Обратимый процесс. Обратимый и необратимый процесс. Термодинамически обратимые и необратимые процессы. Отрывок, характеризующий Обратимый процесс

1. Обратимым термодинамическим процессом называется термодинамический процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Необходимым и достаточным условием обратимости термодинамического процесса является его равновесность.


2. Необратимым термодинамическим процессом называется термодинамический процесс, не допускающий возможности возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Все реальные процессы протекают с конечной скоростью. Они сопровождаются трением, диффузией и теплообменом при конечной разности между температурами системы и внешней среды. Следовательно, все они неравновесны и необратимы.


Необратимость возникает только в том случае, если частиц много. Если мы имеем систему из большого числа частиц – появляются другие новые законы. Если заснимем движение частицы на пленку, то в любом направлении просмотра всё будет нормально для нас. Если заснимем растворение кристалла и посмотрим в обратном направлении – понятно, что такого не бывает. Для рассмотрения необратимых процессов нужны системы из б.ч.ч. Движение одной частицы обратимо, а группы частиц – необратимо. Для описания системы из б.ч.ч. можно использовать термодинамический или статический метод.

· При термодинамическом методе не важен состав. Важно, как меняется система при действии на нее. Уравнение теплового баланса и уравнение Менделеева-Клапейрона достигло этого подхода. Алгебраическая сумма всех количеств теплоты (поглощенных и выделенных) в теплоизолированной системе равна нулю. Q1+ Q2+…+ Qn= 0, где n – количество тел системы. Q = сm(t2 – t1), где m – масса тела, кг; (t2 – t1) – разность температур тела,° С (или К); с – удельная теплоёмкость вещества, из которого состоит тело. Термодинамика – описательная наука, позволяет исключить невозможные сценарии развития в системе.

· Статическая физика. P=nkT , где k – постоянная Больцмана. (pV=nRt) Давление в газе объяснено упругими соударениями молекул со стенками сосуда – импульс. Статистический подход позволяет понять, что такое давление и абсолютная температура. Абсолютный 0 температур – прекращается всякое движение молекул. - кинетическая энергия связана с температурой. Молекулы обладают разными скоростями. Если бы скорость была равна 0 – вся атмосфера лежала бы на Земле. Если бы скорости молекул ограничены были, то атмосфера обрывалась бы . Атмосфера меняется постепенно, давление уменьшается с высотой. Концентрация молекул и давления в атмосфере станет равным нулю только на бесконечной высоте. Если есть молекулы разных масс: самые легкие будут легче улетать. Водород улетел из атмосферы почти весь. Тяжелые молекулы ближе к Земле. g – постоянна только на небольших расстояниях от Земли. Если расстояние больше вместо g используют . ; . То как ведет себя атмосфера зависит от массы планеты. Маленькие быстрее теряют атмосферу. Скорости молекул простираются от нуля до бесконечности. При хаотическом движении распределение скоростей молекул можно определить (вывел Максвелл).


· Функция распределения Максвелла. Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным. В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из имеем , тогда . Вероятность того, что молекула обладает скоростью в интервале (Vx;Vx+dVx), будет равна Кол-во молекул конечно, а скоростей бесконечно. - число молекул со скоростью в интервале (Vx;Vx+dVx). Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от υ х до υ х +dυ х; y-компонента, в интервале от υ y до υ y +dυ y ; z-компонента, в интервале от υ z до υ z +dυ z будет равна произведению вероятностей каждого из условий (событий) в отдельности: , где (Vx; Vx+dVx) ; (Vy; Vy+dVy) ; (Vz; Vz+dVz) – число молекул, которые одновременно обладают скоростью в интервалах.

Подобно тому, как в первом начале термодинамики вводится функция состояния – внутренняя энергия, во втором начале – функция состояния, получившая название энтропия (S) (от греческого entropia – поворот, превращение). Рассмотрение изменения этой функции привело к разделению всех процессов на две группы: обратимые и необратимые (самопроизвольные) процессы.

Процесс называется обратимым , если его можно провести сначала в прямом, а затем в обратном направлении и так, что ни в системе, ни в окружающей среде не останется никаких изменений. Полностью обратимый процесс – абстракция , но многие процессы можно вести в таких условиях, чтобы их отклонение от обратимости было весьма мало. Для этого необходи мо, чтобы в каждой своей бесконечно малой стадии состояние системы, в которой этот процесс происходит, отвечало бы состоянию равновесия.

Состояние равновесия – особое состояние термодинамической системы, в которое она переходит в результате обратимого или необратимого процессов и может оставаться в нем бесконечно долго. Реальные процессы могут приближаться к обратимым, но для этого они должны совершаться медленно.

Процесс называется необратимым (естественным, спонтанным, самопроизвольным) , если он сопровождается рассеянием энергии, т. е. равномерным распределением между всеми телами системы в результате процесса теплопередачи.

В качестве примеров необратимых процессов могут быть названы следующие:

    замерзание переохлажденной жидкости;

    расширение газа в вакуумированное пространство;

    диффузия в газовой фазе или в жидкости.

Систему, в которой произошел необратимый процесс, можно возвратить в исходное состояние, но для этого над системой нужно совершить работу.

К необратимым процессам относится большинство реальных процессов, так как они всегда сопровождаются работой против сил трения, в результате чего происходят бесполезные энергозатраты, сопровождающиеся рассеянием энергии.

Для иллюстрации понятий рассмотрим идеальный газ, находящийся в цилиндре под поршнем. Пусть начальное давление газа Р 1 при его объеме V 1 (рис. 4.1).

