Основное состояние углерода. Физические и химические свойства углерода

Углерод в периодической системе элементов располагается во втором периоде в группе IVA. Электронная конфигурация атома углерода ls 2 2s 2 2p 2 . При его возбуждении легко достига­ется электронное состояние, при котором на четырех внешних атомных орбиталях находятся четыре неспаренных электрона:

Это объясняет, почему углерод в соединениях обычно четы­рехвалентен. Равенство в атоме углерода числа валентных элек­тронов числу валентных орбиталей, а также уникальное соотношение заряда ядра и радиуса атома сообщают ему способность одинаково легко присоединять и отдавать электроны в зависимо­сти от свойств партнера (разд. 9.3.1). Вследствие этого для углерода характерны различные степени окисления от -4 до +4 и легкость гибридизации его атомных орбиталей по типу sp 3 , sp 2 и sp 1 при образовании химических связей (разд. 2.1.3):

Все это дает углероду возможность образовывать ординарные, двойные и тройные связи не только между собой, но и с ато­мами других элементов-органогенов. Молекулы, образующиеся при этом, могут иметь линейное, разветвленное и циклическое строение.

Вследствие подвижности общих электронов -МО, образован­ных с участием атомов углерода, происходит их смещение в сто­рону атома более электроотрицательного элемента (индуктивный эффект), что приводит к полярности не только этой связи, но и молекулы в целом. Однако углерод, благодаря среднему значению электроотрицательности (0Э0 = 2,5), образует с атомами других элементов-органогенов слабополярные связи (табл. 12.1). При наличии в молекулах систем сопряженных связей (разд. 2.1.3) происходит делокализация подвижных электронов -МО и неподеленных электронных пар с выравниванием электронной плот­ности и длин связей в этих системах.

С позиции реакционной способности соединений большую роль играет поляризуемость связей (разд. 2.1.3). Чем больше поляризуемость связи, тем выше ее реакционная способность. Зависимость поляризуемости углеродсодержащих связей от их природы отражает следующий ряд:

Все рассмотренные данные о свойствах углеродсодержащих связей свидетельствуют о том, что углерод в соединениях образу­ет, с одной стороны, достаточно прочные ковалентные связи ме­жду собой и с другими органогенами, а с другой стороны - об­щие электронные пары этих связей достаточно лабильны. В ре­зультате этого может происходить как увеличение реакционной способности этих связей, так и стабилизация. Именно эти осо­бенности углеродсодержащих соединений и делают углерод орга­ногеном номер один.

Кислотно-основные свойства соединений углерода. Оксид углерода(4) является кислотным оксидом, а соответствующий ему гидроксид - угольная кислота Н2СО3 - слабой кислотой. Молекула оксида углерода(4) неполярна, и поэтому он плохо растворяется в воде (0,03 моль/л при 298 К). При этом вначале в ратворе образуется гидрат СО2 Н2О, в котором СО2 находится в полости ассоциата из молекул воды, а затем этот гидрат медлен­но и обратимо превращается в Н2СО3. Большая часть растворен­ного в воде оксида углерода(4) находится в виде гидрата.

В организме в эритроцитах крови под действием фермента каррбоангидразы равновесие между гидратом CO2 Н2О и Н2СО3 устанавливается очень быстро. Это позволяет пренебречь нали­чием СО2 в виде гидрата в эритроците, но не в плазме крови, где нет карбоангидразы. Образующаяся Н2СО3 диссоциирует в физиологических условиях до гидрокарбонат-аниона, а в более щелочной среде - до карбонат-аниона:

Угольная кислота существует только в растворе. Она образует два ряда солей - гидрокарбонаты (NаНСОз, Са(НС0 3)2) и карбонаты (Nа2СОз, СаСОз). В воде гидрокарбонаты растворя­ются лучше, чем карбонаты. В водных растворах соли угольной кислоты, особенно карбонаты, легко гидролизуются по аниону, создавая щелочную среду:

Такие вещества, как питьевая сода NaHC03 ; мел СаСОз, белая магнезия 4MgC03 * Mg(OH)2 * Н2О, гидролизующиеся с образонанием щелочной среды, применяются в качестве антацидных (нейтрализующих кислоты) средств для снижения повы­шенной кислотности желудочного сока:

Совокупность угольной кислоты и гидрокарбонат-иона (Н2СО3, НСО3(-)) образует гидрокарбонатную буферную систему (разд. 8.5) -славную буферную систему плазмы крови, которая обеспечива­ет постоянство рН крови на уровне рН = 7,40 ± 0,05.


Наличие в природных водах гидрокарбонатов кальция и магния обуславливает их временную жесткость. При кипяче­нии такой воды ее жесткость устраняется. Это происходит из-за гидролиза аниона HCO3(-)), термического разложения угольной кислоты и осаждения катионов кальция и магния в виде нерас­творимых соединений СаС0 3 и Mg(OH) 2:

Образование Mg(OH) 2 вызвано полным гидролизом по ка­тиону магния, протекающему в этих условиях из-за меньшей растворимости Mg(0H)2 по сравнению с MgC0 3 .

В медико-биологической практике кроме угольной кислоты приходится сталкиваться с другими углеродсодержащими кисло­тами. Это прежде всего большое множество различных органи­ческих кислот, а также синильная кислота HCN. С позиции кислотных свойств сила этих кислот различна:

Эти различия обусловлены взаимным влиянием атомов в мо­лекуле, природой диссоциирующей связи и устойчивостью аниона, т. е. его способностью к делокализации заряда.

Синильная кислота, или циановодород, HCN - бес­цветная, легколетучая жидкость (Т кип = 26 °С) с запахом горь­кого миндаля, смешивающаяся с водой в любых соотношениях. В водных растворах ведет себя как очень слабая кислота, соли которой называются цианидами. Цианиды щелочных и щелоч­ноземельных металлов растворимы в воде, при этом они гидролизуются по аниону, из-за чего их водные растворы пахнут синильной кислотой (запах горького миндаля) и имеют рН >12:


При длительном воздействии СО2, содержащегося в воздухе, цианиды разлагаются с выделением синильной кислоты:

В результате этой реакции цианид калия (цианистый калий) и его растворы при длительном хранении теряют свою токсич­ность. Цианид-анион - один из самых сильных неорганиче­ских ядов, поскольку он является активным лигандом и легко образует устойчивые комплексные соединения с ферментами, содержащими в качестве ионовкомплексообразователей Fe 3+ и Сu2(+) (разд. 10.4).

