гладкая и ориентированные молекулы воды располагаются не сплошными наслоениями, а присоединены к поверхности частицы в отдельных активных центрах цепочками. Эти цепочки простираются в жидкость, как водоросли, прикреплённые к морскому дну.

Ближние к поверхности молекулы воды являются связанными и имеют изменённые свойства, которые отличаются от свойств несвязанной воды.

Адсорбированная связанная вода, по различным источникам, имеет плотность от 1,19 до 1,71. Наибольшую плотность имеет вода мономолекулярного слоя, наименьшую – в удалённых от поверхности слоях.

Теплоёмкость связанной воды различна и меньше единицы, а её уплотнение приводит к уменьшению теплопроводности.

Снижение температуры замерзания воды Б. В. Дерягин

Заказать консультацию

Глинистые минералы - слоистые тонкодисперсные соединения силикатов алюминия, магния и отчасти железа, представленные преимущественно кристаллическими формами малых размеров (1 -2 мкм, что составляет 0,001-0,002 мм), в которых атомы и ионы формируют кристаллическую решетку.

Глинистые минералы состоят из тетраэдрических и октаэдрических слоев, образуя структурные слои - пакеты.

При образовании пакета часть гидроксильных групп замещается ионами кислорода тетраэдров, поэтому в пакете 2 / 3 анионов, связанных одновременно с катионами тетраэдров и октаэдров, представлены кислородом, У 3 связана с гидроксильной группой (ОН) - . Взаимодействие ионов внутри пакетов осуществляется при помощи электростатических и ковалентных связей (между ионами Si и О в тетраэдрах наблюдается более прочная ковалентная связь, а в октаэдрах преобладают электростатические связи). Между пакетами (через межслоевые катионы) присутствуют более слабые ионно-электростатические, водородные и межмолекулярные силы.

Если в центре октаэдров октаэдрической сетки расположены трехвалентные катионы (Al 3+ , Fe 3+), то в самой сетке каждый третий октаэдр отсутствует (это определено условиями полной электростатической скомпенсированности валентностей). Минералы такого типа называются диоктаэдрическими, так как состав октаэдрического слоя в диоктаэдрических минералах соответствует составу минерала гиб- бсита А1(ОН) 3 . Этот слой иногда называют гиббситовым. Если же в центре октаэдров расположены двухвалентные катионы (Mg 2+ , Fe 2+), то для сохранения баланса валентностей необходимо, чтобы в сетке были заполнены все октаэдрические узлы (позиции). Такие минералы называются триоктаэдрическими, состав октаэдрического слоя в них соответствует составу минерала брусита Mg(OH) 6 , а слой называют бруситовым.

В зависимости от числа сеток выделяют двух-, трех- и четырехслойные пакеты. Двухслойные пакеты состоят из одной тетраэдрической и одной октаэдрической сетки, они обозначаются 1:1. Трехслойные пакеты состоят из двух тетраэдрических и одной октаэдрической сетки, они обозначаются 2:1. В четырехслойных пакетах между двумя трехслойными образованиями заключена еще одна октаэдрическая сетка, они обозначаются 2:1:1 (табл. 2.6).

Глинистые минералы состоят из двух- и трехслойных пакетов. Главным представителем двухслойных минералов является каолинит, трехслойных - монтмориллонит. Остальные глинистые минералы являются их изоморфными и политипными разновидностями.

Глинистые минералы подразделяются на несколько групп:

  • каолинита (каолинит, галлаузит);
  • аллофана (аллофан, гизингерит);
  • монтмориллонита (монтмориллонит, бейделлит, нонтронит, хри-

зоколлаидр.);

  • вермикулита (вермикулит (фото 2.5), сапонит);
  • гидрослюд (иллит, глауконит);
  • палыгорскита(сепиолит).

Глинистые минералы

Фото 2.5. Вермикулит- (Mg, Fe 2 +, Fe 3 +) 3 [(Si,AI) 4 0 10 ] (0Н) 2 4Н 2 0

Взаимные переходы глинистых минералов: плагиоклаз-?гиббсит^ аморфный материал ^ каолинит -? аморфный материал -? монтмориллонит -? каолинит -? хлорит железистый -? смешаннослойные минералы -? вермикулит.