Давление газа уравновешено насыпанным на поршень песком. Совокупность равновесных состояний описывается уравнениемpV = const и графически изображается плавной кривой (1).

Если с поршня снять некоторое количество песка, то давление газа над поршнем резко снизится (от А до В) лишь после чего произойдет увеличение объема газа до равновесной величины (от В до С). Характер этого процесса – ломанная линия 2. Эта линия характеризует зависимость P=f (V) при необратимом процессе.

Рис. 4.1. Зависимость давления газа от его объема при обратимом (1) и необратимом процессах (2, 3).

Из рисунка видно, что при обратимом расширении газа совершаемая им работа (площадь под плавной кривой 1) больше, чем при любом необратимом его расширении.

Таким образом, любой термодинамический процесс характеризуется максимально возможной величиной работы, если он совершается в обратимом режиме. К аналогичному выводу можно прийти, если рассмотреть процесс сжатия газа. Только следует иметь ввиду, что в этом случае величина работы – отрицательная величина (рис. 4.1, ломаная 3).

Термодинамический процесс называетсяобратимым ,если он может проходить как в прямом, так и в обратном направлении; при этом после возвращения системы в исходное состояние в окружающей среде и в самой системе не происходит никаких изменений.

Равновесный (квазистатический) процесс представляет собой непрерывную последовательность равновесных состояний. Любая точка такого процесса – состояние равновесия, из которого система может идти как в прямом, так и в обратном направлении. Отсюда следует, что любой равновесный процесс обратим.

Только термодинамически равновесные процессы можно изображать графически, потому что для неравновесной системы значение параметров, например, температуры или концентрации, объёму неодинаково, а для всей системы является неопределённой величиной. Процессы, происходящие в таких системах, могут быть изображены графически только приближённо, по усреднённым значениям параметров.

Можно привести пример обратимого процесса из механики – абсолютно упругое соударение. Если заменить переменную времени t на –t , то при абсолютно упругом ударе начальные и конечные скорости тел просто поменяются ролями. Законы Ньютона обратимы.

Обратимые процессы – идеализация. Все реальные процессы в той или иной степени необратимы из-за трения, диффузии, теплопроводности. Все явления переноса – необратимые процессы. Теплота сама собой может переходить только от горячего к холодному, но никогда наоборот. Ещё пример необратимого процесса: абсолютно неупругое соударение, при котором механическая энергия превращается частично или полностью в теплоту.

Обратимые процессы наиболее экономичны, система при таких процессах совершает максимальную работу, а КПД оказывается максимальным.

9) Цикл Карно. Теорема Карно .

Попробуем создать тепловую машину, при работе которой используются только обратимые процессы.

Обратимым может быть адиабатный процесс – теплопередачи там нет вообще; работа внешних сил идёт на приращение внутренней энергии или наоборот, работа системы совершается за счёт убыли внутренней энергии системы, и эти процессы обратимы.

Но теплопередачу от нагревателя как-то надо осуществить, иначе за счёт какой тепловой энергии мы получим полезную работу? Обратимый процесс теплопередачи между двумя телами можно осуществить в изотермическом процессе, если температура обоих тел равна. Тогда безразлично, в какую сторону течёт поток теплоты. Но такой процесс будет и бесконечно медленным.

В цикле Карно (рис.8.10 и 8.11) идеальный газ проходит цикл, состоящий из двух адиабат (2-3 и 4-1) и двух изотерм (1-2 и 3-4).

1-2 – изотермическое расширение от объёма V 1 до V 2 ; при этом газ находится в контакте с нагревателем при температуре T 1 ;

2-3 – адиабатическое расширение от объёма V 2 до V 3 ; конечная температура газа равна температуре охладителя T 2 ;


3-4 – изотермическое сжатие от объёма V 3 до V 4 ; при этом газ находится в контакте с охладителем при температуре T 2 ;

4-1 – адиабатическое сжатие от объёма V 4 до V 1 ; конечная температура газа равна температуре нагревателя T 1 .

Для изотермических процессов:

Для адиабатических процессов:

;

.

Тогда из последних двух равенств:

Тогда КПД цикла Карно равен:

.

Доказана первая часть теоремы Карно:

1) КПД цикла Карно не зависит от природы рабочего тела и определяется только температурами нагревателя и охладителя:

Сформулируем две другие части теоремы Карно, а докажем их позже.

2)КПД любого обратимого цикла не больше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.39)

3)КПД любого необратимого цикла меньше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.40)

Энтропия.

Определение энтропии



Понятие энтропии было введено Клаузиусом. Энтропия – это одна из функций состояния термодинамической системы. Функция состояния – это такая величина, значения которой однозначно определяются состоянием системы, а изменение функции состояния при переходе системы из одного состояния в другое определяется только начальным и конечным состояниями системы и не зависят от пути перехода.

Внутренняя энергия U – функция состояния. Внутренняя энергия идеального газа равна , и её изменение определяется только начальной и конечной температурами: . Величина – это молярная теплоёмкость идеального газа при постоянном объёме.

Количество теплоты Q и работа A не являются функциями состояния: они зависят от пути перехода системы из начального состояния в конечное. Например, пусть идеальный газ переходит из состояния 1 в состояние 2, совершив последовательно сначала изобарный процесс, затем – изохорный (рис.8.12, а ). Тогда совершённая за весь процесс работа равна . Пусть теперь из 1 в 2 идеальный газ переходит, сначала совершив изохорный процесс, а затем изобарный (рис.8.12, b ). Работа при таком переходе равна . Очевидно, . Величина работы оказалась разная, хотя начальное и конечное состояние одинаковы. Поскольку по первому закону термодинамики количество теплоты, сообщённое системе, идёт на приращение внутренней энергии и на работу системы против внешних сил: , то теплота, полученная системой в процессах a и b , тоже будет разной, то есть теплота также не является функцией состояния.