Окислительно-восстановительные свойства. Поскольку уг­лерод в соединениях может проявлять любые степени окисле­ния от -4 до +4, то в ходе реакции свободный углерод может и отдавать и присоединять электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств второго реагента:


При взаимодействии сильных окислителей с органическими веществами может протекать неполное или полное окисление атомов углерода этих соединений.

В условиях анаэробного окисления при недостатке или в от­сутствие кислорода атомы углерода органического соединения в зависимости от содержания кислородных атомов в этих соедине­ниях и внешних условий могут превратиться в С0 2 , СО, С и даже СН 4 , а остальные органогены превращаются в Н2О, NH3 и H2S.

В организме полное окисление органических соединений кислородом в присутствии ферментов оксидаз (аэробное окис­ление) описывается уравнением:

Из приведенных уравнений реакций окисления видно, что в органических соединениях степень окисления изменяют только атомы углерода, а атомы остальных органогенов при этом со­храняют свою степень окисления.

При реакциях гидрирования, т. е. присоединения водорода (восстановителя) по кратной связи, образующие ее атомы углерода понижают свою степень окисления (выступают окислителями):

Органические реакции замещения с возникновением новой межуглеродной связи, например в реакции Вюрца, также явля­ются окислительно-восстановительными реакциями, в которых атомы углерода выступают окислителями, а атомы металла -восстановителями:

Подобное наблюдается в реакциях образования металлорганических соединений:


В то же время в реакциях алкилирования с возникновением новой межуглеродной связи роль окислителя и восстановителя играют атомы углерода субстрата и реагента соответственно:

В результате реакций присоединения полярного реагента к субстрату по кратной межуглеродной связи один из атомов уг­лерода понижает степень окисления, проявляя свойства окис­лителя, а другой - повышает степень окисления, выступая вос­становителем:

В этих случаях имеет место реакция внутримолекулярного окисления-восстановления атомов углерода субстрата, т. е. про­цесс дисмутации, под действием реагента, не проявляющего окислительно-восстановительных свойств.

Типичными реакциями внутримолекулярной дисмутации ор­ганических соединений за счет их атомов углерода являются ре­акции декарбоксилирования аминокислот или кетокислот, а так­же реакции перегруппировки и изомеризации органических со­единений, которые были рассмотрены в разд. 9.3. Приведенные примеры органических реакций, а также реакции из разд. 9.3 убедительно свидетельствуют, что атомы углерода в органических соединениях могут быть и окислителями, и восстановите­лями.

Атом углерода в соединении - окислитель, если в ре­зультате реакции увеличивается число его связей с атомами менее электроотрицательных элементов (во­дород, металлы), потому что, притягивая к себе общие электроны этих связей, рассматриваемый атом углеро­да понижает свою степень окисления.

Атом углерода в соединении - восстановитель, если в результате реакции увеличивается число его связей с атомами более электроотрицательных элементов (С, О, N, S), потому что, отталкивая от себя общие элек­троны этих связей, рассматриваемый атом углерода повышает свою степень окисления.

Таким образом, многие реакции в органической химии вслед­ствие окислительно-восстановительной двойственности атомов углерода являются окислительно-восстановительными. Однако, в отличие от подобных реакций неорганической химии, пере­распределение электронов между окислителем и восстановите­лем в органических соединениях может сопровождаться лишь смещением общей электронной пары химической связи к ато­му, выполняющему роль окислителя. При этом данная связь может сохраняться, но в случаях сильной ее поляризации она может и разорваться.

Комплексообразующие свойства соединений углерода. У ато­ма углерода в соединениях нет неподеленных электронных пар, и поэтому лигандами могут выступать только соединения угле­рода, содержащие кратные связи с его участием. Особенно активны в процессах комплексообразования -электроны тройной по­лярной связи оксида углерода(2) и аниона синильной кислоты.

В молекуле оксида углерода(2) атомы углерода и кислорода образуют одну и одну -связь за счет взаимного перекрывания их двух 2р-атомных орбиталей по обменному механизму. Третья связь, т. е. еще одна -связь, образуется по донорно-акцепторному механизму. Акцептором является свободная 2р-атомная ор-биталь атома углерода, а донором - атом кислорода, предостав­ляющий неподеленную пару электронов с 2p-орбитали:

Повышенная кратность связи обеспечивает этой молекуле высокую стабильность и инертность при нормальных ус­ловиях с позиции кислотно-основных (СО - несолеобразующий оксид) и окислительно-восстановительных свойств (СО - вос­становитель при Т > 1000 К). В то же время она делает его ак­тивным лигандом в реакциях комплексообразования с атомами и катионами d-металлов, прежде всего с железом, с которым он образует пентакарбонил железа - летучую ядовитую жидкость:


Способность к образованию комплексных соединений с ка­тионами d-металлов является причиной ядовитости оксида углерода(Н) для живых систем (разд. 10.4) вследствие протекания обратимых реакций с гемоглобином и оксигемоглобином, содер­жащими катион Fe 2+ , с образованием карбоксигемоглобина:

Эти равновесия смещены в сторону образования карбокси­гемоглобина ННbСО, устойчивость которого в 210 раз больше, чем оксигемоглобина ННbО2. Это приводит к накоплению карбоксигемоглобина в крови и, следовательно, к снижению ее спо­собности переносить кислород.

В анионе синильной кислоты CN- также содержатся легко поляризуемые - электроны, из-за чего он эффективно обра­зует комплексы с d-металлами, включая металлы жизни, вхо­дящие в состав ферментов. Поэтому цианиды являются высокотоксичными соединениями (разд. 10.4).

Круговорот углерода в природе. В основе круговорота угле­рода в природе в основном лежат реакции окисления и восста­новления углерода (рис. 12.3).

Из атмосферы и гидросферы растения ассимилируют (1) ок­сид углерода(4). Часть растительной массы потребляется (2) че­ловеком и животными. Дыхание животных и гниение их остан­ков (3), а также дыхание растений, гниение отмерших растений и горение древесины (4) возвращают атмосфере и гидросфере CO2. Процесс минерализации останков растений (5) и животных (6) с образованием торфа, ископаемых углей, нефти, газа при­водит к переходу углерода в природные ископаемые. В том же направлении действуют кислотно-основные реакции (7), проте­кающие между СО2 и различными горными породами с образо­ванием карбонатов (средних, кислых и основных):

Эта неорганическая часть круговорота приводит к потерям СО2 в атмосфере и гидросфере. Деятельность человека по сжи­ганию и переработке угля, нефти, газа (8), дров (4), наоборот, с избытком обогащает окружающую среду оксидом углерода(4). Долгое время существовала уверенность, что благодаря фото­синтезу концентрация СО2 в атмосфере сохраняется постоян­ной. Однако в настоящее время увеличение содержания СО2 в атмосфере за счет деятельности человека не компенсируется его естественной убылью. Общее поступление СО2 в атмосферу рас­тет в геометрической прогрессии на 4-5 % в год. Согласно рас­четам в 2000 году содержание СО2 в атмосфере достигнет приблизительно 0,04 % вместо 0,03 % (1990 г.).

После рассмотрения свойств и особенностей углеродсодержащих соединений следует еще раз подчеркнуть ведущую роль углерода

Рис. 12.3. Круговорот углерода в природе

органогена № 1: во-первых, атомы углерода формируют скелет молекул органических соединений; во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных про­цессах, поскольку среди атомов всех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность. Подробнее о свойствах органических соедине­ний - см. модуль IV "Основы биоорганической химии".

Общая характеристика и биологическая роль р-элементов группы IVA. Электронными аналогами углерода являются эле­менты IVA группы: кремний Si, германий Ge, олово Sn и свинец Рb (см. табл. 1.2). Радиусы атомов этих элементов закономерно возрастают с увеличением порядкового номера, а их энергия иони­зации и электроотрицательность при этом закономерно снижают­ся (разд. 1.3). Поэтому первые два элемента группы: углерод и кремний - типичные неметаллы, а германий, олово, свинец -металлы, так как для них наиболее характерна отдача электро­нов. В ряду Ge - Sn - Рb металлические свойства усиливаются.

С позиции окислительно-восстановительных свойств элемен­ты С, Si, Ge, Sn и Рb в обычных условиях достаточно устойчи­вы по отношению к воздуху и воде (металлы Sn и Рb - за счет образования оксидной пленки на поверхности). В то же время соединения свинца(4) - сильные окислители:

Комплексообразующие свойства наиболее характерны для свинца, так как его катионы Рb 2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA группы. Катионы свинца образуют прочные комплексы с биолигандами.

Элементы группы IVA резко различаются как по содержанию в организме, так и по биологической роли. Углерод играет осново­полагающую роль в жизнедеятельности организма, где его содер­жание составляет около 20 %. Содержание в организме остальных элементов IVA группы находится в пределах 10 -6 -10 -3 %. В то же время, если кремний и германий, несомненно, играют важную роль в жизнедеятельности организма, то олово и особенно сви­нец - токсичны. Таким образом, с ростом атомной массы эле­ментов IVA группы токсичность их соединений возрастает.

Пыль, состоящая из частиц угля или диоксида кремния SiO2, при систематическом воздействии на легкие вызывает заболе­вания - пневмокониозы. В случае угольной пыли это антракоз -профессиональное заболевание шахтеров. При вдыхании пыли, содержащей Si02, возникает силикоз. Механизм развития пневмокониозов еще не установлен. Предполагается, что при длительном контакте силикатных песчинок с биологическими жидкостями образуется поликремниевая кислота Si02 yH2O в гелеобразном состоянии, отложение которой в клетках ведет к их гибели.

Токсическое действие свинца известно человечеству очень дав­но. Использование свинца для изготовления посуды и водопроводных труб приводило к массовому отравлению людей. В на­стоящее время свинец продолжает быть одним из основных загрязнителей окружающей среды, так как выброс соединений свинца в атмосферу составляет свыше 400 000 т ежегодно. Сви­нец накапливается в основном в скелете в форме малораствори­мого фосфата РЬз(Р04)2, а при деминерализации костей оказы­вает регулярное токсическое действие на организм. Поэтому свинец относится к кумулятивным ядам. Токсичность соедине­ний свинца связана прежде всего с его комплексообразующими свойствами и большим сродством к биолигандам, особенно содержащим сульфгидрильные группы (-SH):

Образование комплексных соединений ионов свинца с бел­ками, фосфолипидами и нуклеотидами приводит к их денату­рации. Часто ионы свинца ингибируют металлоферменты ЕМ 2+ , вытесняя из них катионы металлов жизни:

Свинец и его соединения относятся к ядам, действующим преимущественно на нервную систему, кровеносные сосуды и кровь. При этом соединения свинца влияют на синтез белка, энергетический баланс клеток и их генетический аппарат.

В медицине применяются как вяжущие наружные антисеп­тические средства: свинец ацетат Рb(СНзСОО)2 ЗН2О (свинцо­вые примочки) и свинец(2) оксид РbО (свинцовый пластырь). Ионы свинца этих соединений вступают в реакции с белками (альбуминами) цитоплазмы микробных клеток и тканей, образуя гелеобразные альбуминаты. Образование гелей убивает микробы и, кроме того, затрудняет проникновение их внутрь клеток тка­ней, что снижает местную воспалительную реакцию.

Рассматривают как химию соединений углерода, но, отдавая дань уважения истории, по-прежнему продолжают называть ее органической химией. Поэтому так важно более подробно рассмотреть строение атома этого элемента, характер и пространственное направление образуемых им химических связей.

Валентность химического элемента чаще всего определяется числом неспаренных электронов. Атом углерода, как видно из электронно-графической формулы, имеет два неспаренных электрона, поэтому с их участием могут образоваться две электронные пары, осуществляющие две ковалентные связи. Однако в органических соединениях углерод не двух-, а всегда четырехвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит распаривание 2«-электронов и переход одного из них на 2р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в создании четырех ковалентных связей.

Для образования ковалентной связи необходимо, чтобы ор-биталь одного атома перекрывалась с орбиталью другого. При этом чем больше перекрывание, тем прочнее связь.

В молекуле водорода Н 2 образование ковалентной связи происходит за счет перекрывания s-орбиталей (рис. 3).

Расстояние между ядрами атомов водорода, или длина связи, составляет 7,4 * 10 -2 нм, а ее прочность - 435 кДж/моль.

Для сравнения: в молекуле фтора F 2 ковалентная связь образуется за счет перекрывания двух р-орбиталей.

Длина связи фтор-фтор равна 14,2 10 -2 нм, а прочность (энергия) связи - 154 кДж/моль.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются а-связями (сигма-связями).

Линия связи - прямая, соединяющая ядра атомов. Для в-орбиталей возможен лишь единственный способ перекрывания - с образованием а-связей.

р-Орбитали могут перекрываться с образованием а-связей, а также могут перекрываться в двух областях, образуя ковалентную связь другого вида - за счет «бокового» перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются п-связями (пи-связями).

Рассмотренный вид связи характерен для молекул этилена С2Н4, ацетилена С2Н2. Но об этом более подробно вы узнаете из следующего параграфа.

1. Запишите электронную формулу атома углерода. Объясните смысл каждого символа в ней.

Каковы электронные формулы атомов бора, бериллия и лития?