Таблица 2.6

Общие принципы классификации глинистых минералов

Тип заполнения октаэдрического слоя

Соотношение тетраэдрических и октаэдрических сеток в пакете (тип пакета)

  • (двухслойный

2:1 (трехслойный пакет)

2:1:1 (четырехслойный пакет)

Диоктаэдрический

Группа каолинита

Группа галлу- азита

Группа диок- таэдрическо- го монтмориллонита

Группа диок-

таэдрического

вермикулита

Группа диок- таэдрических слюд и илли- тов

диоктаэдри-

хлоритов

Триоктаэдрический

Группа серпентина

Группа сапонита

Группа триок- таэдрического вермикулита

Группа триок- таэдрических слюд и илли- тов

триоктаэд-

рических

хлоритов

Биотит -+? хлорит магниевый.

Биотит -? аморфный материал -> гётит.

Биотит -? вермикулит -? монтмориллонит -? гидрослюда -? каолинит -? иллит триоктаэдрический.

Мусковит -? вермикулит -? монтмориллонит -? гидрослюда -?каолинит -+? иллит диоктаэдрический.

Si0 2 , R 2 0 3 -? гётит, гиббсит.

По устойчивости к выветриванию минералы можно выстроить в ряд - триоктаэдрические слюды (Fe, Mg), хлориты -? диоктаэдри- ческие слюды (А1) -? вермикулит-? гидрослюды -? монтмориллонит -? хлориты -? каолинит -? оксиды и гидрооксиды Fe и А1.

Важнейшим свойством глинистых минералов, определяющим их роль в процессах почвообразования и формировании физико-химических свойств почв, является высокая емкость катионного обмена

(табл. 2.7). Этот показатель на порядок выше по сравнению с первичными минералами.

Таблица 2.7

Емкость катионного обмена глинистых минералов_

Изоморфизм. При одинаковой структуре минералы имеют разный химический состав благодаря взаимным замещениям катионов в октаэдрических и тетраэдрических сетках. Изоморфизм характерен для минералов монтмориллонитовой группы - монтмориллонит, бей- деллит, нонтронит.

Политипия - явление, при котором состав и структура слоев не меняется, а происходит смещение, повороты слоев в пакете друг относительно друга. Политипия характерна для минералов каолинито- вой группы - каолинит, диккит, галлуазит.

Большинство глинистых минералов встречаются в виде очень тонкозернистых агрегатов, состоящих из чешуек реже волокон. Они выделяются в виде рыхлых, землистых, плотных опаловидных, аморфных воскоподобных агрегатов, а также чешуйчатых, волокнистых тонкозернистых масс натечной формы и в виде желваков.

Глины способны приобретать во влажном состоянии пластичность или подобие геля. После высыхания они сохраняют полученную форму и представляют собой плотные, каменистые землистые массы с шероховатой либо гладкой, блестящей поверхностью. Цвет белый или серовато-белый, однако за счет примесей других веществ и минералов окраска глин может быть различной. Чаще всего преобладают красные или бурые тона, обусловленные присутствием оксидов и гидрооксидов железа. Излом неровный, часто с матовым блеском. Спайность весьма совершенная или хорошая, но различима лишь под микроскопом. Твердость низкая, близка к 1, реже 2-2,5. Плотность растет с увеличением содержания железа и уменьшается с повышением содержания воды (1,8-1,9-3,0 г/см 3). Происхождение экзогенное, гипергенное (в зонах окисления рудных месторождений), редко эндогенное, низкотемпературное гидротермальное (гидрослюды и др.).

Глинистые вторичные минералы являются продуктом трансформации близких к ним по составу и структуре слоистых магматических силикатов.

При выветривании полевых шпатов (гранитов и близких к ним пород) образуются минералы группы каолинита; при выветривании железомагнезиальных силикатов (ультраосновных пород, вулканического стекла, туфов, пеплов) - монтмориллонит, нонтронит, сапонит. Продуктами разрушения гидрослюд и их гидратации являются вермикулит, гидрослюды и т.д.

Глинистые минералы - группа водных силикатов , слагающих основную массу глинистых отложений и большей части почв и определяющих их физико-химические, механические и др. свойства.

Глинистые минералы являются продуктом выветривания преимущественно алюмосиликатов и силикатов магматических и метаморфических горных пород на дневной поверхности. В процессе выветривания глинистые минералы испытывают стадийные преобразования структуры и химического состава в зависимости от изменения физико-химических условий среды выветривания и седиментации. Размеры частиц глинистых минералов в глинах большей частью не превышают 0,01 мм. По кристаллической структуре глинистые минералы относятся к слоистым или псевдослоистым силикатам.

