В каком году родился александр невский. Характеристика Александра Невского: краткая биография. Татарская перепись в Новгороде

Cтраница 1


Сущность второго начала термодинамики до известной степени содержится в фактах, описанных в двух предыдущих параграфах. Очевидно, что они основаны не на отвлеченных представлениях или теоретических выводах, а на результатах непосредственного опыта. Задача заключается в том, чтобы их обобщить и сделать из такого обобщения возможно далеко идущие выводы.  

Сущность второго начала термодинамики и заключается в том, что оно формулирует те условия, в которых происходят превращения энергии в механическую. Второе начало термодинамики имеет смысл только в ограниченной области. Все выводы термодинамики, так же как и все ее основные понятия (теплообмен, температура), имеют смысл только при рассмотрении определенной области явлений.  

Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Из невозможности одного процесса - процесса некомпенсированного перехода тепла в работу - вытекает невозможность бесчисленного множества процессов; невозможны все те процессы, составной частью которых должен был бы явиться некомпенсированный переход тепла в работу.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще велико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще делико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Известно, что в педагогическом отношении строгое изложение сущности второго начала термодинамики и ближайших следствий его - дело, далеко не легкое. Этих трудностей в изложении второго начала не существовало бы, если бы второе начало определяло, как это иногда думают, превращаемость одного вида энергии в другой. В действительности второе начало определенным образом ограничивает превращение одной формы передачи энергии - тепла - в другую форму передачи энергии - в работу.  

Несколько позже мы покажем, что в представлении об энтропии отражена сущность второго начала термодинамики, подобно тому как в представлении о внутренней энергии отражена сущность первого начала.  

Рассмотренными здесь представлениями о двух видах закономерности мы будем руководствоваться далее при изучении всей статистической физики, а также, в частности, при выяснении сущности второго начала термодинамики, которое, как будет показано, является статистическим законом. Соотношение между статистической физикой и обычной термодинамикой основано на принятии статистической закономерности.  

Работы Карно способствовали установлению принципа, позволившего определить наибольший возможный КПД тепловой машины. Сущность второго начала термодинамики, по Клаузиусу, заключается в том, что теплота не может сама по себе перейти от более холодного тела к более теплому.  

Процессы обратимые и необратимые. Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Под компенсацией здесь надлежит разуметь изменение термодинамического состояния какого-либо тела или нескольких тел; при этом неизбежное изменение состояния (охлаждение) теплоотдающего тела не принимается в расчет.  

Полное понимание сущности второго начала термодинамики и вместе с этим решение проблемы тепловой смерти пришло на пути глубокого проникновения в сущность понятия теплоты, на пути уточнения основ и развития молекуля-рно-кинетической теории.  

Итак, если бы мы захотели отнять теплоту у более холодного тела и передать ее более нагре тому, то должны были бы затратить на это некоторую дополнительную энергию. Это положение составляет сущность второго начала термодинамики, которое формулируется так: невозможен самопроизвольный переход теплоты от более холодного тела к телу более теплому.  

Особо важную роль играет в термодинамике понятие о так называемой абсолютной температуре. Это понятие-тесно связано с сущностью второго начала термодинамики.  

Следовательно, всегда (при каком угодно числе аргументов) уравнение для элемента тепла голономно. При желании можно считать, что сущность второго начала термодинамики как раз и заключается в том, что между коэффициентами уравнения для элемента теплоты всегда имеется соотношение, обеспечивающее голономность этого уравнения.  

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822 - 1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.  

Природным процессам свойственна направленность и необратимость, однако в большинстве законов, описанных в этой книге, это не находит отражения — по крайней мере, явного. Разбить яйца и сделать яичницу не сложно, воссоздать же сырые яйца из готовой яичницы — невозможно. Запах из открытого флакона духов наполняет комнату — однако обратно во флакон его не соберешь. И причина такой необратимости процессов, происходящих во Вселенной, кроется во втором начале термодинамики, который, при всей его кажущейся простоте, является одним из самых трудных и часто неверно понимаемых законов классической физики.

Прежде всего, у этого закона имеется как минимум три равноправные формулировки, предложенные в разные годы физиками разных поколений. Может показаться, что между ними нет ничего общего, однако все они логически эквивалентны между собой. Из любой формулировки второго начала математически выводятся две другие.