Составьте электронно-графические формулы, соответствующие атомам этих элементов.

2. Запишите электронные формулы:

а) атома натрия и катиона Nа + ;

б) атома магния и катиона Мg 2+ ;

в) атома фтора и аниона F - ;

г) атома кислорода и аниона О 2- ;

д) атома водорода и ионов Н + и Н - .

Составьте электронно-графические формулы распределения электронов по орбиталям в этих частицах.

3. Атому какого химического элемента соответствует электронная формула 1s 2 2s 2 2р 6 ?

Какие катионы и анионы имеют такую же электронную формулу? Составьте электронно-графическую формулу атома и этих ионов.

4. Сравните длины связей в молекулах водорода и фтора. Чем вызвано их различие?

5. Молекулы азота и фтора двухатомны. Сравните числа и характер химических связей между атомами в них.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Структура алмаза (а) и графита (б)

Углерод (латинское Carboneum ) - С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Встречается в природе в виде кристаллов алмаза, графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19%.

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды , соединения углерода с металлами , а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов . Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость .

Историческая справка

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец".

В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа . Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867.

В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Свойства

Известны четыре кристаллические модификации углерода:

  • графит,
  • алмаз,
  • карбин,
  • лонсдейлит.

Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен.

Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется .

Жидкий углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твёрдого углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемый «аморфный» углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит.

Физические свойства «аморфного» углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность , теплоёмкость , теплопроводность и электропроводность «аморфного» углерода всегда выше, чем графита.

Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С , уложенных параллельно друг другу.

Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Свойства углерода
Атомный номер 6
Атомная масса 12,011
Изотопы: стабильные 12, 13
нестабильные 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22
Температура плавления 3550°С
Температура кипения 4200°С
Плотность 1,9-2,3 г/см 3 (графит)

3,5-3,53 г/см 3 (алмаз)

Твердость (по Моосу) 1-2
Содержание в земной коре (масс.) 0,19%
Степени окисления -4; +2; +4

Сплавы

Сталь

Кокс применяют в металлургии, как восстановитель. Древесный уголь – в кузнечных горнах, для получения пороха (75%KNO 3 + 13%C + 12%S), для поглощения газов (адсорбция), а также в быту. Сажу применяют, как наполнитель резины, для изготовления черных красок – типографская краска и тушь, а также в сухих гальванических элементах. Стеклоуглерод применяют для изготовления аппаратуры для сильно агрессивных сред, а также в авиации и космонавтике.

Активированный уголь поглощает вредные вещества из газов и жидкостей: им заполняют противогазы, очистительные системы, его применяют в медицине при отравлениях.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Применение радиоактивного изотопа 14 C способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 C в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

Источники

Углерод

УГЛЕРО́Д -а; м. Химический элемент (C), важнейшая составная часть всех органических веществ в природе. Атомы углерода. Процент содержания углерода. Без углерода невозможна жизнь.

Углеро́дный, -ая, -ое. У-ые атомы. Углеро́дистый, -ая, -ое. Содержащий углерод. У-ая сталь.

углеро́д

(лат. Carboneum), химический элемент IV группы периодической системы. Основные кристаллические модификации - алмаз и графит. При обычных условиях углерод химически инертен; при высоких температурах соединяется со многими элементами (сильный восстановитель). Содержание углерода в земной коре 6,5·10 16 т. Значительное количество углерода (около 10 13 т) входит в состав горючих ископаемых (уголь, природный газ, нефть и др.), а также в состав углекислого газа атмосферы (6·10 11 т) и гидросферы (10 14 т). Главные углеродсодержащие минералы - карбонаты. Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии - органической химии. Углерод - биогенный элемент; его соединения играют особую роль в жизнедеятельности растительных и животных организмов (среднее содержание углерода - 18%). Углерод широко распространён в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