Высокая удельная поверхность, изоморфные замещения , обилие сколов кристаллической решётки и нескомпенсированных зарядов придаёт глинистым минералам катионнообменную способность . Также они способны химически связывать воду.

В состав минералов входят слои, состоящие из кремнекислородных тетраэдров и алюмогидроксильных октаэдров , эти слои объединяются в элементарные пакеты, совокупность которых формирует частицу минерала. По набору слоёв в пакете различают несколько групп глинистых минералов:

    Группа каолинита (каолинит, галлуазит ) c пакетом, состоящим из одного слоя октаэдров и одного слоя тетраэдров. Пакеты прочно связаны между собой и плотно прилегают друг к другу, в результате чего молекулы воды и катионы металлов не могут входить в межпакетное пространство и минерал не набухает в воде, а также обладает низкой ёмкостью катионного обмена (ЕКО).

    Группа монтмориллонита или группа смектита (монтмориллонит, нонтронит , бейделит и др.) с трёхслойным пакетом вида тетраэдр-октаэдр-тетраэдр. Связь между пакетами слаба, туда проникает вода, из-за чего минерал сильно набухает. Отличается высокой ЕКО (до 80-120 мг-экв на 100 г.).

    Группа гидрослюд (гидробиотит , гидромусковит и др.) также с трёхслойным пакетом, но сильной связью между ними. Практически не поглощают воду и не набухают в ней. Отличаются высоким содержанием калия , поскольку его ионный радиус позволяет ему входить в пустоты структуры минерала.

    Группа хлорита с четырёхслойной набухающей структурой.

    Группа смешаннослойных минералов с чередованием пакетов различных типов. Носят названия вида иллит-монтмориллонит, вермикулит-хлорит и т. п., свойства сильно варьируют

3. Развитие химии почв в XVIII-XIX вв.

Начало систематических исследований химических свойств почвы и

составляющих ее веществ относится к XVIII в. Многие исследования

конца XVIII - начала XIX в. оказали решающее влияние на ход дальнейшего

развития науки. Главное значение имели исследования трех

важнейших проблем: 1) почвенного гумуса; 2) поглотительной способности

почв; 3) теории минерального питания растений.

В числе важнейших следует назвать работу Ф. Ахарда (1786), который

действием раствора щелочи на почву и на торф получил темно-

бурый раствор. Прибавление к щелочному экстракту серной кислоты

вызвало выпадение темного, почти черного, осадка. Это вещество позже

получило название гуминовой кислоты, а способ ее выделения, использованный

Ахардом, с некоторыми модификациями сохранился до

наших дней. Десятью годами позже Л. Вокелен выделил аналогичное

вещество из ствола старого вяза, из щелочного экстракта камеди, выделенной

старым вязом. Т. Томсон в 1807 г. назвал это вещество уль^

мином (от ulmus - вяз).

Постановка экспериментальных работ по выделению и анализу

специфических темноокрашенных органических веществ из почвы в той

или иной мере была связана с гумусовой теорией питания растений, которую

очень четко сформулировал шведский ученый И. Валлериус в

книге «Основы сельскохозяйственной химии» (1761). Он считал, что

главным питательным веществом для растений является гумус, тогда

как прочие составные части почвы только создают благоприятные условия

для поглощения гумуса растениями. Эту теорию сформулировал

и широко пропагандировал профессор Берлинского университета

А. Тэер (1752-1828), но после исследований Ж. Б. Буссенго во Франции

и Ю. Либиха в Германии возможность прямого усвоения растениями

сложных органических веществ почвы была практически отвергнута

агрохимиками, хотя в середине XX в. эта проблема вновь приобретает

дискуссионный характер. Исследования 60-70-х гг. XX в. с применением

гумусовых веществ, меченых 14С, подтвердили возможность

поступления высокомолекулярных гумусовых кислот в растения через

корневые системы, хотя размеры такого поступления и его реальная

роль в естественных или агробиоценозах остаются невыясненными.

Исследования Ахарда и его современников имели не только агрономическое,

но и самостоятельное почвенно-химическое значение. Уже с

начала XIX в. появляется целая серия экспериментальных исследований

своеобразных, не известных в то время, органических соединений -

гумусовых кислот, которые извлекали из почв или природных вод.