С точки зрения математики, малые приращения величин, не являющихся функциями состояния, не будут полными дифференциалами, и для них нужно использовать обозначения: и . Оказывается, что для теплоты интегрирующим множителем является обратная температура: , и величина, равная отношению полученной системой теплоты к абсолютной температуре, является полным дифференциалом – это приведённая теплота: . По определению Клаузиуса, функция состояния системы, дифференциал которой в обратимом процессе равен приведённой теплоте, является энтропией :

Свойства энтропии

1) Энтропия – функция состояния системы, то есть в замкнутой системе в обратимом процессе, когда система возвращается в исходное состояние, полное изменения энтропии равно нулю:

. (8.42)

2) Энтропия аддитивна, то есть энтропия системы равна сумме энтропий всех её частей.

3) Энтропия замкнутой системы не убывает:

причём для обратимых процессов и для необратимых.

Соотношение (8.43) называется неравенством Клаузиуса и представляет собой одну из формулировок второго начала термодинамики: энтропия замкнутой системы остаётся постоянной, если в ней происходят только обратимые процессы, и возрастает в случае необратимых процессов.

Рассмотрим замкнутую систему, состоящую из двух тел с температурами и . Пусть – количество теплоты, полученное вторым телом от первого . Тогда количество теплоты, полученное первым телом, отрицательно и равно . Полное приращение энтропии системы двух тел в процессе теплопередачи равно сумме изменений энтропий двух тел.

Для выяснения понятия «обратимый» и «необратимый» процесс в термодинамическом смысле рассмотрим изотермическое расширение 1 моль идеального газа. Представим себе, что 1 моль идеального газа находится в цилиндре (рис.2), снабженном невесомым поршнем, который может перемещаться вдоль стенок без трения. Давление, которое газ оказывает на стенки цилиндра и поршень, уравновешено кучкой мельчайшего песка. Цилиндр помещен в термостат. Стенки цилиндра обладают идеальной теплопроводностью, так, что при расширении газа или при его сжатии температура не меняется. В начальный момент газ занимает объем V 1 и находится под давлением Р 1 . Исходное состояние такой системы на графике P = f(V) изображено точкой 1 (рис.3).

Начнем снимать по одной песчинке с поршня. Давление при снятии одной песчинки будет падать, а объем возрастает на бесконечно малую величину. Так как изменение давления бесконечно мало, то можно считать, что давление газа по всему объему одинаково и равно внешнему давлению на поршень.

Снимая песчинки, можно достичь состояния 2, в котором газ будет иметь давление Р 2 и объем V 2 . Графически этот бесконечно медленный процесс изображается плавной кривой 1 – 2. Работа, которую совершает газ в этом процессе, численно равна площади, ограниченной изотермой расширения, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Обозначим работу через А 1–2 .

Представим себе обратный процесс. Мы последовательно переносим на поршень по одной песчинке. В каждом случае давление будет возрастать на бесконечно малую величину. В конце концов мы сможет перевести систему из конечного состояния 2 в начальное состояние 1. Графически этот процесс будет изображаться той же самой плавной кривой 2–1, но протекать в обратном направлении. Таким образом, система при переходе из конечного состояния в начальное будет проходить через те же промежуточные состояния давления и объема как в прямом, так и в обратном процессах, изменения происходят на бесконечно малые величины и система в каждый момент времени находилась в равновесном состоянии, а переменные, определяющие состояние системы (Р и V), в каждый момент времени отличались от равновесных значений на бесконечно малые величины. Работа, которую совершает окружающая среда над системой в обратном процессе А 2–1 , будет равна, но обратно по знаку работе прямого процесса:

А 1 – 2 = – А 2 – 1 А 1 – 2 + А 2 – 1 = 0

Следовательно, при переходе из состояния 1 в состояние 2 и обратно в окружающей среде и в самой системе никаких изменений не останется. Обратимый процесс – процесс, в результате которого система может возвратиться в исходное состояние без изменений в окружающей среде.


Из сказанного следует, что обратимые процессы протекают с бесконечно малыми скоростями. Только при этих условиях система в каждый данный момент времени будет находиться в состоянии, бесконечно мало отличающемся от равновесного. Такие процессы называют равновесными.

Проведем процесс расширения одного моль идеального газа с конечной скоростью. Для этого давление газа в цилиндре уравновесим некоторым количеством гирек равной массы (рис.4).

Перевод системы из состояния 1 в состояние 2 будет осуществлять последовательным снятием гирек. При снятии одного грузика внешнее давление упадет на конечную величину (см. нижнюю ломанную кривую, рис.3), объем газа увеличивается с конечной скоростью и через некоторое время достигает равновесного значения. Проведем эту операцию последовательно, несколько раз, пока газ не достигнет конечного состояния 2. Графически этот процесс изображен на рис. 3 нижней ломаной кривой. Работа расширения, которую при этом совершает газ, численно равна площади, ограниченной нижней ломаной линией, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Как видно из рис. 3, она будет меньше работы при обратимом расширении газа. Проведем этот процесс в обратном направлении. Для этого на поршень последовательно будем ставить грузики. Каждый раз при этом давление увеличивается на конечную величину, а объем газа уменьшается и через некоторое время достигает равновесного значения. После того, как на поршень будет поставлен последний грузик, газ достигнет исходного состояния. Графически этот процесс на рис.3 изображен верхней ломаной кривой. Работа, которую при этом производит окружающая среда над газом (работа сжатия), численно равна площади, ограниченной верхней ломаной линией, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Сопоставляя диаграммы сжатия и расширения отметим, что при изменении состояния газа с конечной скоростью работа обратного процесса по абсолютной величине больше работы прямого процесса:

А 1 – 2 < – А 2 – 1 (9)

А 1 – 2 + А 2 – 1 < 0 (10)

Это означает, что возвращение системы из конечного состояния в начальное происходит по другому пути и в окружающей среде остаются какие–то изменения.