УГЛЕРОД

УГЛЕРО́Д (лат. Carboneum, от cаrbo - уголь), С (читается «це»), химический элемент с атомным номером 6, атомная масса 12,011. Природный углерод состоит из двух стабильных нуклидов: 12 С, 98,892% по массе и 13 C - 1,108%. В природной смеси нуклидов в ничтожных количествах всегда присутствует радиоактивный нуклид 14 C (b - -излучатель, период полураспада 5730 лет). Он постоянно образуется в нижних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N:
14 7 N + 1 0 n = 14 6 C + 1 1 H.
Углерод расположен в группе IVA, во втором периоде периодической системы. Конфигурация внешнего электронного слоя атома в основном состоянии 2s 2 p 2 . Важнейшие степени окисления +2 +4, –4, валентности IV и II.
Радиус нейтрального атома углерода 0,077 нм. Радиус иона C 4+ 0,029 нм (координационное число 4), 0,030 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома равны 11,260, 24,382, 47,883, 64,492 и 392,09 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,5.
Историческая справка
Углерод известен с глубокой древности. Древесный уголь использовали для восстановления металлов из руд, алмаз (см. АЛМАЗ (минерал)) - как драгоценный камень. В 1789 французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) сделал вывод об элементарной природе углерода.
Искусственные алмазы впервые были получены в 1953 шведскими исследователями, но результаты они не успели опубликовать. В декабре 1954 искусственные алмазы получили, а в начале 1955 опубликовали результаты сотрудники компании «Дженерал электрик». (см. ДЖЕНЕРАЛ ЭЛЕКТРИК)
В СССР искусственные алмазы впервые были получены в 1960 группой ученых под руководством В. Н. Бакуля и Л. Ф. Верещагина (см. ВЕРЕЩАГИН Леонид Федорович) .
В 1961 группой советских химиков под руководством В. В. Коршака была синтезирована линейная модификация углерода - карбин. Вскоре карбин был обнаружен в метеоритном кратере Рис (Германия). В 1969 в СССР были синтезированы нитевидные кристаллы алмаза при обычном давлении, обладающие высокой прочностью и практически лишенные дефектов.
В 1985 Г. Крото (см. КРОТО Гаролд) обнаружил новую форму углерода -фуллерены (см. ФУЛЛЕРЕНЫ) С 60 и С 70 в масс-спектре испаряемого при облучении лазером графита. При высоких давлениях получен лонсдейлит.
Нахождение в природе
Содержание в земной коре 0,48% по массе. Накапливается в биосфере: в живом веществе 18% угля, в древесине 50%, торфе 62%, природных горючих газах 75%, горючих сланцах 78%, каменном и буром угле 80%, нефти 85%, антраците 96%. Значительная часть угля литосферы сосредоточена в известняках и доломитах. Углерод в степени окисления +4 входит в состав карбонатных пород и минералов (мел, известняк, мрамор, доломиты). Углекислый газ CO 2 (0,046% по массе) постоянный компонент атмосферного воздуха. Углекислый газ в растворенном виде всегда присутствует в воде рек, озер и морей.
В атмосфере звезд, планет и в метеоритах обнаружены вещества, содержащие углерод.
Получение
С древности уголь получали при неполном сгорании древесины. В 19 веке древесный уголь в металлургии заменили каменным углем (коксом).
В настоящее время для промышленного получения чистого углерода используют крекинг (см. КРЕКИНГ) природного газа метана (см. МЕТАН) СН 4:
СН 4 = С + 2Н 2
Уголь для медицинских целей готовят сжиганием кожуры кокосовых орехов. Для лабораторных нужд чистый уголь, не содержащий несгораемых примесей, получают неполным сжиганием сахара.
Физические и химические свойства
Углерод - неметалл.
Многообразие соединений углерода объясняется способностью его атомов связываться между собой, образуя объемные структуры, слои, цепи, циклы. Известны четыре аллотропические модификации углерода: алмаз, графит, карбин и фуллерит. Древесный уголь состоит из мельчайших кристалликов с неупорядоченной структурой графита. Его плотность 1,8-2,1 г/см 3 . Сажа представляет собой сильно измельченный графит.
Алмаз - минерал с кубической гранецентрированной решеткой. Атомы С в алмазе находятся в sp 3 -гибридизованном состоянии. Каждый атом образует 4 ковалентные s-связи с четырьмя соседними атомами С, расположенными по вершинам тетраэдра, в центре которого находится атом С. Расстояния между атомами в тетраэдре 0,154 нм. Электронная проводимость отсутствует, ширина запрещенной зоны 5,7 эВ. Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема. Его плотность 3,51 г/см 3. . Твердость по минералогической шкале Мооса (см. МООСА ШКАЛА) принята за 10. Алмаз можно поцарапать только другим алмазом; но он хрупок и при ударе раскалывается на куски неправильной формы. Термодинамически устойчив лишь при высоких давлениях. Однако, при 1800 °C превращение алмаза в графит происходит быстро. Обратное превращение графита в алмаз происходит при 2700°C и давлении 11-12 ГПа.
Графит - слоистое темно-серое вещество с гексагональной кристаллической решеткой. Термодинамически устойчив в широком интервале температур и давлений. Состоит из параллельных слоев, образованных правильными шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях; положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм. Внутри слоя связи между атомами ковалентные, образованы sp 2 -гибридными орбиталями. Связи между слоями осуществляются слабыми ван-дер-ваальсовыми (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ) силами, поэтому графит легко расслаивается. Такое состояние стабилизирует четвертая делокализованная p-связь. Графит обладает хорошей электрической проводимостью. Плотность графита 2,1-2,5 кг/дм 3 .
Во всех аллотропических модификациях при обычных условиях углерод химически малоактивен. В химические реакции вступает только при нагревании. При этом химическая активность углерода убывает в ряду сажа-древесный уголь-графит-алмаз. Сажа на воздухе воспламеняется при нагревании до 300°C, алмаз - при 850-1000°C. При горении образуется углекислый газ СО 2 и CO. Нагревая СО 2 с углем, также получают оксид углерода (II) CО:
СО 2 + С = 2СО
С + Н 2 О (перегретый пар) = СО +Н 2
Синтезирован оксид углерода С 2 О 3 .
СО 2 - кислотный оксид, ему отвечает слабая неустойчивая, существующая только в сильно разбавленных холодных водных растворах угольная кислота Н 2 СО 3 . Соли угольной кислоты - карбонаты (см. КАРБОНАТЫ) (К 2 СО 3 , СаСО 3) и гидрокарбонаты (см. ГИДРОКАРБОНАТЫ) (NaHCO 3 , Са(НСО 3) 2).
С водородом (см. ВОДОРОД) графит и древесный уголь реагируют при температуре выше 1200°C, образуя смесь углеводородов. Реагируя со фтором при 900°C, образует смесь фторуглеродных соединений. Пропуская электрический разряд между угольными электродами в атмосфере азота, получают газ циан (CN) 2 ; если в газовой смеси присутствует водород, образуется синильная кислота HCN. При очень высоких температурах графит реагирует с серой, (см. СЕРА) кремнием, бором, образуя карбиды - CS 2 , SiC, В 4 С.
Карбиды получают взаимодействием графита с металлами при высоких температурах: карбид натрия Na 2 C 2 , карбид кальция CaC 2 , карбид магния Mg 2 C 3 , карбид алюминия Al 4 C 3 . Эти карбиды легко разлагаются водой на гидроксид металла и соответствующий углеводород:
Al 4 C 3 + 12Н 2 О = 4Al(ОН) 3 + 3СН 4
С переходными металлами углерод образует металлоподобные химически стойкие карбиды, например, карбид железа (цементит) Fe 3 C, карбид хрома Cr 2 C 3 , карбид вольфрама WС. Карбиды - кристаллические вещества, природа химической связи может быть различной.
При нагревании уголь восстанавливает многие металлы из их оксидов:
FeO + C = Fe + CO,
2CuO+ C = 2Cu+ CO 2
При нагревании восстанавливает серу(VI) до серы(IV) из концентрированной серной кислотой:
2H 2 SO 4 + C = CO 2 + 2SO 2 + 2H 2 O
При 3500°C и нормальном давлении углерод сублимирует.
Применение
Свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо. 10% добываемого топлива используется в качестве сырья для основного органического и нефтехимического синтеза, для получения пластмасс.
Физиологическое действие
Углерод - важнейший биогенный элемент, является структурной единицей органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, витамины, гормоны, медиаторы и другие). Содержание углерода в живых организмах в расчете на сухое вещество составляет 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду CO 2 . Углекислый газ (см. УГЛЕРОДА ДИОКСИД) , растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды. В составе CaCO 3 углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе.
При различных производственных процессах частицы угля, сажи, графита, алмаза попадают в атмосферу и находятся в ней в виде аэрозолей. ПДК для углеродной пыли в рабочих помещениях 4,0 мг/м 3 , для каменного угля 10 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "углерод" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Углерод 14, 14C Альтернативные названия радиоуглерод, радиокарбон Нейтронов 8 Протонов 6 Свойства нуклида Атомная масса … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 12, 12C Нейтронов 6 Протонов 6 Свойства нуклида Атомная масса 12,0000000(0) … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 13, 13C Нейтронов 7 Протонов 6 Свойства нуклида Атомная масса 13,0033548378(10) … Википедия

    - (лат. Carboneum) С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких… … Большой Энциклопедический словарь

    - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3?10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Современная энциклопедия

    Углерод - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3´10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Иллюстрированный энциклопедический словарь

    УГЛЕРОД - (1) хим. элемент, символ С (лат. Carboneum), ат. и. 6, ат. м. 12,011. Существует в нескольких аллотропных модификациях (формах) (алмаз, графит и редко карбин, чаоит и лонсдейлит в метеоритных кратерах). С 1961 г. / массы атома изотопа 12С принята … Большая политехническая энциклопедия

    - (символ С), широко распространенный неметаллический элемент четвертой группы периодической таблицы. Углерод образует огромное количество соединений, которые вместе с углеводородами и другими неметаллическими веществами составляют основу… … Научно-технический энциклопедический словарь

УГЛЕРОД , С, химический элемент IV группы периодической системы, атомный вес 12,00, порядковый номер 6. До последнего времени углерод считался не имеющим изотопов; лишь недавно удалось с помощью особо чувствительных методов обнаружить существование изотопа С 13 . Углерод - один из важнейших элементов по распространенности, по многочисленности и разнообразию его соединений, по биологическому значению (как органоген), по обширности технического использования самого углерода и его соединений (как сырья и как источника энергии для промышленных и бытовых нужд) и наконец по своей роли в развитии химической науки. Углерод в свободном состоянии обнаруживает ярко выраженное явление аллотропии, известное уже более полутора веков, но до сих пор не вполне изученное как по причине чрезвычайной трудности получения углерода в химически чистом виде, так и потому, что большинство констант аллотропных модификаций углерода сильно меняется в зависимости от морфологических особенностей их структуры, обусловленных способом и условиями получения.

Углерод образует две кристаллические формы - алмаз и графит и кроме того известен в аморфном состоянии в виде т. н. аморфного угля . Индивидуальность последнего в результате недавних исследований оспаривалась: уголь отождествляли с графитом, рассматривая тот и другой как морфологические разновидности одной формы - «черного углерода», а разницу в их свойствах объясняли физической структурой и степенью дисперсности вещества. Однако в самое последнее время получены факты, подтверждающие существование угля как особой аллотропной формы (см. ниже).

Природные источники и запасы углерода . По распространенности в природе углерод занимает среди элементов 10-е место, составляя 0,013% атмосферы, 0,0025% гидросферы и около 0,35% всей массы земной коры. Большая часть углерода находится в форме кислородных соединений: в атмосферном воздухе содержится ~800 млрд. тонн углерода в виде двуокиси СО 2 ; в воде океанов и морей - до 50000 млрд. тонн углерода в виде СО 2 , иона угольной кислоты и бикарбонатов; в горных породах - нерастворимые карбонаты (кальция, магния и других металлов), причем на долю одного СаСО 3 приходится ~160·10 6 млрд. тонн углерода. Эти колоссальные запасы не представляют, однако, энергетической ценности; гораздо более ценными являются горючие углеродистые материалы - ископаемые угли, торф, затем нефть, углеводородные газы и другие природные битумы. Запас этих веществ в земной коре также довольно значителен: общая масса углерода в ископаемых углях достигает ~6000 млрд. тонн, в нефти ~10 млрд. тонн и т. д. В свободном состоянии углерод встречается довольно редко (алмаз и часть вещества графитов). Ископаемые угли почти или вовсе не содержат свободного углерода: они состоят гл. обр. из высокомолекулярных (полициклических) и весьма устойчивых соединений углерода с другими элементами (Н, О, N, S) еще очень мало изученных. Углеродистые соединения живой природы (биосферы земного шара), синтезируемые в растительных и животных клетках, отличаются чрезвычайным разнообразием свойств и количеств состава; наиболее распространенные в растительном мире вещества - клетчатка и лигнин - играют роль и в качестве энергетических ресурсов. Углерод сохраняет постоянство распределения в природе благодаря непрерывному круговороту, цикл которого слагается из синтеза сложных органических веществ в растительных и животных клетках и из обратной дезагрегации этих веществ при их окислительном распаде (горение, гниение, дыхание), приводящем к образованию СО 2 , которая вновь используется растениями для синтеза. Общая схема этого круговорота м. б. представлена в следующем виде:

Получение углерода . Углеродистые соединения растительного и животного происхождения неустойчивы при высоких температурах и, будучи подвергнуты нагреванию не ниже 150-400°С без доступа воздуха, разлагаются, выделяя воду и летучие соединения углерода и оставляя твердый нелетучий остаток, богатый углеродом и обычно называемый углем . Этот пиролитический процесс носит название обугливания , или сухой перегонки , и широко применяется в технике. Высокотемпературный пиролиз ископаемых углей, нефти и торфа (при температуре 450-1150°С) приводит к выделению углерода в графитообразной форме (кокс, ретортный уголь). Чем выше температура обугливания исходных материалов, тем получаемый уголь или кокс ближе по составу к свободному углероду, а по свойствам - к графиту.

Аморфный же уголь, образующийся при температуре ниже 800°С, не м. б. рассматриваем как свободный углерод, ибо содержит значительные количества химически связанных других элементов, гл. обр. водорода и кислорода. Из технических продуктов к аморфному углю наиболее близки по свойствам активированный уголь и сажа. Наиболее чистый уголь м. б. получен обугливанием чистого сахара или пиперонала, специальной обработкой газовой сажи и т. п. Искусственный графит, полученный электротермическим путем, по составу представляет собою почти чистый углерод. Природный графит всегда бывает загрязнен минеральными примесями и кроме того содержит некоторое количество связанных водорода (Н) и кислорода (О); в относительно чистом состоянии он м. б. получен лишь после ряда специальных обработок: механического обогащения, промывки, обработки окислителями и прокаливания при высокой температуре до полного удаления летучих веществ. В технологии углерода никогда не имеют дела с совершенно чистым углеродом; это относится не только к натуральному углеродному сырью, но и к продуктам его обогащения, облагораживания и термического разложения (пиролиза). Ниже приведено содержание углерода в некоторых углеродистых материалах (в %):

Физические свойства углерода . Свободный углерод практически совершенно неплавок, нелетуч и при обыкновенной температуре нерастворим ни в одном из известных растворителей. Он растворяется только в некоторых расплавленных металлах, особенно при температуре, приближающихся к температуре кипения последних: в железе (до 5%), серебре (до 6%)| рутении (до 4%), кобальте, никеле , золоте и платине. При отсутствии кислорода углерод является наиболее жароупорным материалом; жидкое состояние для чистого углерода неизвестно, а превращение его в пар начинается лишь при температуре выше 3000°С. Поэтому определение свойств углерода производилось исключительно для твердого агрегатного состояния. Из модификаций углерода алмаз обладает наиболее постоянными физическими свойствами; свойства графита в различных его образцах (даже наиболее чистых) значительно варьируют; еще более непостоянны свойства аморфного угля. Важнейшие физические константы различных модификаций углерода сопоставлены в таблице.

Алмаз - типичный диэлектрик, в то время как графит и уголь обладают металлической электропроводностью. По абсолютной величине проводимость их меняется в очень широких пределах, но для углей она всегда ниже, чем для графитов; у графитов же приближается к проводимости настоящих металлов. Теплоемкость всех модификаций углерода при температуре >1000°С стремится к постоянному значению 0,47. При температуре ниже -180°С теплоемкость алмаза становится исчезающе малой и при -27°С она практически делается равной нулю.

Химические свойства углерода . При нагревании выше 1000°С как алмаз, так и уголь постепенно превращаются в графит, который поэтому следует рассматривать как наиболее устойчивую (в условиях высоких температур) монотропную форму углерода. Превращение аморфного угля в графит начинается по-видимому около 800°С и заканчивается при 1100°С (в этой последней точке уголь теряет свою адсорбционную активность и способность к реактивации, а электропроводность его резко возрастает, оставаясь в дальнейшем почти постоянной). Для свободного углерода характерна инертность при обычных температурах и значительная активность - при высоких. Наиболее активен в химическом отношении аморфный уголь, в то время как алмаз обладает наибольшей резистентностью. Так, например, фтор реагирует с углем при температуре 15°С, с графитом же лишь при 500°С, а с алмазом при 700°С. При нагревании на воздухе пористый уголь начинает окисляться ниже 100°С, графит около 650°С, алмаз же выше 800°С. При температуре 300°С и выше уголь соединяется с серой в сероуглерод CS 2 . При температуре выше 1800°С углерод (уголь) начинает взаимодействовать с азотом, образуя (в незначительных количествах) дициан C 2 N 2 . Взаимодействие углерода с водородом начинается при 1200°С, причем в интервале температур 1200-1500°С образуется только метан СН 4 ; выше 1500°С - смесь метана, этилена (С 2 Н 4) и ацетилена (С 2 Н 2); при температуре порядка 3000°С получается почти исключительно ацетилен. При температуре электрической дуги углерод вступает в прямое соединение с металлами, кремнием и бором, образуя соответствующие карбиды. Прямыми или косвенными путями м. б. получены соединения углерода со всеми известными элементами, кроме газов нулевой группы. Углерод - элемент неметаллического характера, проявляющий некоторые признаки амфотерности. Атом углерода имеет диаметр 1,50 Ᾰ (1Ᾰ = 10 -8 см) и содержит во внешней сфере 4 валентных электрона, которые с равной легкостью отдаются либо дополняются до 8; поэтому нормальная валентность углерода как кислородная, так и водородная равна четырем. В подавляющем большинстве своих соединений углерод четырехвалентен; лишь в незначительном числе известны соединения двухвалентного углерода (окись углерода и ее ацетали, изонитрилы, гремучая кислота и ее соли) и трехвалентного (т. н. «свободный радикал»).

С кислородом углерод образует два нормальных окисла: двуокись углерода СО 2 кислотного характера и нейтральную окись углерода СО. Кроме того существует ряд недокисей углерода , содержащих более 1 атома С, не имеющих технического значения; из них наиболее известна недокись состава С 3 О 2 (газ с температурой кипения +7°С и температурой плавления -111°С). Первым продуктом горения углерода и его соединений является СО 2 , образующаяся по уравнению:

С+О 2 = СО 2 +97600 cal.

Образование СО при неполном сгорании топлива есть результат вторичного восстановительного процесса; восстановителем в этом случае служит сам углерод, который при температуре выше 450°С реагирует с СО 2 по уравнению:

СО 2 +С = 2СО -38800 cal;

реакция эта обратима; выше 950°С превращение СО 2 в СО делается практически полным, что и осуществляется в газогенераторных печах. Энергичная восстановительная способность углерода при высоких температурах используется также при получении водяного газа (Н 2 О+С = СО+Н 2 -28380 cal) и в металлургических процессах - для получения свободного металла из его окисла. К действию некоторых окислителей аллотропные формы углерода относятся различно: например, смесь KCIO 3 + HNO 3 на алмаз совершенно не действует, аморфный уголь окисляется ею сполна в СО 2 , графит же дает соединения ароматического ряда - графитовые кислоты с эмпирической формулой (С 2 ОН)х и далее меллитовую кислоту С 6 (СООН) 6 . Соединения углерода с водородом – углеводороды - крайне многочисленны; от них генетически производится большинство остальных органических соединений, в которые кроме углерода входят чаще всего Н, О, N, S и галоиды.

Исключительное многообразие органических соединений, которых известно до 2 млн., обусловлено некоторыми особенностями углерода как элемента. 1) Для углерода характерна прочность химической связи с большинством остальных элементов как металлического, так и неметаллического характера, благодаря чему он образует достаточно устойчивые соединения и с теми и с другими. Вступая в сочетание с другими элементами, углерод весьма мало склонен к образованию ионов. Большая часть органических соединений - гомеополярного типа и в обычных условиях не диссоциирует; разрыв внутримолекулярных связей в них нередко требует затраты значительного количества энергии. При суждении о прочности связей следует однако различать; а) прочность связи абсолютную, измеряемую термохимическим путем, и б) способность связи разрываться под действием различных реагентов; эти две характеристики далеко не всегда совпадают. 2) Атомы углерода с исключительной легкостью связываются друг с другом (неполярно), образуя углеродные цепи , открытые или замкнутые. Длина таких цепей по-видимому не подвержена никаким ограничениям; так, известны вполне устойчивые молекулы с открытыми цепями из 64 атомов углерода. Удлинение и усложнение открытых цепей не отражается на прочности связи их звеньев между собою или с другими элементами. Среди замкнутых цепей наиболее легко образуются 6- и 5-членные кольца, хотя известны кольчатые цепи, содержащие от 3 до 18 углеродных атомов. Способность атомов углерода к взаимному соединению хорошо объясняет особые свойства графита и механизм процессов обугливания; она делает понятным и тот факт, что углерод неизвестен в форме двухатомных молекул С 2 , чего можно было бы ожидать по аналогии с другими легкими неметаллическими элементами (в парообразной форме углерод состоит из одноатомных молекул). 3) Благодаря неполярному характеру связей очень многие соединения углерода обладают химической инертностью не только внешней (медленность реагирования), но и внутренней (затрудненность внутримолекулярных перегруппировок). Наличие больших «пассивных сопротивлений» сильно затрудняет самопроизвольное превращение неустойчивых форм в устойчивые, часто сводя скорость такого превращения к нулю. Результатом этого является возможность реализации большого числа изомерных форм, практически одинаково устойчивых при обыкновенной температуре.

Аллотропия и атомная структура углерода . Рентгенографический анализ дал возможность с достоверностью установить атомную структуру алмаза и графита. Этот же метод исследования пролил свет и на вопрос о существовании третьей аллотропной модификации углерода, являющийся по сути дела вопросом об аморфности или кристалличности угля: если уголь - аморфное образование, то он не м. б. отождествлен ни с графитом, ни с алмазом, а должен рассматриваться как особая форма углерода, как индивидуальное простое вещество. В алмазе атомы углерода размещены т. о., что каждый атом лежит в центре тетраэдра, вершинами которого являются 4 смежных атома; каждый из последних в свою очередь является центром другого такого же тетраэдра; расстояния между смежными атомами равны 1,54 Ᾰ (ребро элементарного куба кристаллической решетки равно 3,55 Ᾰ). Такая структура является наиболее компактной; ей соответствуют высокая твердость, плотность и химическая инертность алмаза (равномерное распределение валентных сил). Взаимная связь атомов углерода в решетке алмаза такая же, как и в молекулах большинства органических соединений жирного ряда (тетраэдрическая модель углерода). В кристаллах графита атомы углерода расположены плотными слоями, отстоящими один от другого на 3,35-3,41 Ᾰ; направление этих слоев совпадает с плоскостями спайности и плоскостями скольжения при механических деформациях. В плоскости каждого слоя атомы образуют сетку с шестиугольными ячейками (роты); сторона такого шестиугольника равна 1,42-1,45 Ᾰ. В смежных слоях шестиугольники не лежат один под другим: совпадение их по вертикали повторяется лишь через 2 слоя в третьем. Три связи каждого атома углерода лежат в одной плоскости, образуя углы в 120°; 4-я связь направлена попеременно в ту или другую сторону от плоскости к атомам соседних слоев. Расстояния между атомами в слое строго постоянны, расстояние же между отдельными слоями м. б. изменено внешними воздействиями: так, при прессовании под давлением до 5000 atm оно уменьшается до 2,9 Ᾰ, а при набухании графита в концентрированной HNO 3 - увеличивается до 8 Ᾰ. В плоскости одного слоя атомы углерода связаны гомеополярно (как в углеводородных цепях), связи же между атомами смежных слоев имеют скорее металлический характер; это видно из того, что электропроводность кристаллов графита в направлении, перпендикулярном к слоям, в ~100 раз превышает проводимость по направлению слоя. Т. о. графит обладает свойствами металла в одном направлении и свойствами неметалла - в другом. Расположение атомов углерода в каждом слое решетки графита совершенно такое же, как в молекулах сложноядерных ароматических соединений. Такая конфигурация хорошо объясняет резкую анизотропность графита, исключительно развитую спайность, антифрикционные свойства и образование ароматических соединений при его окислении. Аморфная модификация черного углерода, по-видимому, существует как самостоятельная форма (О. Руфф). Для нее наиболее вероятным является пенообразное ячеистое строение, лишенное всякой правильности; стенки таких ячеек образованы слоями активных атомов углерода толщиною примерно в 3 атома. На практике активная субстанция угля залегает обычно под оболочкой из тесно расположенных неактивных атомов углерода, ориентированных графитообразно, и пронизана включениями очень мелких графитовых кристаллитов. Определенной точки превращения уголь→графит вероятно не имеется: между обеими модификациями осуществляется непрерывный переход, на протяжении которого происходит перестроение беспорядочно скученной массы С-атомов аморфного угля в правильную кристаллическую решетку графита. В силу своего беспорядочного расположения атомы углерода в аморфном угле проявляют максимум остаточного сродства, что (согласно представлениям Лангмюира о тождественности адсорбционных сил с силами валентными) соответствует столь характерной для угля высокой адсорбционной и каталитической активности. Атомы углерода, ориентированные в кристаллическую решетку, затрачивают на взаимное сцепление все свое сродство (в алмазе) или большую часть его (в графите); этому соответствует понижение химической активности и активности адсорбционной. У алмаза адсорбция возможна лишь на поверхности монокристалла, у графита же остаточная валентность может проявляться на обеих поверхностях каждой плоской решетки (в «щелях» между слоями атомов), что и подтверждается фактом способности графита к набуханию в жидкостях (HNO 3) и механизмом его окисления в графитовую кислоту.

Техническое значение углерода . Что касается б. или м. свободного углерода, получаемого при процессах обугливания и коксования, то его применение в технике основывается как на химических (инертность, восстановительная способность), так и на физических его свойствах (жаростойкость, электропроводность, адсорбционная способность). Так, кокс и древесный уголь, помимо частичной прямой утилизации их в качестве беспламенного топлива, используются для получения газообразного горючего (генераторных газов); в металлургии черных и цветных металлов - для восстановления металлических окислов (Fe, Сu, Zn, Ni, Сг, Мn, W, Mo, Sn, As, Sb, Bi); в химической технологии - как восстановитель при получении сульфидов (Na, Са, Ва) из сульфатов, безводных хлористых солей (Mg, Аl), из окисей металлов, при производстве растворимого стекла и фосфора - как сырье для получения карбида кальция, карборунда и других карбидов сероуглерода и т. д.; в строительном деле - как термоизолирующий материал. Ретортный уголь и кокс служат материалом для электродов электрических печей, электролитических ванн и гальванических элементов, для изготовления дуговых углей, реостатов, коллекторных щеток, плавильных тиглей и т. п., а также в качестве насадки в химической аппаратуре башенного типа. Древесный уголь кроме указанных выше применений идет для получения концентрированной окиси углерода, цианистых солей, для цементации стали, широко используется как адсорбент, как катализатор для некоторых синтетических реакций, наконец входит в состав дымного пороха и других взрывчатых и пиротехнических составов.

Аналитическое определение углерода . Качественно углерод определяется обугливанием пробы вещества без доступа воздуха (что пригодно далеко не для всех веществ) или, что гораздо надежнее, исчерпывающим окислением его, например, прокаливанием в смеси с окисью меди, причем образование СО 2 доказывается обычными реакциями. Для количественного определения углерода навеска вещества подвергается сожжению в атмосфере кислорода; образующаяся СО 2 улавливается раствором щелочи и определяется весовым или объемным путем по обычным методам количественного анализа. Этот способ годен для определения углерода не только в органических соединениях и технических углях, но также и в металлах.