Подробные исследования состава, растворимости, взаимодействия

гумусовых кислот с солями и аммиаком были выполнены И. Дёберей-

нером (1822), К- Шпренгелем (1826), й. Я. Берцелиусом (1833), а в

период с 1840 до 1860 г. - Г. Мульдером и русским исследователем

Р. Германом. Одновременно делаются попытки получения искусственных

гуминовых кислот (Булле, Малагути и др.).

Следует подчеркнуть, что в XVIII и XIX вв. вопросы сельскохозяйственной

химии, и химии почв в частности, находились в центре внимания

многих великих химиков. В их числе был Й. Я- Берцелиус, детально

исследовавший свойства гумусовых кислот.

Йене Якоб Берцелиус (1779-1848), великий шведский ученый, был

одним из лучших химиков своего времени. Он был членом многих академий,

в том числе иностранным членом Петербургской Академии наук.

Берцелиус создал электрохимическую теорию химических соединений,

с высокой точностью определил атомные веса около 50 элементов, подтвердил

закон постоянных и кратных отношений, создал таблицу атомных

масс, открыл ряд новых элементов, разработал новые методы анализа

и оборудование для химических работ (промывалка, химические

стаканы и др.). Им была создана номенклатура, предложены символы

химических элементов и способы начертания химических формул, используемые

с небольшими изменениями и до настоящего времени. Для

химии почв наибольший интерес представляют его исследования минералов.

Берцелиус впервые ввел термин «силикаты» для кремнийсодер-

жащих минералов и установил, что соотношение окислов металлов и

кремния в силикатах различное и составляет 1:1, 1:2 и 1:3. Это позволило

разделить силикаты на три большие группы. Разработанный им

способ выражения состава минералов по числу входящих в них окислов

не утратил своего значения и теперь. Второе важнейшее для почвоведения

направление в работах Берцелиуса - изучение гумусовых

кислот. Из природных вод он выделил два новых вещества и предложил

для них названия «креновая» и «апокреновая» кислоты, а из разлагающейся

древесины выделил гуминовую кислоту. В «Учебнике химии

» (1839) Берцелиус отводит большой раздел химии гумусовых веществ.

Он рассматривает процессы превращения растительных остатков

в перегной, описывает свойства выделенных им гумусовых кислот

и их соединений с калием, натрием, аммонием, барием, кальцием, магнием,

глиноземом, марганцем, железом, свинцом, медью, ртутью, серебром.

В современных учебниках химии важнейшему классу природных

органических соединений - гумусовым кислотам -не уделяется, к сожалению,

практически никакого внимания.

Второй важнейший этап в развитии экспериментальной химии почв

связан с изучением явления катионообменной способности почв. Английский

фермер Г. С. Томпсон установил, что если промывать колонку

с почвой, к которой предварительно добавлен (NH4)S04, водой, то в

вытекающем из колонки растворе появляется CaS04. Результаты опытов

своих опытах химику Королевского сельскохозяйственного общества

Дж. Т. Уэю, который немедленно развернул экспериментальные исследования

сделал следующие важнейшие выводы.

1. Катионы Na+, K+, NH4+, добавленные к почве в виде солей сильных

кислот, поглощаются почвой, и вместо них в растворе появляются

эквивалентные количества кальциевых солей, т. е. происходит реакция,

описываемая уравнением:

почва+2КС1-»-К2-почва + СаС12.

2. Катионы в виде гидроксидов или карбонатов поглощаются почвой

полностью без вытеснения из почвы кальция или анионов.

3. Кальциевые соли сильных кислот (нитраты, хлориды и сульфаты)

почвой не поглощаются.

4. Поглощение катионов осуществляется глинистыми частицами

почвы, тогда как песок и органическое вещество не играют существенной

5. Нагревание почвы или обработка ее кислотой нарушают способность

почвы поглощать катионы.

6. Поглощение происходит очень быстро, практически мгновенно.

7. Увеличение концентрации добавленной соли повышает количество

поглощенных почвой катионов.

8. Поглощение катионов происходит необратимо.

9. Почвы способны поглощать фосфаты.