Необратимый процесс – процесс, после которого система не может возвратиться в исходное состояние без изменений в окружающей среде.

При протекании необратимого процесса в каждый данный момент времени система не находится в состоянии равновесия. Такие процессы называются неравновесными.

Все самопроизвольные процессы протекают с конечными скоростями и поэтому являются необратимыми (неравновесными) процессами.

Из сопоставления диаграмм расширения следует, что работа, совершаемая системой в обратимом процессе, больше, чем необратимым:

А обр. > А необр (11)

Все реальные процессы в той или иной мере могут приближаться к обратимым. Работа, производимая системой, достигает максимального значения, если система совершает обратимый процесс:

А обр. = А max (12)

Работу, производимую системой при переходе из одного состояния в другое, в общем случае, можно представить как сумму работы расширения и других видов работы (работы против электрических, поверхностных, гравитационных и т.п. сил). Сумму всех видов работы, производимой системой за вычетом работы расширения, называют полезной работой. Если переход системы из состояния 1 в состояние 2 был осуществлен обратимо, то работа этого процесса будет максимальной (А max), а работа за вычетом работы расширения – максимальной полезной работой (А¢ max):

А max = А¢ max + рDV (13)

А¢ max = А max – рDV (14)

Самопроизвольные и несамопроизвольные процессы

В любой системе два произвольно выбранные состояния (1 и 2) различаются тем, что процесс перехода из состояния 1 в состояние 2 протекает самопроизвольно, а обратный процесс перехода из состояния 2 в состояние 1 самопроизвольно не идет.

Отсюда можно заключить, что существует какой–то объективный критерий, позволяющий установить принципиальное различие между рассматриваемыми двумя состояниями системы.

Очевидно, что невозможно искать критерий направления отдельно, для любого мыслимого конкретного процесса в любой системе; логично рассмотреть какой–нибудь один, по возможности, простой процесс, для которого многовековый практический опыт позволяет четко указать, какое направление самопроизвольно, а какое несамопроизвольно. Опираясь на этот пример, можно доказать, что в природе существует некоторая функция состояния, изменение которой в любом мыслимом процессе, а не только в том, который был выбран для формулировки исходного постулата, позволяет однозначно определять, какие процессы самопроизвольны, а какие – нет.

Рассмотрим изолированную систему, состоящую из теплового резервуара, 1 моль идеального газа, заключенного в цилиндре с подвижным поршнем и устройства, позволяющего за счет перемещения поршня совершать работу.

Предположим, что газ обратимо изотермически расширяется от объема V 1 до V 2 (рис.5) и совершает работу А 1 . Энергия на совершение работы передается в форме тепла из резервуара. Совершаемая газом работа эквивалента полученной от резервуара энергии (Q 1):

Q 1 = = A 1 (15)

Функция определятся не только изменением объема, но и температурой. Разделим обе части уравнения на Т:

Из полученного равенства видно, что изменения, происходящие в изолированной системе при протекании обратимого процесса, могут быть охарактеризованы величиной , которая определяется только исходным (V 1) и конечным (V 2) состоянием системы. Увеличение параметра цилиндра с газом эквивалентно уменьшению параметра для теплового резервуара, то есть – = 0.

В предельном случае необратимого (самопроизвольного) расширения идеального газа от V 1 до V 2 , т.е. при расширении в вакууме, процесс происходит без совершения газом работы, т.к. Р = 0, следовательно pDV = 0, и соответственно передачи энергии от резервуара в форме тепла не происходит: Q = 0. Таким образом, изменение внутренней энергии (DU) для газа равно нулю (рис.6).

Однако состояние газа в резервуаре изменилось на величину , а состояние резервуара – нет. Поэтому в целом состояние системы изменилось (увеличилось) на величину ; >0.

Таким образом, протекание самопроизвольного процесса в изолированной системе в общем случае связано с возрастанием характеристики (параметра) состояния системы, которая получила название энтропии.

Из рассмотренного выше примера следует, что самопроизвольно в изолированной системе протекают те процессы, которые приводят к возрастанию энтропии системы. Таким образом, второй закон термодинамики гласит: «Если в изолированной системе протекают самопроизвольные процессы, то ее энтропия возрастает» (закон возрастания энтропии).

Если энтропия системы в исходном состоянии может быть выражена как: S 1 = RlnV 1 , а в конечном состоянии S 2 =R×lnV 2 , то изменение энтропии в результате протекания обратимого процесса DS = S 2 – S 1 = или

DS/обратимого процесса/ =

Соответственно для необратимого процесса

DS/необратимого процесса/ >

Справедливость последнего выражения легко показать, исходя из первого закона термодинамики. В соответствии с первым законом термодинамики

DU = Q – A (17)

Переведем систему из состояния 1 в состояние 2 обратимым и необратимым путем:

DU обр. = Qобр. – Аобр. (18)

DU необр. = Qнеобр. – Анеобр. (19)

Так как внутренняя энергия является функцией состояния, то DU обр. = DU необр.

Известно также, что Аобр. > А необр. Следовательно, Qобр. > Q необр.

DS не зависит от пути процесса, т.к. является функцией состояния, т.e.

