Методы в естествознании таблица. Методы научного познания. На современном этапе развития науки особую важность приобретает прогнозирование научных открытий и технических решений

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

В основе методов Е. заложен принцип единства эмпирических и теоретических сторон, которые взаимосвязаны и взаимообусловлены. Их разрыв или преимущественное развитие одной за счет другой закрывает путь к правильному познанию природы: теория становится беспредметной, опыт - слепым.

Методы Е. могут быть подразделены на группы: общие, особенные, частные.

Общие методы касаются всего Е., любого предмета природы, любой науки. Это - различные формы диалектического метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например метод восхождения от абстрактного к конкретному и др.

Те системы отраслей Е., строение которых соответствует действительному историческому процессу их развития (биология и химия) фактически следуют этому методу. Диалектический метод в биологии, географии, химии - это сравнительный метод, с его помощью раскрывается всеобщая связь явлений. Отсюда - сравнительные анатомия, эмбриология, физиология. В зоо-, фито- и физической географии он уже давно успешно применяется. В Е. диалектический метод выступает и как исторический, в астрономии на него опираются все прогрессивные космогонические гипотезы - звездные и планетарные; в геологии (как основа исторической геологии), в биологии этот метод лежит в основе Дарвинизма. Иногда оба метода сочетаются в единый сравнительно-исторический метод, который глубже и содержательнее каждого из них в отдельности. Этот же метод в его применении к процессу познания природы, особенно к физике, связан с принципом соответствия и способствует построению современной физической теории.

Особенные методы также применяются в Е., но касаются не его предмета в целом, а лишь одной из его сторон (явлений, сущности, количественной стороны, структурных связей) или же определенного приема исследований: анализ, синтез, индукция, дедукция. Особенными методами служат наблюдения, эксперимент и, как его частный случай, - измерение. Исключительно важны математические приемы и методы как особые способы исследования и выражения, количественных и структурных сторон и отношение предметов и процессов природы, а также метода статистики и теории вероятностей.

Роль математических методов в Е. неуклонно возрастает по мере все более широкого применения персональных компьютеров. Происходит ускоренная компьютеризация современного Е. Современное Е. широко использует методы моделирования природных процессов и промышленного эксперимента.

Частные методы - это специальные методы, действующие в пределах отдельной отрасли Е., где они возникли.

В ходе прогресса Е. методы могут переходить из более низкой категории в более высокую: частные - превращаться в особенные, особенные - в общие.

Методы физики, использованные в других отраслях Е., привели к созданию астрофизики, кристаллофизики, геофизики, химической физики, физической химии, биофизики. распространение химических методов привело к созданию кристаллохимии, геохимии, биохимии и биогеохимии. Зачастую применяется комплекс взаимосвязанных частных методов к изучению одного предмета, например молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

Важнейшая роль в развитии Е. принадлежит гипотезам, которые и являются формой развития Е.

Методология естествознания

Если понять связи между процессами естествознания, то можно построить картину современного естествознания. Естествознание прошло несколько стадий: сбор естественнонаучной информации, затем её анализ. Стадия анализа уже некоторая составляющая методологии. Наука с ее развитием все более усложняется в методах.
    Общеметодологические проблемы естествознания:
  • Раскрытие всеобщей связи явлений природы (живой и неживой), установление сущности жизни, ее происхождение, физико-химические основы наследственности.
  • Раскрытие сущности явлений как в глубь материи (область элементарных частиц), так и в сторону макро (околоземных) и мега (далее) объектов.
  • Раскрытие реальных противоречий объектов природы, таких как корпускулярно-волновой дуализм (кто бы нам, юристам, сказал, что это такое?), частица и античастица, взаимоотношение динамических и статистических закономерностей (динамические законы отражают жесткую детерминированную связь между объектами, эта связь однозначна и предсказуема, если мы приложили силу к определенной точке, то мы знаем в какой момент и в каком месте она будет находиться); статистические закономерности (иногда их называют вероятностными законами, используют для описания анализа в системах, где очень много компонентов, где невозможно все точно предсказать), случайности и необходимости.
  • Выявление сущности качественного преобразования в природе (в естествознании важен не сам переход, а важны условия перехода в реальности и природа скачка, т.е. механизм), выявление соотношения между материей и сознанием. На современном этапе необходимы совершенно новые подходы.
Методология естествознания ориентирована на решение главной проблемы, проблемы управляемого развития научного знания.

Метод - это совокупность приемов и операций практического и теоретического освоения действительности. Метод вооружает исследователя системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владением методом означает знание того, каким образом, в какой последовательности совершать те или иные действия. Методология это область знания, занимающаяся изучением методов, оценкой их эффективности, сущности и применимости, методы научного познания принято подразделять по степени их общности, т.е. широте применимости в процессе научного исследования:

  • Первая группа это всеобщие методы: диалектический и метафизический, еще их называют общефилософскими методами.
  • Вторую группу методов составляют общенаучные методы, которые используются в самых различных областях наук, т.е. имеют широкий спектр междисциплинарного применения.
  • Третья группа методов: частнонаучные, которые используются только в рамках исследования какой-то конкретной науки или даже конкретного явления.
Эта трехступенчатая структура сообразуется с понятием системы. Эти методы по нисходящей, определяют разработку исследования от общего к частному, с использованием множества методов. Частнонаучные методы обычно вырабатываются применительно к конкретному исследованию, обычно в момент научной революции.

Существует два уровня познания, это эмпирический и теоретический. На эмпирическом уровне используют наблюдение, эксперимент, измерение. На теоретическом уровне используют идеализацию и формализацию. А метод моделирования можно использовать на обоих уровнях. В модели надо учесть множество факторов и оптимизировать их. Моделирование чаще используется на теоретическом уровне, когда имеется уже много фактов, их надо обобщить, квалифицировать прогнозировать. Математические методы моделирования проникли во все науки.