Далеко не все выводы Уэя были впоследствии подтверждены; явно

ошибочным было заключение о роли органического вещества, о неспособности

почвы поглощать кальций. В реакциях обмена, очевидно,

участвовали ионы водорода, что могло создать впечатление о полном

поглощении карбонатов и гидроксидов без сопутствующей обменной

реакции. Несмотря на это, основные положения остаются справедливыми

и в наши дни, а выполненные Томпсоном и Уэем эксперименты послужили

отправной точкой для развития нового научного направления,

которое в настоящее время представлено не только учением о поглоти-

тельной способности почвы, но и широким применением в различных

отраслях науки и производства методов и технологических процессов с

применением ионообменников. Значение работ Уэя для последующего

развития науки оказалось столь большим, что профессор университета

штата Кентукки (США) Г. Томас назвал его «отцом химии почв».

Открытие ионного обмена в почвах не сразу и далеко не полностью

было оценено современниками. Даже такой опытный и эрудированный

химик, как Ю. Либих, отказался признать эксперименты правильными,

а затем потребовалось около 30 лет для того, чтобы сделать новый шаг

в изучении закономерностей обмена. Только в период 1877-1888 гг.

Ван Беммелен показал, что и другие катионы, кроме Са2+, могут быть

вытеснены из почв растворами солей.

Якоб-Мартен ван Беммелен (1830-1911) - знаменитый голландский

химик, один из основателей учения об адсорбции. Он провел обширные

исследования химии природных тел, изучал почвы и природные

воды. Особое значение в формировании поглотительной способности

почв Беммелен придавал физическому состоянию почвенного мелкозема,

опираясь на свойства коллоидных систем вообще. В почвах, по

его мнению, содержатся коллоидные аморфные вещества, которые дают

соединения переменного состава, не подчиняющиеся стехиометрическим

законам. Такого рода соединения он назвал «адсорбционными соединениями

». В качестве конкретных носителей поглотительной способности

почв Беммелен указывал на цеолитоподобные силикаты, коллоидную

кремнекислоту, гидроокиси железа, гумус, остатки организмов.

К началу XIX в. относится и развитие представлений о кислотно-

основных свойствах почв. В 1813 г. вышла книга крупнейшего английского

химика Гемфри Дэви (1778-1829), впоследствии президента

Лондонского Королевского общества, «Основы сельскохозяйственной химии

». В этой книге подчеркивалась особая роль извести, которая, по

Дэви, растворяет твердый растительный материал и тем самым улучшает

условия питания растений и способствует созданию хорошей

структуры почвы. Он предложил метод определения карбоната кальция

в почве путем обработки почвы кислотой и последующего определения

в кислотной вытяжке кальция (методом осаждения) или по объему выделившейся

двуокиси углерода. Американский исследователь Э. Руф-

фин попытался применить метод Дэви к американским почвам и в результате

специальных опытов пришел к выводу, что задача известкования

заключается в нейтрализации почвенной кислотности. Книга

Руффина «Этюды об известковых удобрениях» вышла в 1832 г., но только

к началу XX в. были продолжены исследования почвенной кислотности.

Развитие третьего направления в химии почв - теории минерального

питания растений - связано с именем Ю. Либиха. Юстус фон Либих

(1803-1873) сыграл очень большую роль в развитии теоретической

и экспериментальной химии почв. Интересы Либиха были весьма

разносторонними; его часто относят к специалистам в области органической

химии, и считается, что его вклад в развитие органической химии

сравним лишь со значением работ Берцелиуса в неорганической химии.

Вместе с тем трудно переоценить значение его работ для развития

физиологической химии, биохимии и агрохимии. Либих провел многочисленные

анализы растений и опыты по влиянию калийных и фосфатных

солей на развитие культурных растений на песчаной почве.

В книге «Органическая химия в приложении к земледелию и физиологии» 1840 он показал, что растения нуждаются не только в углероде,

кислороде, водороде и азоте, но также в фосфоре, калии, кальции, сере,

магнии, железе и даже кремнии. Изучая вопросы агрохимии, Либих не

ограничился только решением теоретических вопросов, но на основе

расплавов карбоната калия и натрия приготовил искусственное удобрение.

Первые фабричные удобрения, правда, оказались не эффективными.

Было бы неверно, однако, сводить значение трудов Либиха в области

агрономической химии только к проблеме минерального питания

растений и внесения удобрений. Работы Либиха повлияли на последующее

развитие проблем доступности элементов минерального питания

растениям, их подвижности в почвах и, как следствие, проблемы химических

равновесий минеральных компонентов в системе почва - почвенный