DSобр. = DS необр.,

DS/необр./ > (20)

или в общем случае

Знак равенства относится к обратимым, знак неравенства – к необратимым процессам. Уравнение (21) является математическим выражением второго закона термодинамики.

Изменение энтропии изолированной системы

Для изолированной системы Q = 0, т.к. система не обменивается с окружающей средой ни веществом, ни энергией и соответственно:

т.е. при протекании в изолированной системе необратимых (самопроизвольных) процессов энтропия изолированной системы увеличивается:

Это неравенство является критерием, определяющим направление протекания самопроизвольных процессов. Из уравнения (23) также следует, что какие бы процессы в изолированной системе не протекали, ее энтропия не может уменьшаться. Так как самопроизвольные процессы в изолированных системах идут с увеличением энтропии, то при достижении равновесия энтропия изолированной системы будет максимальной, а ее изменение равно нулю.

Sравн.= Smax (24)

DSравн.= 0 (25)

Уравнения (24,25) являются критериями равновесия изолированных систем.

Статистическая природа второго закона термодинамики

В то время как первое начало термодинамики является всеобщим законом природы, не знающим ограничений и применимым к любым системам, второй закон термодинамики представляет собой статистический закон, справедливый для макроскопических систем, состоящих из очень большого числа частиц (молекул, атомов, ионов), для которых применимы физические понятия, имеющие статистическую природу, такие, например, как температура и давление.

Из курса физики известно, что состояние и свойства любой макроскопической системы, состоящей из совокупности большого числа частиц, могут быть описаны с помощью статистической механики. Сущность статистического описания макросистем состоит в применении к совокупности большого числа частиц основных положений теории вероятности, а к отдельным частицам законов классической механики. Такой подход дает возможность объяснить многие свойства макроскопических систем, а также установить закономерности процессов, протекающих в этих системах.

С точки зрения статистической механики второе начало термодинамики, как это впервые показал. Л.Больцман, сводится к утверждению, что все самопроизвольные процессы в макроскопических системах протекают в направлении от менее вероятного к более вероятному состоянию системы.

Таким образом, процессы, запрещенные вторым началом, например, самопроизвольный переход тепла от менее нагретого тела к более нагретому, оказывается не невозможным, а крайне маловероятным, вследствие чего они не наблюдаются.

Любое данное состояние системы характеризуется определенной термодинамической вероятностью и, чем больше последняя, тем ближе система приближается к состоянию равновесия. В состоянии равновесия система обладает максимальной термодинамической вероятностью. Таким образом, вероятность состояния системы, так же как и энтропия, могут быть использованы в качестве критерия направления самопроизвольных процессов и условий, при которых система достигает равновесного состояния Л.Больцман предложил следующее уравнение, устанавливающее связь между энтропией (S) и термодинамической вероятностью (W):

где k – постоянная Больцмана, численное равная отношению газовой постоянной R к числу Авогадро N A , т.е. k = , W – термодинамическая вероятность системы, т.е. число микросостояний, которыми можно осуществить данное макросостояние системы.

Абсолютные и стандартные энтропии

При абсолютном нуле энтропия идеального кристалла чистого вещества равна нулю (постулат Планка).

Справедливость постулата Планка, называемого третьим законом термодинамики, следует из экспериментальных данных о зависимости теплоемкости кристаллических веществ от температуры, а также из статистического характера второго закона термодинамики. При абсолютном нуле данное макросостояние кристалла чистого вещества, кристаллическая решетка которого не имеет каких–либо дефектов, предельно упорядочено и может быть реализовано единственным способом. Следовательно, термодинамическая вероятность при абсолютном нуле равна 1.

На основании постулата Планка можно вычислить абсолютное значение энтропии. Зная, что dS= , a dQ = CdT, dS= , где С – молярная теплоемкость данного вещества. Интегрируя последнее уравнение в пределах от абсолютного нуля до Т, получим:

Энтропию S T называют абсолютной энтропией, она численно равна изменению энтропии при равновесном переходе 1 моль кристаллического вещества от абсолютного нуля до данной температуры.

Вычисление абсолютной энтропии по уравнению (28) возможно лишь в том случае, если известна зависимость теплоемкости данного вещества от температуры.

Абсолютную энтропию тела в стандартном состоянии при данной «Т» называют стандартной энтропией и обозначают через ; чаще всего ее табулируют при 298,15К и обозначают через .

Важно подчеркнуть, что постулат Планка дает возможность вычислить абсолютное значение энтропий различного рода веществ при данном их состоянии, тогда как для других термодинамических функций, например, внутренней энергии и энтальпии могут быть определены только их изменения при переходе данной системы из одного состояния в другое.

Расчет изменения энтропии для протекании химического процесса

Изменение энтропии химического процесса равно алгебраической сумме стандартных энтропий участников реакции, с учетом их стехиометрических коэффициентов, причем энтропии продуктов реакции берутся со знаком плюс, а энтропии исходных веществ – со знаком минус.