    Элементы структуры научного знания:
  1. Фактический материал или твердо установленный факт.
  2. Это результаты обобщения фактического материала выраженные в понятиях.
  3. Научные предположения (гипотезы).
  4. Нормы научного знания - это совокупность определенных, концептуальных и методологических установок, свойственных науке на каждом конкретно историческом этапе ее развития. Основной функцией является организация и регулирование процесса исследования. Выявление наиболее эффективных способов и путей решения проблемы. Смена этапов в науке приводит к изменению норм научного познания.
  5. Законы, принципы, теории.
  6. Стиль мышления, характеризуется двумя подходами (в основном) к рассмотрению объектов. Первое, это представление о простых динамических системах (это первый исторический тип мышления) и второе, это представление о сложных процессах, о самоорганизующихся системах.
Цель методологии - создать новые способы и методы для решения проблем современной науки.

Проблема управляемого развития :

С переходом на современном этапе естествознания к изучению больших и сложноорганизованных объектов (систем) прежние методы классического естествознания оказались не эффективными. Иначе, мир объектов предстал значительно более многообразным и сложным, чем ожидалось и те методы, которые позволяли изучить часть объектов и могли дать картину в статике, на современном этапе уже не могут быть применены. Сейчас мир понимается, как динамическая система, где компоненты взаимодействуют и приобретают новые качества.

Для изучения такой системы выработан системный подход (системное исследование объектов). Основатель теории систем Берталанфи развил первую систему, это австрийский биолог теоретик, и системный подход стал впервые применяться в биологии. Основная задача общей теории систем состоит в том, чтобы найти совокупность законов, объясняющих поведение функционирование и развитие всего класса объектов как целого. Это направлено на построение целостной теоретической модели классов объектов. В классической науке бралась система, в ней были какие-то компоненты (здесь аналогия механики, все сводилось к движению внутри системы, все системы рассматривались как закрытые системы). Сегодня можно поставить такой вопрос, существуют ли изолированные системы в принципе, ответ отрицательный. Естественными системами в природе являются открытые термодинамические системы, которые обмениваются с окружающей средой энергией, веществом и информацией. Особенности системного подхода:

  • При исследовании объекта как системы, компоненты этой системы рассматриваются не сами по себе отдельно, а с учетом их места в структуре целого.
  • Даже если компоненты системы одного класса, то при системном анализе они рассматриваются как наделенные разными свойствами, параметрами и функциями, но которые объединены общей программой управления.
  • При исследовании систем обязательно предполагается учет внешних условий их существования. Для высокоорганизованных систем (органических) оказывается недостаточным причинное описание их поведения. Это означает, что причинно-следственная связь является очень жесткой (в смысле однозначной), согласно таким представлениям считалось, что можно спрогнозировать весь процесс событий, это по классической школе. И случайность, и нелогичность рассматривались как некие недоразумения. Случайностям не уделялось достаточно внимания. Вместе с тем, когда ученые стали рассматривать поведение сложных высокоорганизованных систем (биологические, социальные, технические), то выявилось, что строгой предопределенности (однозначности прогнозирования) нет. Кризиса в науке в связи с этим не случилось, т.к. открытия в области естественных наук выявили общие закономерности конкретных систем, то эти закономерности стало возможным применить и к самой науке.
Эволюционно-синергетическая парадигма, создание такого подхода стало возможным на базе нового научного направления - синергетика. Синергетика - это наука о самоорганизации систем состоящих из множества подсистем самой различной природы. Тем самым подчеркивается универсальность этого методологического подхода, т.е. он применим в различных областях науки, в основе лежит понимание того, что в основе функциональных систем лежат сложные динамические системы самоорганизации. Другое определение синергетики - кооперация, сотрудничество, взаимодействие различных элементов систем.

Движение развития науки, поднятие на новый качественный уровень связывали с НТР. Если мы говорим о развитии сложных систем, то всегда имеется точка бифуркации (к этому моменту подходит любая сложная система на своём развитии). От этой точки развитие может пойти вниз, а может вверх. Применительно к сложным системам в точке бифуркации необходимо применить немного сил, чтобы развитие пошло вверх.

РАЗВИТИЕ
/ \
Хаос Порядок

Если раньше полагали, что развитие это только движение, и хаос воспринимали как жуткую бездну и не понимали, что есть взаимосвязь между хаосом и порядком. В результате скачка система приобретает новые свойства за счет внутренней упорядоченности (организации). Если говорить о твердых телах - это упорядоченность в структуре (кристаллическая решетка), таким образом, в природе мы тоже видим упорядоченность. Развитие порядка происходит через хаос. Выбор определяется и условиями внешнего воздействия на систему. Из точки бифуркации возможно два пути: переход к более высокой организации или разрушение системы (считай деградация). В науках есть критические точки развития, но есть нюанс, что в точке есть несколько путей выбора. Главный принцип в том, что если мы понимаем как развивается сложная система, не надо ей мешать, а при необходимости лишь слегка направить систему в нужном направлении. Положения из синергетического подхода:

  • Сложно организованным системам нельзя навязывать пути их развития. Наоборот следует понять, каким образом способствовать их собственным тенденциям развития. Следовательно, необходимо попытаться вывести на их собственные более эффективные пути развития.
  • Этот подход позволяет понять роль хаоса в качестве новой организации систем.
  • Позволяет понять и использовать моменты неустойчивости системы. Точка бифуркации как раз момент неустойчивости, где малое усилие порождает большие последствия. В моменты неустойчивости могут происходить изменения на более высоких уровнях организации материи.
  • Синергетика свидетельствует о том, что для сложных систем существует несколько альтернативных путей развития. Это положение позволяет сделать вывод, что в принципе существуют такие пути развития человека и природы, которые могли бы устроит человека и не наносить вреда природе. Для нахождения таких путей мы должны понять закономерности развития сложных систем.
  • Синергетика дает знания о том, как оперировать сложными системами.
  • Синергетика позволяет раскрыть закономерности протекания быстрых, нелинейных процессов, которые лежат в основе качественных преобразований системы.
С помощью каких законов можно описать объективные закономерности: с помощью динамических законов или статистических? Здесь возникает проблема соотношения законов. Другими словами речь идет: во-первых, о применимости законов, во-вторых, о соотношении законов, какие являются главными, а какие специальными. В рамках данной проблемы (соотношение законов) возникли два философских направления:
  1. Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений.
  2. Индетерминизм - учение, отрицающее какую-либо объективную причинную обусловленность явлений.
Соотносительно этим направлениям развивались физические теории.

Динамические законы. Первая и такая теория, которая соотносилась с детерминизмом - динамическая. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи неких физических величин выраженных количественно. Исторически первой и простой явилась динамическая механика Ньютона. Лапласу принадлежит абсолютизация динамических закономерностей. Согласно его принципу все явления в мире детерминированы, т.е. предопределены необходимостью. А случайным явлениям и событиям, как объективной категории, не отводится никакого места. На определенной стадии развития таких законов возник вопрос о том, что динамические законы не единственные законы, что они не являются универсальными. Исторически это связано с изучением более сложных систем, а также со стремлением ученых проникнуть в глубь материи.

Статистические законы. Наряду с динамическими законами действуют законы иного рода, предсказания которых являются не определенными, а вероятностными. Но детерминизм не уходит из науки, а вышеназванный подход называется вероятностным детерминизмом - вероятностное прогнозирование объективных закономерностей на основе вероятностных законов. Такие законы получили название статистических. Это значит, что предсказать событие можно не однозначно, а с определенной степенью вероятности. Здесь оперируют срединными величинами и усредненными значениями. Вероятностными эти законы называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются однозначными. Т.к. сама информация носит статистический характер, эти законы называют статистическими. Логика выявления этих законов принадлежит Максвеллу. Вероятность имеет объективный характер, это означает, что на фоне множества событий обнаруживается определенная закономерность, выражаемая определённым числом.

2. Структурные уровни организации материи и структура естествознания

Важнейшими свойствами материи являются структурность и системность. Материя структурирована определенным образом на всех масштабно-временных уровнях: от элементарных частиц до Вселенной в целом. Системность означает упорядоченность множества связанных друг с другом элементов, обладающих целостностью по отношению к другим объектам или внешним условиям. Таким образом, система характеризуется внутренними связями более сильными, чем связи с окружающей средой.

Отсюда вытекает необходимость не просто систематизировать, классифицировать различные объекты природы, но и изучать связи между ними, или взаимодействия. Наиболее интересными с принципиальной точки зрения являются так называемые фундаментальные взаимодействия, лежащие в основе всего многообразия видимых и известных науке сил действия одного тела на другое. Каждому из них соответствует свое физическое поле. Их число невелико (в настоящее время три: гравитационное, электрослабое и сильное), и есть надежда, что в результате создания общей теории (суперобъединения) их можно будет свести к одной Универсальной Силе Природы. Эта глобальная проблема стоит на повестке дня со времен А. Эйнштейна, гения которого не хватило для ее решения, хотя он и потратил на это около 30 последних лет жизни. Надежды на такую возможность связаны с тем, что уже существует один универсальный подход к описанию всех видов фундаментальных взаимодействий, а именно, квантово-полевой. Схематически любое взаимодействие двух частиц (тел) в вакууме (т.е. без каких-либо передающих сред) можно описать как обмен этих частиц квантами соответствующего поля, испускаемых одной из них и поглощаемой другой. При этом кванты поля, распространяясь с конечной скоростью (в вакууме со скоростью света), переносят энергию и импульс, что ощущается частицами, поглощающими их, как действие силы. В связи с конечной скоростью распространения квантов поля в пространстве утвердилась концепция «близкодействия». Это означает, что любое действие, любая информация передается от одного тела к другому не мгновенно, а последовательно от точки к точке с конечной скоростью. Господствовавшая до этого противоположная точка зрения – «дальнодействие» – интуитивно, a priori предполагавшая, что информация о положении любой частицы и ее положении распространяется по всей Вселенной мгновенно, не выдержала испытаний опытом и представляет сейчас только историческую ценность.

Частицам присуща масса покоя, в то время как кванты поля ее не имеют. Частицы локализованы в той или иной области пространства, а поля распределены в нем. Но при этом и те и другие одновременно обладают и свойствами волн и свойствами частиц (так называемый «корпускулярно-волновой дуализм»). Возможность превращений вещество - поле - вещество в мире элементарных частиц отражает внутреннее единство материи.

Структура естествознания. Наиболее важные структурные единицы материи можно выстроить в ряд согласно их характерным размерам. Здесь важно понять, что речь идет лишь о порядках величин, характеризующих протяженность типичного представителя в пространстве и продолжительность типичных процессов в нем. Несмотря на общеметодологическое единство естествознания (см. следующий модуль) при изменении характерных размеров и времен на колоссальное число порядков величин возникает необходимость вырабатывать специфические приемы исследования и анализа. Укрупненно и очень условно (в смысле положения границ) природу можно разбить на три «этажа» (или «мира»): микро-, макро- и мега- .

Первый – это мир элементарных частиц, фундаментальных полей и систем, содержащих небольшое число таких частиц. Это - корни естествознания, и в них сосредоточены наиболее принципиальные проблемы мироздания. Макромир - это привычный нам уровень окружающих нас предметов и явлений. Даже он кажется огромным и чрезвычайно разнообразным, хотя это всего лишь небольшая часть природы. Наконец, мегамир составляют объекты, сопоставимые по размерам с Вселенной, размеры которой пока не установлены даже по порядку величины. Более детальное и тоже весьма условное деление этих уровней привело к появлению соответствующих наук в естествознании: физика, химия, биология и т.д. Каждая из них содержит около сотни еще более узких конкретных дисциплин (например, механика, термодинамика, органическая химия, зоология, ботаника, физиология растений и т.д.). Существуют и междисциплинарные разделы науки, например, синергетика (от греческого слова совместный, согласованно действующий) – теория самоорганизации в открытых неравновесных системах, охватывающая все уровни структуры материи и рассматривающая природу как комплексную самоорганизующуюся систему.

Макромир доступен прямому наблюдению, события в нем привычны нам, мы контактируем и взаимодействуем с ним каждый момент времени. Он изучается человеком много тысячелетий и знания о нем имеют прямую практическую полезность. Тем не менее, и в нем существует множество не разгаданных загадок природы и в этой области неуки продолжает трудиться подавляющая часть современных ученых.

Явления в микро- и мегамирах практически не проявляются на бытовом уровне, поэтому множество людей и не подозревают об их существовании. Другим кажется, что в практическом смысле они не имеют никакого значения. Отчасти эту точку зрения можно понять, поскольку действительно, не только влияние, но и само существование элементарных частиц или, скажем, черных дыр в глубинах Вселенной, невозможно установить без сложных приборов. Даже качественные представления о них невозможно вывести из бытового опыта, по аналогии с известными макроскопическими событиями. Тем не менее, мы сами, будучи макроскопическими объектами, состоим на 100% из совокупности элементарных частиц, организованных и связанных между собой определенным образом, и являемся частью гигантской Вселенной. Так что новые знания о микро- и мегамирах важны не только в познавательном или мировоззренческом смысле, но и ведут к боле глубокому и ясному пониманию сущности процессов, протекающих в макромире.

3. Методология и методы естествознания

Методология – это система наиболее важных принципов и способов организации и осуществления какого-либо вида деятельности, а также учение об этой системе. У каждого вида деятельности имеется своя методология, существующая в явном или неявном виде, сформулированная и зафиксированная в каких-либо формах или применяемая стихийно-интуитивно. Принципы – это ключевые положения методологии, а методы – набор конкретных приемов, с помощью которых осуществляется тот или иной вид деятельности (с греческого «методос» – путь к чему-либо).

Методология науки в целом и все научные методы исходят из принципа причинности . Его содержание менялось по мере развития науки, но ключевое положение, на котором зиждется научный подход, остается неизменным: все, что бы не происходило в природе, обусловлено своими причинами. Глобальная задача науки и заключается в выяснении всех значимых причинно – следственных связей в окружающем мире. Они могут быть неодномерны, сложны, непознанны, но это не отменяет их существования. Никакого места произволу, сверхъестественному вмешательству потусторонних сил природа не оставляет.

Очень важно понять, что принцип причинности является основополагающим не только для «точных» наук, но и для истории, социологии, юриспруденции и т.д. Действительно, трудно себе представить, к примеру, следователя, расследующего уголовное преступление и допускающего «чудеса» в виде беспричинного появления или исчезновения улик с места преступления, «сверхъестественного» чутья на завоз денег в банк или внезапного падения курса определенных акций.

Известный французский философ, физик, математик и физиолог 17 века Р. Декарт формулировал понятие метода следующим образом «Под методом я разумею точные и простые правила, строгое соблюдение которых … без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно». В наше время такому пониманию скорее соответствует термин «алгоритм».

Обычно выделяют несколько групп (уровней) методов познания , в частности, практически во всех классификациях присутствуют:

 Общенаучные методы

 Частнонаучные методы

 Специальные методы

По другим признакам их можно разделить на эмпирические, теоретические и методы моделирования .

В свою очередь, все их можно дифференцировать и дальше. Так, общенаучные эмпирические методы включают наблюдение, эксперимент, измерение.

Наблюдение – простейший их них. На начальных стадиях развития любой науки наблюдения играют важнейшую роль и образуют эмпирический базис науки. Он позволяет провести поиск, сравнение, классификацию объектов и т.п., однако по мере развития науки его ценность падает. Более информативен эксперимент – целенаправленное воздействие на объект в строго контролируемых условиях и изучение его поведения в этих условиях.

Искусство экспериментатора в первую очередь как раз и заключается в создании таких условий эксперимента, которые позволяют «очистить» ситуацию от влияния большого числа побочных факторов и оставить один – два, которыми можно сознательно управлять и целенаправленно воздействовать на объект, изучая его отклики на эти контролируемые воздействия. При этом, зачастую заранее не известно, какие факторы являются важными, а какие – менее важными, все ли неконтролируемые воздействия исключены и не создают ли они помех, сопоставимых или даже больших, чем реакция объекта на контролируемое воздействие. В самой постановке опыта, ограничивающего степени свободы объекта и набор факторов на него действующих, заложена большая опасность «с пеной выплеснуть ребенка из ванночки».

Эксперименты могут быть качественными и количественными. Первые могут помочь в решении принципиальных вопросов: существует ли такой эффект в природе? растет или падает скорость процесса при увеличении давления? постоянна ли данная величина в действительности при изменении условий в широких пределах (например, заряд электрона, скорость света в вакууме и т.п.)? и т.д. Гораздо более информативны количественные эксперименты, включающие измерения. Так, известный английский физик В. Томсон (лорд Кельвин), именем которого названа шкала абсолютных температур, писал «каждая вещь известна лишь настолько, насколько ее можно измерить». Измерение – есть процесс определения количественных характеристик объекта или процесса, выраженных в заранее принятых единицах измерения данной величины (например, в метрах, секундах, граммах, Вольтах, градусах и т.д.).

Среди общенаучных теоретических методов можно выделить абстрагирование, мысленный эксперимент, индукцию, дедукцию и др. Абстрагирование состоит в мысленном упрощении объекта путем игнорирования ряда его несущественных (в данной постановке задачи) признаков и наделении его несколькими (иногда одним, двумя) наиболее существенными, например, материальная точка, береза, неустойчивое состояние. В первом примере игнорируются все геометрические и физические характеристики реального тела (объем, форма, материал и его физические свойства) кроме массы, мысленно сосредотачиваемой в центре масс. Во втором, несмотря на то, что в мире нет двух абсолютно одинаковых берез, - мы все-таки ясно понимаем, что речь идет о разновидности дерева со своими характерными особенностями архитектуры, формы и строения листочков и т.д., в третьем примере подразумевается некоторая абстрактная система (без рассмотрения ее устройства и состава), которая под действием ничтожно малых случайных причин может выйти из своего исходного состояния, характеризующегося некоторым набором параметров, и самопроизвольно перейти в другое, с другим набором характеристик. Конечно, мы теряем при таком рассмотрении множество деталей, характеризующих реальный объект, но взамен получаем простую схему, допускающую широкие обобщения. И впрямь, не можем же мы ставить перед собой задачу изучить каждую березу на Земле, хотя все они чем-то и отличаются друг от друга.

Под материальной точкой в разных задачах может подразумеваться молекула, автомобиль, Луна, Земля, Солнце и т.д. Такая абстракция удобна для описания механического движения, но совершенно непродуктивна при анализе, скажем, физических или химических свойств реального твердого тела. Многие исключительно полезные абстракции пережили века и тысячелетия (атом, геометрическая точка и прямая линия) хотя и наполнялись разными смыслом в разные эпохи. Другие - (теплород, мировой эфир) не выдержали испытания временем и опытом.

Другим методом теоретического анализа является мысленный эксперимент . Он проводится с идеализированными объектами, отражающими наиболее существенные свойства реальных, и в ряде случаев позволяет путем логических умозаключений получить некоторые предварительные результаты, помогающие упростить, сузить фронт дальнейших детальных исследований. Таким методом было решено много принципиальных задач в естествознании. Так, Галилей открыл закон инерции, мысленно понижая, а затем и вовсе исключая силы трения при движении, а Максвелл прояснил суть важнейшего для понимания природы закона – второго начала термодинамики – путем мысленного расположения на пути летящих молекул гипотетического «демона», сортирующего их по скоростям.

Индукция (от латинского inductio – наведение, побуждение, возбуждение) – это метод познания, заключающийся в получении, выведении общих суждений, правил, законов на основании отдельных фактов. Т.е. индукция – это движение мысли от частного к общему и более универсальному. Строго говоря, большая часть наиболее общих законов природы получена методом индукции, т.к. изучить досконально абсолютно все объекты данного типа совершенно нереально. Обычно вопрос заключается лишь в том, сколько же частных случаев необходимо рассмотреть и потом учесть, чтобы на этом основании сделать убедительный обобщающий вывод. Скептики считают, что достоверно доказать этим способом ничего невозможно, поскольку ни тысяча, ни миллион, ни миллиард фактов, подтверждающих общий вывод не гарантируют, что тысяча первый или миллион первый факт не будет противоречить ему.

Метод противоположный по направлению движения мысли – от общего к частному – называется дедукция (от латинского deductio – выведение). Вспомните знаменитый дедуктивный метод сыска Шерлока Холмса. Т.е. дедукция и индукция – взаимодополняющие методы построения логических умозаключений.

Примерно в таком же соотношении между собой находятся методы анализа и синтеза , используемые как в эмпирических так и теоретических исследованиях. Анализ – мысленное или реальное расчленение объекта на составные части и исследование их порознь. Вспомните обычную поликлинику – учреждение для диагностики и лечения болезней человека и ее структуру, представленную кабинетами окулиста, невропатолога, кардиолога, уролога и т.д. Ввиду исключительной сложности человеческого организма гораздо легче научить врача распознавать болезни отдельных органов или систем, а не всего организма в целом. В ряде случаев этот подход дает желаемый результат, в более сложных – нет. Поэтому методы анализа дополняются методом синтеза, т.е. сведения всех знаний о частных фактах в единое связанное целое.

В течение нескольких последних десятилетий интенсивно развивались методы моделирования , являющиеся младшими, но более развитыми братьями метода аналогий . Вывод «по аналогии» осуществляют переносом результатов, полученных на одном объекте, на другой – «аналогичный». Степень этой аналогичности определяют различными критериями, наиболее систематично вводимыми в так называемой «Теории подобия».

Моделирование обычно подразделяют на мысленное, физическое и численное (компьютерное). Мысленное моделирование реального объекта или процесса посредством идеальных объектов и связей – важнейший метод науки. Без мысленной модели невозможно понять, проинтерпретировать результаты эксперимента, «сконструировать» математическую или компьютерную модели явления, поставить сложный натурный эксперимент. Известный по не только блестящим результатам в физике, но и остроумным высказываниям, академик А. Мигдал сказал как-то: «Если математика – это искусство избегать вычислений («чистая», неприкладная математика, как правило, не имеет дел с вычислениями), то теоретическая физика – это искусство вычислять без математики». Конечно же здесь слово «вычислять» не имеет буквального смысла – проведение тщательных, точных вычислений. Подразумевается искусство предвидеть результат в рамках удачной, адекватной модели по порядку величины, или в виде соотношения: если одна величина достигнет какого-то значения, то другая будет равна тому-то, или искомая величина обязана быть больше некоторой критической, или лежать в определенном интервале значений. Как правило, в большинстве задач и реальных проблем высококвалифицированный ученый может прийти к таким заключениям не проводя никаких опытов, а просто построив в уме некоторую качественную модель явления. Искусство в том и состоит, чтобы модель была реалистичной и в то же время простой.

Физическое (предметное) моделирование проводят в тех случаях, когда невозможно или затруднительно (по технологическим или финансовым причинам) провести эксперимент на оригинальном объекте. Например, для определения трудно поддающегося расчетам аэродинамического сопротивления самолета, автомобиля, поезда или гидродинамического сопротивления корабля на стадии проектирования обычно строят модель уменьшенных размеров и продувают ее в специальных аэродинамических трубах или гидравлических каналах. В известном смысле любой натуральный эксперимент можно рассматривать как физическую модель некоторой более сложной ситуации.

Математическое моделирование является важнейшей разновидностью символического моделирования. (К ним так же относятся разнообразные графовые и топологические представления, символьные записи структуры молекул и химических реакций и много другое). В сущности, математическая модель – это система уравнений, дополненная начальными и граничными условиями и другими данными, взятыми из опыта. Для того, чтобы такое моделирование было результативным, необходимо, во-первых, составить адекватную изучаемому явлению мысленную модель, отражающую все существенные стороны явления, а во-вторых, решить чисто математическую задачу, зачастую имеющую очень высокий уровень сложности.

Наконец, в последние десятилетия большую популярность приобрели компьютерные методы моделирования. Обычно – это численные методы, т.е. не дающие решения задачи в общем виде, как в математическом моделировании. Это означает, что каждый конкретный численный вариант одной и той же задачи требует нового расчета.

Частные и специальные методы представляют интерес для представителей конкретных научных дисциплин, и мы их рассматривать не будем.

Методологические основы естествознания. Перейдем теперь к обсуждению наиболее важных и общих для естествознания методологических принципов научного творчества, идеалов, критериев и норм науки . Важнейшими из них являются следующие:

1. Материалистическая основа мировоззрения, объективность, убежденность в познаваемости природы рациональными методами. В свою очередь, эти требования напрямую связаны с важнейшей методологической концепцией обусловленности всего происходящего в действительности причинно-следственными связями.

2. Использование строго определенных понятий, характеристик, величин. Вместе с тем, необходимо понимать, что абсолютно строго определить ни один объект или процесс невозможно. Что такое шариковая ручка, которой Вы сейчас подчеркиваете текст? Где граница между ней и окружающим воздухом снаружи и между ней и чернилами внутри на бумаге? Что такое процесс подчеркивания текста? Это физический процесс переноса чернил на бумагу, или химический процесс взаимодействия молекул чернил с молекулами бумаги, или интеллектуальный процесс отбора и выделения наиболее значимых фрагментов текста? Очевидно выбор зависит от характера задачи и спектра ожидаемых результатов. Здесь таятся большие опасности субъективизма, поскольку в самой постановке задачи уже закладывается ограниченный набор возможных решений.

3. Воспроизводимость результатов в аналогичных условиях. Этот принцип подразумевает, что если условия наблюдения некоего явления воссоздать в другом месте (лаборатории, производстве) или в одном и том же, но спустя некоторое время, то явление или процесс повторится снова. Т.е. вопрос заключается лишь в строгости условий опыта, точности воспроизведения всех обстоятельств. Как уже говорилось, абсолютно точно ничего воспроизвести и измерить невозможно, но абстрагируясь от несущественных деталей, можно сколько угодно раз повторить главный, принципиальный результат.

4. Последней инстанцией в борьбе теорий, идей, концепций является опыт (эксперимент). Лишь он – верховный судья в вопросе, что есть Истина, а не самые изящные, логичные или авторитетные суждения. Не стоит здесь усматривать противопоставления теории и опыта. Чисто теоретически было открыто множество объектов, законов (например, электромагнитные волны, многие элементарные частицы, астрономические объекты и т.д.), но все эти открытия получили статус строгих научных фактов только после экспериментального подтверждения. Такое понимание соотношения роли теории и практики в естествознании возникло не сразу. Лишь в раннем Средневековье в борьбе со схоластическими методами укрепилось требование экспериментальной проверки любых умозаключений, какими бы авторитетами они не высказывались и логически стройными и безупречными не казались. Наиболее ярко и кратко этот принцип сформулировал, пожалуй, английский мыслитель 16-17 вв Фрэнсис Бэкон: «Критерий истины – практика» в своем труде «Новый Органон» (1620 г.), написанном, как бы, в продолжение и развитие знаменитого труда Аристотеля, точнее, сборника логических и методологических трудов «Органон» (от латинского инструмент, орудие) в 4 веке до н.э. В более художественной форме этот же принцип выражен в знаменитой фразе И.Гете: «Теория, мой друг, суха, но зеленеет жизни древо».

5. В предыдущем модуле уже шла речь о стремлении количественно охарактеризовать и описывать окружающую действительность. В современном естествознании количественные методы, математический аппарат играют большую и все возрастающую роль. Так что «математизацию» знаний о природе можно считать практически обязательным требованием.

6. В начале этого модуля обсуждалась роль моделирования как общенаучного метода изучения Природы. В связи с желанием «математизировать» естествознание, создание моделей того или того характера становится практически обязательным на всех стадиях исследования, будь то обдумывание идеи или мысленного эксперимента, натурной экспериментальной установки и опыта, обработки и интерпретации полученных результатов. Пытаясь выразить эту ситуацию в лаконичной форме афоризма, можно утверждать «Современное естествознание – это мир количественных моделей». Без разумного, осторожного, квалифицированного упрощения реальной ситуации, процесса, объекта никаких результативных математических подходов сделать невозможно.

7. Уже в Средние Века было очевидно, что лавинное нарастание различных фактов, данных, теорий требует их систематизации и обобщения. Иначе поток информации захлестнет и утопит принципиальные, ключевые положения в море частностей. Вместе с тем, новые понятия, объекты, принципы, «сущности» необходимо вводить в науку с величайшей осторожностью, тщательно проверяя, не сводятся ли они к известным, не являются ли всего лишь их разновидностями. Этот строгий фильтр оберегает науку от неоправданного распухания, делает ее в широком смысле «интернациональной», прозрачной, доступной для понимания и освоения разными слоями общества. Опасность противоположного подхода стала очевидной тоже на заре классического естествознания, и в присущей тому времени афористичной форме требование лаконизма, общности, универсальности сформулировал английский философ 14 в. Оккам: «сущности не следует умножать без крайней необходимости» или в более вольном переводе «не изобретай лишних сущностей ». Часто этот важнейший методологический принцип науки называют «бритвой Оккама », отсекающей лишние, непродуктивные и загромождающие науку искусственно введенные «сущности».

8. Необходимость интеграции, универсализации знаний, сведение их к как можно меньшему числу фундаментальных принципов – идеал, к которому стремились мыслители, начиная со времен Древней Греции. Одновременно в этом усматривали и высшую эстетичность науки, отражающую гармоничность устройства мира. «Сведение множества к единому – в этом первооснова красоты» - так лаконично формулировал этот принцип еще Пифагор за 5 веков до н.э.

9. Поскольку наука – это не свод закостеневших правил, законов, теорий, а динамически развивающийся и непрерывно обновляющийся живой организм, регулярно возникает вопрос о соотношении устоявшегося «старого» знания и появляющегося «нового». С одной стороны, если некоторый закон, теория, учение путем многочисленных проверок, контрольных экспериментов, приложений к практическим задачам получили статус не гипотезы, а достоверной истины, то они уже вошли в золотой фонд науки. С другой стороны, если появились новые данные или теории, противоречащие старым, но описывающие родственные явления лучше, полнее или те, которые не могли быть объяснены в рамках старых представлений, последние должны уступить место новому. Но как уступить? Просто тихо удалиться в архивы истории науки, освободив нишу, или оставаться в строю, но в другом качестве, определенным образом взаимодействуя с новыми представлениями? Трудно себе представить, чтобы, скажем, такая могучая теория как классическая механика сэра И. Ньютона, три века доказывавшая свою справедливость и плодотворность (как в мире движения пылинок, шариков, паровых двигателей, кораблей, так и в мире планет) оказалась ошибочной или ненужной после создания квантовой механики. Нильс Бор – гениальный датский физик – один из создателей квантовой механики, обдумывая эту проблему, сформулировал в 1918 г. важнейший методологический подход: принцип соответствия . Вкратце он заключается в том, что более универсальная новая концепция, теория (если она не спекулятивна, а справедлива в действительности), не должна перечеркивать хорошо освоенное и многократно проверенное старое учение, а вобрать его в виде частного случая (рис. 3.3). При этом обычно легко можно сформулировать условия (границы применимости) внутри которыхи старая (обычно более простая теория) будет давать правильные результаты. Их, конечно, можно получить и из более общей, но более сложной новой теории, но это не оправдано с точки зрения трудозатрат. В таком соотношении находится не только классическая и квантовая механика, но и, например, термодинамика равновесных систем и синергетика (теория самоорганизации в открытых неравновесных системах), классический электромагнетизм Фарадея – Максвелла и квантовая электродинамика, механика движения с небольшими (сравнительно со скоростью света) скоростями и специальная теория относительности Эйнштейна (механика движения с околосветными скоростями), дарвинизм и генетика и многое другие разделы естествознания. Это конечно не исключает отмирания и забвения идей, понятий, теорий, не выдержавших испытаний экспериментом (например, теория теплорода, вечный двигатель и т.д.), но в подавляющем большинстве случаев противоречия в науке снимаются в согласии с принципом соответствия.

Методы естествознания

Наименование параметра Значение
Тема статьи: Методы естествознания
Рубрика (тематическая категория) Философия

Методы естествознания могут быть подразделены на следующие группы˸

Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все ᴇᴦο ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования˸ анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент. В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда ᴇᴦο запланированному образцу. Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс. Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в ʼʼчистомʼʼ виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины. Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в сфере физики микромира (квантовой механике, квантовой электродинамике и т.д.).

На свете есть вещи поважнее самых
прекрасных открытий - это знание
методов, которыми они были сделаны.
Г. В Лейбниц

Что такое метод? Чем различаются анализ и синтез, индукция и дедукция?

Урок-лекция

Что такое метод . Методом в науке называют способ построения знания, форму практического и теоретического освоения действительности. Фрэнсис Бэкон сравнивал метод со светильником, освещающим путнику дорогу в темноте: «Даже хромой, идущий по дороге, опережает того, кто идет без дороги». Правильно выбранный метод должен быть ясным, логичным, вести к определенной цели, давать результат. Учение о системе методов называют методологией.

Методы познания, которые используют в научной деятельности, - это эмпирические (практические, экспериментальные) - наблюдение, эксперимент и теоретические (логические, рациональные) - анализ, синтез, сравнение, классификация, систематизация, абстрагирование, обобщение, моделирование, индукция, дедукция. В реальном научном познании эти методы используют всегда в единстве. Например, при разработке эксперимента требуется предварительное теоретическое осмысление проблемы, формулирование гипотезы исследования, а после проведения эксперимента необходима обработка результатов с использованием математических методов. Рассмотрим особенности некоторых теоретических методов познания.

Например, всех учеников старших классов школы можно разделить на подклассы - «девушки» и «юноши». Можно выбрать и другой признак, например рост. В этом случае классификацию возможно проводить по-разному: например, выделить границу роста 160 см и классифицировать учеников на подклассы «низкие» и «высокие» или разбить шкалу роста на отрезки в 10 см, тогда классификация будет более детальная. Если сравнить результаты такой классификации по нескольким годам, это позволит эмпирическим путем установить тенденции в физическом развитии учеников.

КЛАССИФИКАЦИЯ И СИСТЕМАТИЗАЦИЯ . Классификация позволяет упорядочить исследуемый материал, группируя множество (класс) исследуемых объектов на подмножества (подклассы) в соответствии с выбранным признаком.

Классификация как метод может быть использована для получения новых знаний и даже служить основой для построения новых научных теорий. В науке обычно используют классификации одних и тех же объектов по разным признакам в зависимости от целей. Однако признак (основание для классификации) выбирается всегда один. Например, химики подразделяют класс «кислоты» на подклассы и по степени диссоциации (сильные и слабые), и по наличию кислорода (кислородсодержащие и бескислородные), и по физическим свойствам (летучие - нелетучие; растворимые - нерастворимые), и по другим признакам.

Классификация может изменяться в процессе развития науки. В середине XX в. исследование различных ядерных реакций привело к открытию элементарных (неделящихся) частиц. Первоначально их стали классифицировать по массе; так появились лептоны (мелкие), мезоны (промежуточные), барионы (крупные) и гипероны (сверхкрупные). Дальнейшее развитие физики показало, что классификация по массе имеет мало физического смысла, однако термины сохранились, в результате чего появились лептоны, значительно более массивные, чем барионы.

Классификацию удобно отражать в виде таблиц или схем (графов). Например, классификация планет Солнечной системы, представленная граф-схемой, может выглядеть так:

Обратите внимание на то, что планета Плутон в этой классификации представляет отдельный подкласс, не принадлежит ни к планетам земной группы, ни к планетам-гигантам. Это карликовая планета. Ученые отмечают, что Плутон по свойствам похож на астероид, каких может быть много на периферии Солнечной системы.

При изучении сложных систем природы классификация служит фактически первым шагом к построению естественно-научной теории. Следующим, более высоким уровнем является систематизация (систематика). Систематизация осуществляется на основе классификации достаточно большого объема материала. При этом выделяют наиболее существенные признаки, позволяющие представить накопленный материал как систему, в которой отражены все различные взаимосвязи между объектами. Она необходима в тех случаях, когда имеется многообразие объектов и сами объекты являются сложными системами. Результатом систематизации научных данных является систематика , или, иначе, таксономия. Систематика, как область науки, развивалась в таких областях знания, как биология, геология, языкознание, этнография.

Единицу систематики называют таксоном. В биологии таксоны - это, например, тип, класс, семейство, род, отряд и др. Они объединены в единую систему таксонов различного ранга по иерархическому принципу. Такая система включает описание всех существующих и вымерших организмов, выясняет пути их эволюции. Если ученые находят новый вид, то они должны подтвердить его место в общей системе. Могут быть внесены изменения и в саму систему, которая остается развивающейся, динамичной. Систематика позволяет легко ориентироваться во всем многообразии организмов - только животных известно около 1,5 млн видов, а растений - более 500 тыс. видов, не считая другие группы организмов. Современная биологическая систематика отражает закон Сент-Илера: «Все многообразие форм жизни формирует естественную таксономическую систему, состоящую из иерархических групп таксонов различного ранга».

ИНДУКЦИЯ И ДЕДУКЦИЯ . Путь познания, при котором на основе систематизации накопленной информации - от частного к общему - делают вывод о существующей закономерности, называют индукцией . Этот метод как метод изучения природы был разработан английским философом Фрэнсисом Бэконом. Он писал: «Надо брать как можно больше случаев - как таких, где исследуемое явление есть налицо, так и таких, где оно отсутствует, но где его можно было бы ожидать встретить; затем надо расположить их методически... и дать наиболее вероятное объяснение; наконец, постараться проверить это объяснение дальнейшим сравнением с фактами».

Индукция не единственный путь получения научного знания о мире. Если экспериментальная физика, химия и биология строились как науки в основном за счет индукции, то теоретическая физика, современная математика в своей основе имели систему аксиом - непротиворечивых, умозрительных, достоверных с точки зрения здравого смысла и уровня исторического развития науки утверждений. Тогда знание можно построить на этих аксиомах путем выведения умозаключений от общего к частному, перехода от предпосылки к следствиям. Этот метод называют дедукцией . Его развивал Рене Декарт - французский философ и ученый.

Ярким примером получения знания об одном предмете разными путями является открытие законов движения небесных тел. И. Кеплер на основе большого количества данных наблюдений за движением планеты Марс в начале XVII в. открыл методом индукции эмпирические законы движения планет в Солнечной системе. В конце этого же века Ньютон вывел дедуктивным путем обобщенные законы движения небесных тел на основе закона всемирного тяготения.

Портреты Ф. Бэкона и В. Ливанова в образе Ш. Холмса Почему портреты ученого и литературного героя расположены рядом?

В реальной исследовательской деятельности методы научных исследований взаимосвязаны.

  • Пользуясь справочной литературой, найдите и выпишите определения следующих теоретических методов исследования: анализ, синтез, сравнение, абстрагирование, обобщение.
  • Проведите классификацию и составьте схему известных вам эмпирических и теоретических методов научного познания.
  • Согласны ли вы с точкой зрения французского писателя Вовнарта: «Ум не заменяет знания»? Ответ обоснуйте.