Начнем с первой формулировки, принадлежащей немецкому физику Рудольфу Клаузиусу (см. Уравнение Клапейрона—Клаузиуса). Вот простая и наглядная иллюстрация этой формулировки: берем из холодильника кубик льда и кладем его в раковину. По прошествии некоторого времени кубик льда растает, потому что теплота от более теплого тела (воздуха) передастся более холодному (кубику льда). С точки зрения закона сохранения энергии, нет причин для того, чтобы тепловая энергия передавалась именно в таком направлении: даже если бы лед становился всё холоднее, а воздух всё теплее, закон сохранения энергии всё равно бы выполнялся. Тот факт, что этого не происходит, как раз и свидетельствует об уже упоминавшейся направленности физических процессов.

Почему именно так взаимодействуют лед и воздух, мы можем легко объяснить, рассматривая это взаимодействие на молекулярном уровне. Из молекулярно-кинетической теории мы знаем, что температура отражает скорость движения молекул тела — чем быстрее они движутся,тем выше температура тела. Значит, молекулы воздуха движутся быстрее молекул воды в кубике льда. При соударении молекулы воздуха с молекулой воды на поверхности льда, как подсказывает нам опыт, быстрые молекулы, в среднем, замедляются, а медленные ускоряются. Таким образом, молекулы воды начинают двигаться всё быстрее, или, что то же самое, температура льда повышается. Именно это мы имеем в виду, когда говорим, что тепло передается от воздуха ко льду. И в рамках этой модели первая формулировка второго начала термодинамики логически вытекает из поведения молекул.

При перемещении какого-либо тела на какое-либо расстояние под действием определенной силы совершается работа, и различные формы энергии как раз и выражают способность системы произвести определенную работу. Поскольку теплота, отражающая кинетическую энергию молекул, представляет собой одну из форм энергии, она тоже может быть преобразована в работу. Но опять мы имеем дело с направленным процессом. Перевести работу в теплоту можно со стопроцентной эффективностью — вы делаете это каждый раз, когда нажимаете на педаль тормоза в своем автомобиле: вся кинетическая энергия движения вашего автомобиля плюс затраченная вами энергия силы нажатия на педаль через работу вашей ноги и гидравлической системы тормозов полностью превращается в теплоту, выделяющуюся в процессе трения колодок о тормозные диски. Вторая формулировка второго начала термодинамики утверждает, что обратный процесс невозможен. Сколько ни пытайтесь всю тепловую энергию превратить в работу — тепловые потери в окружающую среду неизбежны.

Проиллюстрировать вторую формулировку в действии несложно. Представьте себе цилиндр двигателя внутреннего сгорания вашего автомобиля. В него впрыскивается высокооктановая топливная смесь, которая сжимается поршнем до высокого давления, после чего она воспламеняется в малом зазоре между головкой блока цилиндров и плотно пригнанным к стенкам цилиндра свободно ходящим поршнем. При взрывном сгорании смеси выделяется значительное количество теплоты в виде раскаленных и расширяющихся продуктов сгорания, давление которых толкает поршень вниз. В идеальном мире мы могли бы достичь КПД использования выделившейся тепловой энергии на уровне 100%, полностью переведя ее в механическую работу поршня.

В реальном мире никто и никогда не соберет такого идеального двигателя по двум причинам. Во-первых, стенки цилиндра неизбежно нагреваются в результате горения рабочей смеси, часть теплоты теряется вхолостую и отводится через систему охлаждения в окружающую среду. Во-вторых, часть работы неизбежно уходит на преодоление силы трения, в результате чего, опять же, нагреваются стенки цилиндров — еще одна тепловая потеря (даже при самом хорошем моторном масле). В-третьих, цилиндру нужно вернуться к исходной точке сжатия, а это также работа по преодолению трения с выделением теплоты, затраченная вхолостую. В итоге мы имеем то, что имеем, а именно: самые совершенные тепловые двигатели работают с КПД не более 50%.

Такая трактовка второго начала термодинамики заложена в принципе Карно , который назван так в честь французского военного инженера Сади Карно. Она сформулирована раньше других и оказала огромное влияние на развитие инженерной техники на многие поколения вперед, хотя и носит прикладной характер. Огромное значение она приобретает с точки зрения современной энергетики — важнейшей отрасли любой национальной экономики. Сегодня, сталкиваясь с дефицитом топливных ресурсов, человечество, тем не менее, вынуждено мириться с тем, что КПД, например, ТЭЦ, работающих на угле или мазуте, не превышает 30-35% — то есть, две трети топлива сжигается впустую, точнее расходуется на подогрев атмосферы — и это перед лицом угрозы глобального потепления. Вот почему современные ТЭЦ легко узнать по колоссальным башням-градирням — именно в них остужается вода, охлаждающая турбины электрогенераторов, и избытки тепловой энергии выбрасываются в окружающую среду. И столь низкая эффективность использования ресурсов — не вина, а беда современных инженеров-конструкторов: они и без того выжимают близко к максимуму того, что позволяет цикл Карно. Те же, кто заявляет, что нашел решение, позволяющее резко сократить тепловые потери энергии (например, сконструировал вечный двигатель), утверждают тем самым, что они перехитрили второе начало термодинамики. С тем же успехом они могли бы утверждать, что знают, как сделать так, чтобы кубик льда в раковине не таял при комнатной температуре, а, наоборот, еще больше охлаждался, нагревая при этом воздух.

Третья формулировка второго начала термодинамики, приписываемая обычно австрийскому физику Людвигу Больцману (см. Постоянная Больцмана), пожалуй, наиболее известна. Энтропия — это показатель неупорядоченности системы. Чем выше энтропия — тем хаотичнее движение материальных частиц, составляющих систему. Больцману удалось разработать формулу для прямого математического описания степени упорядоченности системы. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед — в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится. И снова мы видим пример необратимого природного физического явления.

Тут важно понимать, что речь не идет о том, что в этой формулировке второе начало термодинамики провозглашает, что энтропия не может снижаться нигде и никогда. В конце концов, растопленный лед можно поместить обратно в морозильную камеру и снова заморозить. Смысл в том, что энтропия не может уменьшаться в замкнутых системах — то есть, в системах, не получающих внешней энергетической подпитки. Работающий холодильник не является изолированной замкнутой системой, поскольку он подключен к сети электропитания и получает энергию извне — в конечном счете, от электростанций, ее производящих. В данном случае замкнутой системой будет холодильник, плюс проводка, плюс местная трансформаторная подстанция, плюс единая сеть энергоснабжения, плюс электростанции. И поскольку рост энтропии в результате беспорядочного испарения из градирен электростанции многократно превышает снижение энтропии за счет кристаллизации льда в вашем холодильнике, второе начало термодинамики ни в коей мере не нарушается.

А это, я полагаю, приводит еще к одной формулировке второго начала: Холодильник не работает, если он не включен в розетку.

Второе начало термодинамики

Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса второе начало термодинамики можно сформулировать какзакон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в про­цессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (57.8) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процес­сах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статисти­ческое толкование второго начала термодинамики. Оно, являясь статистическим зако­ном, описывает закономерности хаотического движения большого числа частиц, со­ставляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1)по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2)по Клаузиусу: невозможен круговой процесс, единственным результатом которо­го является передача теплоты от менее нагретого тела к более нагретому.

В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной . Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся - наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.

Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q , полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты .

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

(57.3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде неравенства Клаузиуса

(57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2 , то, согласно (57.2), изменение энтропии

(57.6)

где подынтегральное выражение и пределы интегрирования определяются через вели­чины, характеризующие исследуемый процесс. Формула (57.6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий.

Исходя из выражения (57.6), найдем изменение энтропии в процессах идеального газа. Taк как то

(57.7)

т. е. изменение энтропии DS 1 ® 2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1 ®2.

Таккак для адиабатического процесса dQ = 0, то DS = 0 и, следовательно, S= const,т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называютизоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T 1 = T 2)

при изохорном процессе (V 1 = V 2)

Энтропия обладает свойством аддитивности : энтропия системы равна сумме энт­ропий тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние (по определению, 1, т. е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя £ 1!)).

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

(57.8)

где k - постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (57.8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядо­ченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия - наиболее вероятного состояния системы - число микросостояний максимально, при этом мак­симальна и энтропия.

Таккак реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии -принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор пока вероятность состояния не станет максимальной.



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Второе начало термодинамики определяет направленность реальных тепловых процессов, протекающих с конечной скоростью.

Второе начало (второй закон) термодинамики имеет несколько формулировок . Например, любое действие , связанное с преобразованием энергии (то есть с переходом энергии из одной формы в другую), не может происходить без ее потери в виде тепла, рассеянного в окружающей среде . В более общем виде это означает, что процессы трансформации (превращения) энергии могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной (упорядоченной) формы в рассеянную (неупорядоченную) форму.

Еще одно определение второго закона термодинамики непосредственно связано с принципом Клаузиуса : процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, то есть теплота не может переходить самопроизвольно от более холодного тела к более горячему. При этом такое перераспределение энергии в системе характеризуется величиной , получившей название энтропии , которая как функция состояния термодинамической системы (функция, имеющая полный дифференциал), была впервые введена в 1865 году именно Клаузиусом. Энтропия – это мера необратимого рассеяния энергии. Энтропия тем больше, чем большее количество энергии необратимо рассеивается в виде тепла.

Таким образом, уже из этих формулировок второго закона термодинамики можно сделать вывод, что любая система , свойства которой изменяются во времени, стремится к равновесному состоянию, в котором энтропия системы принимает максимальное значение . В связи с этим второй закон термодинамики часто называют законом возрастания энтропии , а саму энтропию (как физическую величину или как физическое понятие) рассматривают в качестве меры внутренней неупорядоченности физико-химической системы .

Другими словами, энтропия функция состояния, характеризующая направление протекания самопроизвольных процессов в замкнутой термодинамической системе. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе невозможны. Максимальная энтропия соответствует полному хаосу .

Чаще всего переход системы из одного состояния в другое характеризуют не абсолютной величиной энтропии S , а ее изменением ∆S , которое равно отношению изменения количества теплоты (сообщенного системе или отведенного от нее) к абсолютной температуре системы: ∆S = Q/T, Дж/град. Это – так называемая термодинамическая энтропия .

Кроме того, энтропия имеет и статистический смысл. При переходе из одного макросостояния в другое статистическая энтропия также возрастает, так как такой переход всегда сопровождается большим числом микросостояний, а равновесное состояние (к которому стремится система) характеризуется максимальным числом микросостояний.

В связи с понятием энтропии в термодинамике новый смысл приобретает понятие времени. В классической механике направление времени не учитывается и состояние механической системы можно определить как в прошлом, так и в будущем. В термодинамике время выступает в форме необратимого процесса возрастания энтропии в системе. То есть чем больше энтропия, тем больший временной отрезок прошла система в своем развитии.

Кроме того, для понимания физического смысла энтропии необходимо иметь в виду, что в природе существует четыре класса термодинамических систем :

а) изолированные системы или замкнутые (при переходе таких систем из одного состояния в другое не происходит переноса энергии, вещества и информации через границы системы);

б) адиабатические системы (отсутствует только теплообмен с окружающей средой);

в) закрытые системы (обмениваются с соседними системами энергией, но не веществом) (например, космический корабль);

г) открытые системы (обмениваются с окружающей средой веществом, энергией и информацией). В этих системах за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией.

Для открытых систем энтропия уменьшается . Последнее прежде всего касается биологических систем , то есть живых организмов, которые представляют собой открытые неравновесные системы . Такие системы характеризуются градиентами концентрации химических веществ, температуры, давлений и других физико-химических величин. Использование концепций современной, то есть неравновесной термодинамики, позволяет описать поведение открытых, то есть реальных систем. Такие системы всегда обмениваются с окружающей их средой энергией, веществом и информацией. Причем такие обменные процессы характерны не только для физических или биологических систем, но и для социально-экономических, культурно-исторических и гуманитарных систем, так как происходящие в них процессы, как правило, необратимы.

Третье начало термодинамики (третий закон термодинамики) связано с понятием«абсолютный нуль». Физический смысл этого закона, показанный в тепловой теореме В. Нернста (немецкого физика), состоит в принципиальной невозможности достижения абсолютного нуля (-273,16ºС), при котором должно прекратиться поступательное тепловое движение молекул, а энтропия перестанет зависеть от параметров физического состояния системы (в частности, от изменения тепловой энергии). Теорема Нернста относится только к термодинамически равновесным состояниям систем.

Другими словами, теореме Нернста можно дать следующую формулировку : при приближении к абсолютному нулю приращение энтропии S стремится к вполне определенному конечному пределу, не зависящему от значений, которые принимают все параметры, характеризующие состояние системы (например, от объема, давления, агрегатного состояния и пр.).

Понять суть теоремы Нернста можно на следующем примере. При уменьшении температуры газа будет происходить его конденсация и энтропия системы будет убывать, так как молекулы размещаются более упорядоченно. При дальнейшем уменьшении температуры будет происходить кристаллизация жидкости, сопровождающаяся большей упорядоченностью расположения молекул и, следовательно, еще большим убыванием энтропии. При абсолютном нуле температуры всякое тепловое движение прекращается, неупорядоченность исчезает, число возможных микросостояний уменьшается до одного и энтропия приближается к нулю.

4.Понятие самоорганизации. Самоорганизация в открытых системах.

Понятие “синергетика” было предложено в 1973 году немецким физиком Германом Хакеном для обозначения направления , призванного исследовать общие законы самоорганизации – феномена согласованного действия элементов сложной системы без управляющего действия извне. Синергетика (в переводе с греч. – совместный, согласованный, содействующий) – научное направление изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических, геолого-географических и др.) благодаря интенсивному (потоковому) обмену веществом, энергией и информацией с окружающей средой в неравновесных условиях . В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности (уменьшается энтропия), то есть развивается процесс самоорганизации.

Равновесие есть состояние покоя и симметрии , а асимметрия приводит к движению и неравновесному состоянию .

Значительный вклад в теорию самоорганизации систем внес бельгийский физик российского происхождения И.Р. Пригожин (1917-2003). Он показал, что в диссипативных системах (системах, в которых имеет место рассеяние энтропии) в ходе необратимых неравновесных процессов возникают упорядоченные образования, которые были названы им диссипативными структурами.

Самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим. Система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы “сбрасывает” ее избыток, возрастающий за счет внутренних процессов, в окружающую среду.

Возникающая из хаоса упорядоченная структура (аттрактор , или диссипативная структура) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В резльтате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры.

Синергетика опирается на термодинамику неравновесных процессов, теорию случайных процессов, теорию нелинейных колебаний и волн.

Синергетика рассматривает возникновение и развитие систем . Различают три вида систем : 1) замкнутые, которые не обмениваются с соседними системами (или с окружающей средой) ни веществом, ни энергией, ни информацией; 2) закрытые , которые обмениваются с соседними системами энергией, но не веществом (например, космический корабль); 3) открытые, которые обмениваются с соседними системами и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние делят на прямы и обратные. Прямой называют такую связь , при которой один элемент (А ) действует на другой (В ) без ответной реакции. При обратной связи элемент В отвечает на действие элемента А. Обратные связи бывают положительными и отрицательными.

Обратная положительная связь ведет к усилению процесса в одном направлении. Пример ее действия – заболачивание территории (например, после вырубки леса). Процесс начинает действовать в одном направлении : увеличение увлажнения – обеднение кислородом – замедление разложения растительных остатков – накопление торфа – дальнейшее усиление заболачивания.

Обратная отрицательная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противоположная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динамического равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем.

Важным свойством систем является эмерджентность (в переводе с англ. - возникновение, появление нового). Это свойство заключается в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов, а взаимосвязи различных звеньев системы обусловливают ее новое качество.

В основе синенергетического подхода к рассмотрению систем лежат три понятия : неравновесность, открытость и нелинейность .

Неравновесность (неустойчивость) состояние системы , при котором происходит изменение ее макроскопических параметров, то есть состава, структуры, поведения.

Открытость – способность системы постоянно обмениваться веществом, энергией, информацией с окружающей средой и обладать как “источниками” - зонами подпитки энергией из окружающей среды, так и зонами рассеяния, “стока”.

Нелинейность – свойство системы пребывать в различных стационарных состояниях, соответствующих различным допустимым законам поведения этой системы.

В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости. В нелинейных системах процессы могут носить резко пороговый характер , когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.