Для реакции, протекающей по следующему уравнению: aA + bB ® mM + nN

DS = (m + n ) – (a ) (29)

Например, изменение энтропии реакции

H 2 (г) + Cl 2 (г) = 2HCl(г)

если (г) = 130,6 Дж.моль –1 К –1 ; (г) = 36,69 Дж.моль –1 К –1 ;

(г) = 186,70 Дж.моль –1 К –1

в соответствии с уравнением (29) равно:

DS = 2×186,70 – 130,6 – 36,69 = 206,11 Дж.моль –1 К –1 ;

Энергия Гиббса

По изменению энтропии можно судить о направлении и пределах протекания процессов только в изолированных системах. В случае закрытых и открытых систем необходимо также учитывать изменение энтропии окружающей среды. Решение последней задачи или крайне сложно, или невозможно. Поэтому в термодинамике для изучения открытых или закрытых систем используют другие термодинамические функции – так называемые термодинамические потенциалы, изменение которых позволяет определять направление процессов и пределы их протекания без учета изменений их в окружающей среде. В частности, к термодинамическим потенциалам относится функция состояния, называемая энергией Гиббса, которую обозначают через G. Понятие об энергии Гиббса было введено на основе объединенного уравнения первого и второго законов термодинамики. Объединенное уравнение может быть выведено следующим образом.

Из первого закона термодинамики следует:

A = Q – DU (30).

Из второго закона термодинамики получаем для обратимого процесса:

для необратимого процесса: Q < TDS (32)

Подставляя значение Q из уравнения (31) и уравнения (32) в уравнение (30) находим:

для обратимого процесса А обр. =TDS – DU (33)

для необратимого процесса Анеобр. = < TDS – DU (34)

Уравнение (33) называют объединенным уравнением первого и второго начал термодинамики для обратимых процессов. Так как внутренняя энергия и энтропия являются функциями состояния, то их изменение не зависит от того, как протекает данный процесс, обратимо или необратимо, следовательно:

ТDS обр. – DUобр. = TDSнеобр. – DUнеобр. и Аобр. > Анеобр. т.е. работа, совершаемая при обратимом процессе, больше работы, производимой системой при необратимом процессе при условии, что начальное и конечное состояния системы одинаковы в обоих случаях. Имея в виду, что работа, производимая системой, при обратимом процессе является максимальной для данного изменения состояния системы, преобразуем уравнение (33):

Amax = T(S 2 – S 1) – (U 2 – U 1)

Группируя величины с одинаковыми индексами, получаем:

Amax = (U 1 – TS 1) – (U 2 – TS 2) (35)

т.к. U и S – функции состояния, то величина (U – TS) должна быть также функцией состояния.

Если система, кроме полезной работы, совершает работу, против силы внешнего давления (p = const), то для обратимого процесса Amax = А¢max + pDV

или А¢max = Amax – pDV, где А¢max – максимальная полезная работа, совершаемая системой в обратимом изобарно–изотермическом процессе. Из уравнения (35) получаем для обратимого процесса:

Amax = TDS – DU –pDV (36)

для необратимого процесса: Amax < TDS – DU –pDV (37)

учитывая, что DV =V 2 – V 1 , получаем:

А¢max = U 1 – U 2 + TS 2 – TS 1 – pV 2 + pV 1

Группируя величины с одинаковыми индексами, находим:

А¢max = (U 1 – TS 1 + pV 1) – (U 2 – TS 2 + pV 2) (38)

Величину (U – TS + pV), которая является функцией состояния, т.к. U,S и V суть функции состояния, называют энергией Гиббса и обозначают через G. Раньше эту функцию состояния называли изобарно–изотермическим потенциалом.

Таким образом,

G = U – TS + pV (39)

Имея в виду последнее уравнение, можно записать:

А¢max = G 1 – G 2 т.к.

DG = G 2 – G 1 , А¢max = –DG (40)

Из уравнения (40) следует, что максимальная полезная работа, совершаемая системой в обратимом изобарно–изотермическом процессе, равна уменьшению энергии Гиббса. Для необратимого процесса, путем аналогичного преобразования справедливо:

А¢необр. < – DG (41),

т.е. уменьшение энергии Гиббса в необратимом процессе больше производимой системой полезной работы.

Зная, что U + pV = Н, уравнение (40) можно переписать следующим образом:

G = H – TS (42)

DG = DH – TDS (43)

Последнее уравнение может быть представлено следующим образом:

DG = DU + pDV – TDS

DU = DG – pDV + TDS,

из чего следует, что изменение внутренней энергии системы можно представить как сумму трех слагаемых: DG – часть внутренней энергии системы, способная при изобарно–изотермических условиях превратиться в работу, pDV – часть внутренней энергии, затрачиваемая системой на совершение работы против сил внешнего давления, и TDS – «связанная энергия», представляющая собой часть внутренней энергии, которая в указанных условиях не может быть превращена в работу. «Связанная энергия» тем больше, чем больше энтропия данной системы. Таким образом, энтропию можно рассматривать как меру «связанной энергии».

Из уравнений (40 и 41) следует, что величина DG служит мерой способности системы производить работу и поэтому решить вопрос, может ли реакция протекать самопроизвольно. Реакция протекает самопроизвольно только в том случае, если происходит уменьшение энергии Гиббса системы. Такие реакции называют экзергоническими, если же энергия Гиббса системы возрастает, то для осуществления реакции необходимо затратить работу. Такие реакции называют эндергоническими.

Реакцию, которая в данных условиях не является самопроизвольной, поскольку протекание ее связано с увеличением «свободной энергии», можно осуществить путем сопряжения ее с другой реакцией, характеризующейся достаточно большой отрицательной величиной изменения энергии Гиббса. Условием такого сопряжения будет наличие интермедиата, т.е. общего для обоих реакций вещества.

1. А + В ⇄ С + Д > 0

2. Д + К ⇄ М + Г < 0

3. А + В + К ⇄ С + М + Г < 0

Для живых организмов можно привести много примеров сопряженных реакций. Особенно большое значение имеют реакции гидролиза таких соединений, как аденозинтрифосфат (АТФ), аденозиндифосфат (АДФ), аргининфосфат, креатинфосфат, характеризующиеся величинами изменения энергии Гиббса от – 29,99 до – 50,21 кДж/моль.

Расчет D G 0 в химических реакциях

1. Стандартная свободная энергия образования (D G 0) вещества – изменение свободной энергии реакции образования этого соединения из элементов при стандартных условиях.

D G 0 реакции = å D G 0 продукты реакции – å D G 0 исх.в–ва (44)

где D G 0 продукты реакции – стандартная свободная энергия образования продуктов реакции; D G 0 исходные вещества – стандартная свободная энергия образования исходных веществ. Свободная энергия образования любого элемента в стандартном состоянии принимается за нуль.

С 12 Н 22 О 11 + Н 2 О ® С 6 Н 12 О 6 + С 6 Н 12 О 6

Из справочной таблицы найдем, что:

D G 0 (L, Д – глюкоза) = – 916,34 кДж/моль

D G 0 (фруктоза) = – 914,50 кДж/моль

D G 0 (H 2 O ж) = – 237,3 кДж/моль

D G 0 (сахароза) = – 1550,36 кДж/моль

D G 0 реакции=(–916,34+(–914,50))–(–1550,36 + (–237,3)) =­– 43,18 кДж/моль

Реакция гидролиза сахарозы при стандартных условиях будет протекать самопроизвольно.

2. Если известны значения D Н 0 и D S 0 , можно рассчитать D G 0 реакции по формуле:

D G 0 = D Н 0 – Т D S 0

С (графит) + 2Н 2 (г) = СН 4 (г)

Из найденных в справочной литературе данных D Н 0 обр и S 0 составляем таблицу:

Из приведенных в таблице значений мы можем найти D Н 0 и D S 0 для реакции. D Н 0 реакции= D Н 0 обр.СН 4 (г)– D Н 0 обр.С(графит)–2 D Н 0 обр.Н 2 (г)=–74,81кДж–(0+0)=74,81КДж

D S 0 реакции=S 0 CН 4 (г)–=186,3Дж/К моль–5,74Дж/К моль–2×130,7 Дж/К моль=–80,84 Дж/К моль

Значение D Н 0 и D S 0 подставляем в формулу D G 0 = D Н 0 – Т D S 0:

D G 0 реакции=–74,81кДж–(298К)(–80,84Дж/К)(1кДж/1000Дж)=–74,81кДж–(–24,09кДж)=–50,72кДж.

Термодинамика химического равновесия

Учение о химическом равновесии является одним из важнейших разделов физической химии. Начало учению о химическом равновесии было положено работами французского ученого Бертолле (1799 г.) и в наиболее общем виде развито норвежскими учеными: Гульдбергом и Вааге (1867 г.), установившими закон действующих масс.

Химическое равновесие устанавливается в системах, в которых протекают обратимые химические реакции.

Обратимой химической реакцией называют такую реакцию, продукты которой, взаимодействуя между собой в тех же условиях, при которых они получены, образуют некоторые количества исходных веществ.

С эмпирической точки зрения химическим равновесием называют состояние обратимой химической реакции, при котором концентрации реагирующих веществ в данных условиях не меняются со временем.

Примерами обратимых химических реакций являются: реакция получения иодоводорода из водорода и иода: H 2 (г) + I 2 (г) ⇄ 2HI(г),

реакция этерификации: C 2 H 5 OH(ж) + CH 3 COOH(ж) ⇄ C 2 H 5 COOCH 3 (ж) + H 2 O(ж),

так как образующиеся продукты реакции – иодоводород и уксусно–этиловый эфир способны в тех же условиях, при которых они получены, образовывать исходные вещества.

Необратимой химической реакцией называют такую реакцию, продукты которой не взаимодействуют друг с другом при тех же условиях, в которых они получены, с образованием исходных веществ.

Примерами необратимых химических реакций могут служить: реакция разложения бертолетовой соли на кислород и хлорид калия:

2KCIO 3 (т) ® 2KCI(т) + 3O 2 (г)

Образующиеся в этих случаях продукты реакция не способны взаимодействовать друг с другом с образованием исходных веществ.

Как известно, химическое равновесие является динамическим и устанавливается, когда скорости прямой и обратной реакции становятся одинаковыми, вследствие чего и не меняются со временем концентрации реагирующих веществ.

Понятия об обратимых и необратимых химических реакциях не следует путать с понятиями об обратимых и необратимых процессах в термодинамическом смысле.

Концентрации исходных веществ и продуктов реакции, установившиеся в системе, достигшей состояние равновесия, называются равновесными.

Отношение произведения равновесных концентраций продуктов реакции, возведенных в степени, показатели которых равны их стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, показатели которых равны их стехиометрическим коэффициентам, для данной обратимой реакции, есть величина постоянная при данной температуре. Эта величина получила название константы химического равновесия. Например, для реакции: аА + вВ сС + дД– константа химического равновесия (К х.р.) равна:

К х.р. = [C] c [D] d /[A] a [B] b (45)

Выражение (46) является математическим выражением закона действующих масс, установленного в 1867 г. норвежскими учеными Гульдбергом и Вааге.

Второе начало термодинамики. Обратимые и необратимые процессы.

Из формулы (8.6.1) видно, что к.п.д. тепловой машины меньше единицы. Наилучшей была бы машина, с к.п.д., равным единице. Такая машина могла бы полностью превращать в работу всю полученную от некоторого тела теплоту, ничего не отдавая холодильнику. Многочисленные опыты показали невозможность создания подобной машины. К такому выводу впервые пришел Сади Карно в 1824 г. Изучив условия работы тепловых машин, он доказал, что для производства работы тепловой машиной нужно не менее двух источников теплоты с различными температурами. В дальнейшем это детально было изучено Р. Клаузиусом (1850 г.) и В.Кельвином (1852 г.), которые сформулировали второе начало термодинамики.

Формулировка Клаузиуса : Тепло не может самопроизвольно переходить от менее нагретого к более нагретому телу без каких-либо изменений в системе. Т.е. невозможен процесс, единственным конечным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому.

Из этого определения не вытекает, что тепло не может передаваться от менее нагретого к более нагретому телу. Это происходит в любых холодильных установках, но передача тепла здесь не является конечным результатом, так как при этом совершается работа.

Формулировка Томсона (Кельвина) : Невозможно преобразовать в работу всю теплоту, взятую от тела с однородной температурой, не производя никаких других изменений в состоянии системы. Т.е. невозможен процесс, единственным конечным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу.

Здесь не вытекает, что теплота не может быть полностью обращена в работу. Например, при изотермическом процессе (dU=0) теплота полностью обращается в работу, но этот результат не является единственным, конечным, так как здесь еще происходит расширение газа.

Видно, что приведенные формулировки эквивалентны.

Второе начало термодинамики был окончательно сформулирован тогда, когда окончились неудачей все попытки создать двигатель, который бы обращал в работу всю полученную им теплоту, не вызывая при этом никаких других изменений состояния система - вечный двигатель второго рода . Это двигатель, имеющий к.п.д. 100 %. Поэтому другая формулировка второго начала термодинамики: невозможен перпетуум мобиле второго рода, т.е. такой периодически действующий двигатель, который получал бы тепло от одного резервуара и превращал эту теплоту полностью в работу.

Второе начало термодинамики позволяет разделить все термодинамические процессы на обратимые и необратимые . Если в результате какого-либо процесса система переходит из состояния А в другое состояние В и если возможно вернуть ее хотя бы одним способом в исходное состояние А и притом так, чтобы во всех остальных телах не произошло никаких изменений, то этот процесс называется обратимым. Если же это сделать невозможно, то процесс называется необратимым. Обратимый процесс можно было бы осуществить в том случае, если прямое и обратное направления его протекания были бы равновозможны и равноценны.

Обратимыми процессами являются процессы, протекающие с очень малой скоростью, в идеальном случае бесконечно медленно. В реальных условиях процессы протекают с конечной скоростью, и поэтому их можно считать обратимыми только с определенной точностью. Наоборот, необратимость является характерным свойством, вытекающим из самой природы тепловых процессов. Примером необратимых процессов являются все процессы, сопровождающиеся трением, процессы теплообмена при конечной разности температур, процессы растворения и диффузии. Эти все процессы в одном направлении протекают самопроизвольно, "сами собой", а для совершения каждого из этих процессов в обратном направлении необходимо, чтобы параллельно происходил какой-то другой, компенсирующий процесс. Следовательно, в земных условиях у событий имеется естественный ход, естественное направление.

Второе начало термодинамики определяет направление протекания термодинамических процессов и тем самым дает ответ на вопрос, какие процессы в природе могут протекать самопроизвольно. Оно указывает на необратимость процесса передачи одной формы энергии – работы в другую – теплоту. Работа – форма передачи энергии упорядоченного движения тела как целого; теплота – форма передачи энергии неупорядоченного хаотического движения. Упорядоченное движение может переходить в неупорядоченное самопроизвольно. Обратный переход возможен лишь при условии совершения работы внешними силами.

Цикл Карно.


Анализируя работу тепловых двигателей, Карно пришел к выводу, что наивыгоднейшим процессом является обратимый круговой процесс, состоящий из двух изотерм и двух адиабат, так как он характеризуется наибольшим коэффициентом полезного действия. Такой цикл получил название цикла Карно.

Цикл Карно – прямой круговой процесс, при котором выполненная системой работа максимальна.

Пусть некоторая система может вступать в тепловой контакт с двумя тепловыми резервуарами, температуры которых Т 1 и Т 2 , а теплоемкости бесконечно велики (то есть добавление или отнятие некоторого количество теплоты не изменяет температуры). Примем, что система представляет собой идеальный газ, находящийся в цилиндрическом сосуде под поршнем (рис. 8.7.). Считаем, что стенки и поршень теплонепроницаемы.

Пусть сначала система, находящаяся в состоянии с (р 1 , V 1 , Т 1), приводится в тепловой контакт с первым резервуаром. При сообщении системе теплоты Q 1 совершается работа против внешних сил, численно равная Q 1 , газ расширяется до объема V 2 .

Затем цилиндр переставляется на изолирующую подставку. Газу предоставляется возможность и дальше расширяться до объема V 3 , чтобы температура стала Т 2 .

Переведем цилиндр с поршнем в тепловой контакт со вторым резервуаром с температурой Т 2 , причем внешние тела совершают работу Q 2 над системой, так что объем становится V 4 .

Вновь изолируем систему и уменьшаем объем до первоначального значения V 1 , так что температура повысится от Т 2 до Т 1 .

Если все четыре процесса являются обратимыми, то все наши рассуждения справедливы, и система действительно вернется в исходное состояние с (р 1 , V 1 , Т 1).

Итак, описанный цикл состоит из двух изотермических (1®2 и 3®4) и двух адиабатических расширений и сжатий (2®3 и 4®1) (см. рис.8.8.). Машина, совершающая цикл Карно, называется идеальной тепловой машиной.


Работа, совершаемая при изотермическом расширении:

; А 1 =Q 1 . (8.8.1)

При адиабатическом расширении работа совершается за счет убыли внутренней энергии системы, т.к. Q’=0: