Что такое волновая функция. Принцип суперпозиции квантовых состояний. Философский смысл волновой функции

Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантово-механической системы. Её знание позволяет получить полные сведения о системе микромира. Так с её помощью можно рассчитать все измеряемые физические характерис-тики системы, вероятность пребыва-ния её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.

Величина |ψ(x,y,z,t)| 2 dV пропорциональна вероятности того, что частица будет обнаружена в момент времени t в объеме dV в окрестности точки (x,y,z).

Квадрат модуля волновой функции определяет вероятность того, что частица будет обнаружена в пределах объема dV:dP=(|Y|^2) 2 dV=YY * dV.

где Y * - комплексно - сопряженная волновая функция.

Величина (|Y|^2)=YY * = dP/ dV - имеет смысл плотности вероятности.

Интеграл, взятый по всему пространству, должен равняться единице (вероятность достоверного события Р=1 ). – условие нормировки: обнаружение частицы во всем пространстве является достоверным событием, вероятность которого равна единице.

19. Уравнение Шрёдингера и его применение к свободному электрону.

Ψволновая функция.

i = - мнимая единица; m - - масса частицы; ∆ − оператор Лапласа, который в декартовой системе имеет вид = , U(x,y,z,t ) – потенциальная энергия частицы во внешнем силовом поле в точке с координатами (x,y,z ).

Для описания поведения электрона в атоме, в ряде случаев важно уметь находить стационарные решения уравнения Шредингера, не содержащие времени. Для решения этой задачи нужно получить так называемое стационарное уравнение Шредингера, в котором исключена зависимость Ψ от времени.

Уравнение Шрёд. для стационарных состояний.

Поле стационарно, когда его характеристики не зависят от времени, например, для состояний с фиксированными значениями энергии.

Другая запись.

Для свободного электрона:

20. Применение уравнения Шрёдингера к электрону в потенциальной яме.

Ур-иеШрёд.:

Частица не проникает за пределы ямы, поэтому вероятность ее обнаружения за пределами ямы равна нулю. На границах ямы волновая функция также должна обращаться в нуль. Следовательно, граничные условия в таком случае имеют вид:

В пределах ямы уравнение Шредингера 0

Общее решение дифференциального уравнения:

Т.к. B = 0 (из ), то

Ур-ие: выполняется только при kl = nπ. Т.е. необходимо, чтобы: .

Получается, что энергия зависит от n:

Т.е. стационарное уравнение Шредингера, описывающее движение частицы в потенциальной яме с бесконечно высокими стенками, удовлетворяется только при собственных значениях En, зависящих от целого числа n. Следовательно, энергия En частицы в потенциальной яме с бесконечно высокими стенками принимает лишь определенные дискретные значения , т.е. квантуется. Квантовые значения энергии En называются уровнями энергии , а число п, определяющее энергетические уровни – главным квантовым числом .

Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими стенками может находиться только на определенном энергетическом уровне En, или, как говорят, частица находится в квантовом состоянии п.

Применение уравнения Шредингера к частице в потенциальной яме с бесконечно высокими стенками приводит к квантовым значениям энергии и координат, в то время как классическая механика на энергию этой частицы лишних ограничений не накладывает.

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 855 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…
или пси-функция – Основной математический объект квантовой механики при ее формулировке, как волновой механики.
В простейшем случае это комплексная квадратично интегрируема функция координат и времени, ассоциированная с определенным физическим объектом, например, с элементарными частицами, либо с физическим системой. Описание квантовой системы с помощью функции, которая бы описывала ее волновые свойства предложил Эрвин Шредингер.
Борн Макс интерпретировал волновую функцию, как амплитуду вероятности. В этой интерпретации квадрат модуля волновой функции соответствует плотности вероятности положения частицы. Таким образом, вероятность того, что частица находится в области пространства W в момент времени t определяется как

А – Функция, комплексно сопряженная с

При интегрировании по всему пространству это выражение, как вероятность вполне определенного события, должен давать единицу:

Это условие называется условия нормировки пси-функции.
Физическая величина, которая может определяться в эксперименте, в квантовой механике задается определенным эрмитовых операторов. Зная волновую функцию можно определить среднее значение такой величины с помощью правила

,

Где – Это квантовомеханический оператор.
Для описания элементарных частиц, которые могут иметь отличный от нуля спин, однокомпонентной, скалярной, волновой функции недостаточно. Движение таких частиц задается совокупностью из нескольких волновых функции, которая имеет широкую название: вектор состояния.

Например, электрон со спином 1 / 2 описывается совокупностью четырех волновых функций.
Несмотря на слово «вектор», вектор состояния не является настоящим вектором в пространстве. Здесь этот термин употребляется скорее в смысле вектора линейной алгебры. По пространственных свойств, то при вращении системы координат, вектор состояния в целом может иметь особые свойства. Например, вектор состояния для электрона Спинор.
Обычно совокупность нескольких волновых функций, входящих в состав вектора состояния, тоже называют волновой функцией.
Волновая функция обозначена с точностью до произвольного множителя в форме e i ?, где? – любое действительное число. Подстановка функции

Не меняет средних значений наблюдаемых физических величин.
Волновая функция системы многих частиц
Волновая функция квантовой системы, состоящей из нескольких частиц, зависит от координат всех частиц. Например, для двух частиц . При определении средних значений наблюдаемых величин интегрирование проводится по всему конфигурацийноми пространстве. Например, для двух частиц

В случае тождественности частиц, на волновую функцию накладывается дополнительное условие, связанное с инвариантностью относительно перестановок этих частиц, согласно принципу Тождественные. Квантовые частицы делятся на два класса – фермионы и бозоны. Для фермионов

Есть волновая функция меняет знак при перестановке частиц. Такое фунции называют антисимметричной относительно перестановок. Для бозонов

Т.е. при перестановке частиц волновая функция остается неизменной. Такую функцию называют симметричной относительно перестановок.

  • 5. Принцип Гюйгенса-Френеля. Зоны Френеля. Прямолинейное распространение света. Принцип гюйгенса-френеля
  • Метод зон френеля
  • 7.Дифракция в паралллных лучах.Дифракция от одной щели.Условия максимумов и минимумов
  • §5 Дифракционная решетка.
  • 8.Дифракционная решетка.Дифракционные спектры.Условия главных максимумов
  • 9.Пространственная решетка. Формула Вульфа Брегга.Исследования структуры кристаллов. Оптически однородная среда.
  • 15.Дисперсия света.Спектры.Электронная теория дисперсии света.
  • 2. Электронная теория дисперсии света
  • 13.Двойное лучепреломление.Построения Гюйгенса для одноосных кристаллов.
  • 14.Давление света.Опыты Лебедева.Классическое и квантовое объяснение давления..
  • 16.Тепловое излучение.Испускательная и поглощательная способности.Абсолютно черное тело.Законкиргофа.
  • 22 Формулы де Бройля. Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Дифракция электронов.
  • 23 Излучение Вавилова-Черенкова.
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  • 25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.
  • 26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.
  • 27 Туннельный эффект. Линейный гармонический осциллятор.
  • 28 Основное состояние атома водорода по Шредингеру. Энергия основного cостояния. Размеры атома водорода.
  • 29.Постулаты Бора. Теория атома водорода по Бору. Недостатки теории Бора.
  • 30.Спектр атома водорода и его объяснение. Спектральные закономерности Ридберга
  • 31.Атом водорода в квантовой механике. Главное, орбитальное и магнитное поле.
  • 32.Спин электрона. Спиновое квантовое число. Опыт Штерна и Герлаха.
  • 33.Поглощение свет. Спонтанное и вынужденное испускание излучения. Инверсная населенность. Усиливающая среда
  • 34.Оптические квантовые генераторы(лазеры). Метастабильный уровень. Особенности лазерного излучения.
  • §2 Трехуровневая схема
  • 35.Лазеры. Усиливающая среда. Порог генерации лазерного излучения.
  • 36 Цепная реакция деления.Критическиеразмеры.Коэффициент размножения нейтронов.Мгновенные и запаздывающие нейтроны.
  • 37 Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева.
  • 40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения
  • 41 Ядерные реакции и законы сохранения.Эффективное поперечное сечение.
  • 46. Понятие о ядерной энергетике. Ядерные реакторы. Понятие трансурановых элементов
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.

    Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

    Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

    Где Лапласа, который можно

    расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

    В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

    1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

    Сопряженные функции.

    2) Плотность вероятностей нахождения частицы в единице объема:

    3) Волновая функция должна удовлетворять условию:

    где 3 интеграла расчитываются по всему объему, где может находится частица.

    Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

    25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

    Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

    т.к. зависит только от времени, то разделим наполучим:

    Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

    Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

    Рассмотрим левую часть уравнения Шредингера: ;;

    разделим переменные , проинтегрируем полученное уравнение:

    воспользуясь математическими преобразованиями:

    В этом случае вероятность нахождения частицы можно определить:

    Либо после преобразований:

    –данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

    Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

    Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

    Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

    26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

    Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

    Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

    При таком условии частица не проникает за пределы "ямы", т.е.

    y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

    илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

    n-главное квантовое число n=1,2,3…

    Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

    состояние с min энергией называется основным, все остальные возбужденные.

    Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

    Графически изобразим

    Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

    Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

    Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

    В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

    Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

    Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия