Состав и строение воды. Структура воды. Характеристика тяжелой воды

Задача, выполняемая Ячейкой Мэйера — «лёгкое» разложение молекул воды под действием электрического тока, сопровождаемого электромагнитным излучением.

Для её решения разберёмся, что же вода из себя представляет? Каково строение молекул воды? Что известно о молекулах воды и их связях? В статье, я использовал различные публикации, имеющиеся в достаточном количестве в Интернете, но они размножены в большом количестве, поэтому, кто их автор, мне не понятно и ссылаться на источник с моей стороны глупо. Мало того, эти публикации «запутаны» до безобразия, что затрудняет восприятие, и значительно увеличивает время изучения. Анализируя статьи, я извлёк то, что может направить Вас на понимание того, с чем мы будем иметь дело в процессе добычи дешёвой энергии, а точнее в процессе разрыва молекул воды на составляющие – водород и кислород.

Итак, рассмотрим наиболее весомые понятия о строении молекул воды!

Вода — вещество, основной структурной единицей которого является молекула H 2 O, состоящая из одного атома кислорода и двух атомов водорода.

Молекула воды имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его - два атома водорода. Угол при вершине составляет 104°27, а длина стороны - 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы воды без ее колебаний и вращений. Геометрия молекулы воды и её электронные орбиты изображены на рисунке.

Молекула воды представляет собой диполь, содержащий положительный и отрицательный заряды на полюсах. Если «свободную» молекулу воды — не связанную с другими молекулами, поместить в электрическое поле, то она «повернётся» отрицательными полюсами в сторону положительной пластины электрического поля, а положительными полюсами в сторону отрицательной пластины. Именно этот процесс изображён на рисунке 1, позиция — 3В, поясняющем работу Ячейки Мэйера в статье «Вода вместо бензина» .

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — правильный тетраэдр. Таково строение самой молекулы воды.

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Именно такое упорядоченное состояние молекул воды можно назвать «структурой». Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28′, направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру.

Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды.

В жидком состоянии вода – неупорядоченная жидкость. Эти водородные связи — спонтанные, короткоживущие, быстро рвутся и образуются вновь.

Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры.

И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо.

Такой тип структуры характерен для льда, снега и талой воды, которую из-за наличия такой структуры, называют «Структурированной водой». О полезных свойствах структурированной воды пишут много, но не это тема нашей статьи. Логично будет, что структурированная вода — образующая гексагональные структуры является наихудшим вариантом структуры воды, которую возможно использовать для разложения на водород и кислород. Поясню почему: Молекулы воды, группируясь по шесть в гексамер, имеют электронейтральный состав — у гексамеров нет положительных и отрицательных полюсов. Если поместить гексамер структурированной воды в электрическое поле, то он не будет никак на него реагировать. Поэтому логически можно заключить, что необходимо, чтобы в воде было как можно меньше организованных структур. На самом деле, всё наоборот, гексамер — это не завершённая структура, есть ещё более интересное понятие — кластер.

Структуры объединённых молекул воды называют кластерами, а отдельные молекулы воды — квантами. Кластер — объёмное соединение молекул воды, в том числе гексамеров, у которого имеются и положительные и отрицательные полюса.

В дистиллированной воде кластеры практически электронейтральны, потому что в результате испарения, произошло разрушение кластеров, а в результате конденсации, сильные связи между молекулами воды не появились. Однако, их электропроводность можно изменить. Если дистиллированную воду помешать магнитной мешалкой, связи между элементами кластеров будут частично восстановлены и электропроводность воды изменится. Другими словами, дистиллированная вода – это вода, у которой минимальное количество связей между молекулами . В ней диполи молекул находятся в разориентированном состоянии, поэтому диэлектрическая проницаемость дистиллированной воды очень высока, и она плохо проводит электрический ток. В то же время, для повышения управляемости кластерами воды, в неё добавляют кислоты или щёлочи, которые участвуя в молекулярных связях, не позволяют молекулам воды образовывать гексагональные структуры, образуя при этом электролиты. Дистиллированная вода является противоположностью структурированной воде, в которой связей между молекулами воды в кластеры огромное количество.

На моём сайте имеются, и будут появляться статьи, которые, на первый взгляд «отдельные» и не имеют никакого отношения к другим статьям. На самом деле, большинство статей сайта имеет взаимосвязь в одно целое. В данном случае, описывая свойства дистиллированной воды, я использую Дипольную теорию электрического тока , это альтернативное понятие об электрическом токе, которое подтверждается и наукой и практикой лучше, чем классическое понятие.

При воздействии энергии источника электрического тока, все диполи атомов воды (как проводника) поворачиваются, ориентируясь своими одноимёнными полюсами в одном направлении. Если молекулы воды до появления внешнего электрического поля создавали кластерную (взаимно ориентированную) структуру, то для ориентации во внешнем электрическом поле потребуется минимальное количество энергии источника электрического тока. Если же структура была не организованной (как у дистиллированной воды), то потребуется большое количество энергии.

Заметьте, «в народе» бытует мнение, что дистиллированная вода и талая вода должны обладать одинаковыми электропроводными свойствами, ведь что у одной, что у другой отсутствуют химические примеси (как правило – соли), их химический состав одинаков, да и строение молекул воды что в талой воде, что в дистиллированной одинаково.

На самом деле всё выглядит наоборот, отсутствие примесей совсем не говорит о свойствах электропроводности воды. Не понимая этого, некоторые люди, «убивают» аккумуляторные батареи ещё на этапе их заправки электролитом, подменяя дистиллированную воду на талую, или просто очищенную через угольный фильтр. Как правило, заправленный аккумулятор, который куплен на автомобильном рынке служит меньше, чем тот, который вы купили сухозаряженным и разбавив серную кислоту дистиллированной водой, заправили его сами. Это лишь потому, что «готовый» электролит, или заправленный аккумулятор – это в наше время средство заработка, а чтобы определить какая вода использовалась, надо провести дорогую экспертизу, никто этим не заморачивается. Торгашу не важно, сколько прослужит аккумулятор на твоём авто, а Вам тоже, возиться с кислотой не очень хочется. Зато, я Вас уверяю, аккумулятор, над которым попотеете Вы, при минусовых температурах будет намного бодрее, чем заправленный из уже готового бутылочного электролита.

Продолжим!

В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10 -12 секунд.

Так как, строение молекулы воды несимметрично, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса — положительный и отрицательный, создающие, как магнит, молекулярные силовые поля. Такие молекулы называют полярными, или диполями, а количественную характеристику полярности определяют электрическим моментом диполя, выражаемым произведением расстояния l между электрическими центрами тяжести положительных и отрицательных зарядов молекулы на заряд e в абсолютных электростатических единицах: p = l·e

Для воды дипольный момент очень высокий: p = 6,13·10 -29 Кл·м.

Кластеры воды на границах раздела фаз (жидкость-воздух) выстраиваются в определенном порядке, при этом все кластеры колеблются с одинаковой частотой, приобретая одну общую частоту. При таком движении кластеров, учитывая, что входящие в кластер молекулы воды являются полярными, то есть, имеют большой дипольный момент, следует ожидать появления электромагнитного излучения. Это излучение отличается от излучения свободных диполей, так как диполи являются связанными и колеблются совместно в кластерной структуре.

Частота колебаний кластеров воды и соответственно, частота электромагнитных колебаний может быть определена по следующей формуле:

где a поверхностное натяжение воды при заданной температуре; М
— масса кластера.

Где V — объем кластера.

Объем кластера определяется с учетом размеров фрактальной замкнутой структуры кластера или по аналогии с размерами домена белка.
При комнатной температуре 18°С частота колебаний кластера f равна 6,79·10 9 Гц, то есть длина волны в свободном пространстве должна составлять λ = 14,18 мм.

Но что, же будет происходить при воздействии на воду внешнего электромагнитного излучения? Поскольку вода является самоорганизованной структурой и содержит как упорядоченные в кластеры элементы, так и свободные молекулы, то при воздействии внешнего электромагнитного излучения будет происходить следующее. При сближении молекул воды (расстояние изменяется от R 0 до R 1 ) энергия взаимодействия изменяется на большую величину, чем при их взаимном удалении (расстояние изменяется от R 0 до R 2 ).

Но, поскольку молекулы воды имеют большой дипольный момент, то в случае внешнего электромагнитного поля, они будут совершать колебательные движения (например, от R 1 до R 2 ). При этом в силу приведенной зависимости приложенное электромагнитное поле будет больше способствовать притяжению молекул и тем самым организованности системы в целом, т.е. образованию гексагональной структуры.

При наличии же примесей в водной среде, они покрываются гидратной оболочкой таким образом, что общая энергия системы стремится принять минимальное значение. И если общий дипольный момент гексагональной структуры равен нулю, то в присутствие примесей гексагональная структура вблизи них нарушается таким образом, чтобы система приняла минимальное значение, в ряде случаев шестиугольники преобразуются в пятиугольники, и гидратная оболочка имеет форму близкую к шару. Примеси (например, ионы Na +) могут стабилизировать структуру, делать ее более устойчивой к разрушению.

Самоорганизованная система воды при воздействии электромагнитного излучения не будет перемещаться как единое целое, но каждый элемент гексагональной, а в случае примесей локально и другого вида, структуры будет смещаться, т.е. будет происходить искажение геометрии структуры, т.е. возникать напряжения. Такое свойство воды очень напоминает полимеры. Но полимерные структуры обладают большими временами релаксации, которые составляют не 10 -11 –10 -12 с, а минуты и больше. Поэтому энергия квантов электромагнитного излучения, переходя во внутреннюю энергию организованной водной структуры в результате её искажений, будет накапливаться ею, пока не достигнет энергии водородной связи, которая в 500–1000 раз больше энергии электромагнитного поля. При достижении этой величины происходит разрыв водородной связи, и структура разрушается .

Это можно сравнить со снежной лавиной, когда происходит постепенное, медленное накапливание массы, а затем стремительный обвал. В случае с водой происходит разрыв не только слабой связи между кластерами, но и более сильных связей — в строении молекул воды. В результате этого разрыва могут образовываться Н + , ОН – , и гидратированный электрон е – . Голубой цвет чистой воды обязан наличию именно этих электронов, а не только рассеянию естественного света.

Заключение

Таким образом, при воздействии электромагнитного излучения с водой происходит накапливание энергии в кластерной структуре до некоторого критического значения, затем происходит разрыв связей как между кластерами, так и других, происходит лавинообразное освобождение энергии, которая может затем трансформироваться в другие типы.

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

К.х.н. О.В. Мосин

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

Строение молекулы воды (рисунок справа)

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.

Водородные связи между молекулами воды (рисунок ниже слева)

То, что вода неоднородна по своему составу, было установлено давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.

Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4°C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40°C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно.

Кроме того, при температуре ниже 30°C с увеличением давления от атмосферного до 0,2 ГПа вязкость воды уменьшается, а коэффициент самодиффузии - параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт.

Для других жидкостей зависимость обратная, и почти нигде не бывает, чтобы какой-то важный параметр вёл себя не монотонно, т.е. сначала рос, а после прохождения критического значения температуры или давления уменьшался. Возникло предположение, что на самом деле вода - это не единая жидкость, а смесь двух компонентов, которые различаются свойствами, например плотностью и вязкостью, а следовательно, и структурой. Такие идеи стали возникать в конце XIX века, когда накопилось много данных об аномалиях воды.

Первым идею о том, что вода состоит из двух компонентов, высказал Уайтинг в 1884 году. Его авторство цитирует Э.Ф. Фрицман в монографии “Природа воды. Тяжёлая вода”, изданной в 1935 году. В 1891 году В. Ренгтен ввёл представление о двух состояниях воды, которые различаются плотностью. После неё появилось множество работ, в которых воду рассматривали как смесь ассоциатов разного состава (“гидролей”).

Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П. Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма - кварце. Увеличение плотности воды при нагревании от 0 до 4°C объяснялось присутствием при низкой температуре тридимитовой компоненты. Таким образом, модель Бернала - Фаулера сохранила элемент двухструктурности, но главное их достижение - идея непрерывной тетраэдрическои сетки. Тогда появился знаменитый афоризм И. Ленгмюра: „Океан - одна большая молекула“. Излишняя конкретизация модели не прибавила сторонников теории единой сетки.

Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала - Фаулера. Попл представлял воду как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60–70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные.

Но во второй половине XX века нельзя было так фантазировать о составе и строении „гидролей“, как это делали в начале века. Уже было известно, как устроен лёд и кристаллогидраты, и многое знали про водородную связь. Помимо „континуальных“ моделей (модель Попла), возникли две группы „смешанных“ моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.

Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги : предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.

Первую модель клатратного типа в 1946 году предложил О.Я. Самойлов: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л. Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.

В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами. То есть фактически авторы этих моделей рассматривают воду как непрерывную сетку водородных связей. И речь идёт о том, насколько неоднородна эта сетка (например, по плотности). Представлениям о воде как о водородно-связанных кластерах, плавающих в море лишённых связей молекул воды, был положен конец в начале восьмидесятых годов, когда Г. Стэнли применил к модели воды теорию перколяции, описывающую фазовые переходы воды.

В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.

Сейчас наукой доказано, что особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Структурной единицей такой воды является кластер, состоящий из клатратов, природа которых обусловлена дальними кулоновскими силами. В структуре кластров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. В водных кластерах за счёт взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера.

Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.

На рисунке (В.Л. Воейков) в качестве примера приведены схемы нескольких простейших кластерных структур.

Некоторые возможные структуры кластеров воды

Переносчиками информации могут быть физические поля самой различной природы. Так установлена возможность дистанционного информационного взаимодействия жидкокристаллической структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей. Воздействующим объектом может быть и человек.

Вода является источником сверхслабого и слабого переменного электромагнитного излучения. Наименее хаотичное электромагнитное излучение создаёт структурированная вода. В таком случае может произойти индукция соответствующего электромагнитного поля, изменяющего структурно-информационные характеристики биологических объектов.

В течение последних лет получены важные данные о свойствах переохлаждённой воды. Изучать воду при низкой температуре очень интересно, поскольку её удаётся сильнее переохладить, чем другие жидкости. Кристаллизация воды, как правило, начинается на каких-то неоднородностях - либо на стенках сосуда, либо на плавающих частичках твердых примесей. Поэтому найти температуру, при которой бы переохлаждённая вода самопроизвольно закристаллизовалась нелегко. Но учёным удалось это сделать, и сейчас температура так называемой гомогенной нуклеации, когда образование кристаллов льдов идёт одновременно по всему объёму, известна для давлений вплоть до 0,3 ГПа, то есть захватывая области существования льда II.

От атмосферного давления до границы, разделяющей льды I и II, эта температура падает от 231 до 180 К, а потом слегка увеличивается - до 190К. Ниже этой критической температуры жидкая вода невозможна в принципе.

Структура льда (рисунок справа)

Однако с этой температурой связана одна загадка. В середине восьмидесятых годов была открыта новая модификация аморфного льда - лёд высокой плотности, и это помогло возрождению представлений о воде как о смеси двух состояний. В качестве прототипов рассматривались не кристаллические структуры, а структуры аморфных льдов разной плотности. В наиболее внятном виде эту концепцию сформулировали Е.Г. Понятовский и В.В. Синицин, которые в 1999 году написали: „Вода рассматривается как регулярный раствор двух компонентов, локальные конфигурации в которых соответствуют ближнему порядку модификаций аморфного льда“. Более того, изучая ближний порядок в переохлаждённой воде при высоком давлении методами дифракции нейтронов, учёным удалось найти компоненты, соответствующие этим структурам.

Следствием полиморфизма аморфных льдов стали также предположения о расслоении воды на два несмешивающихся компонента при температуре ниже гипотетической низкотемпературной критической точки. К сожалению, по оценке исследователей, эта температура при давлении 0,017 ГПа равна 230К - ниже температуры нуклеации, поэтому наблюдать расслоение жидкой воды никому ещё не удалось. Так возрождение модели двух состояний поставило вопрос о неоднородности сетки водородных связей в жидкой воде. Разобраться в этой неоднородности можно только с помощью компьютерного моделирования.

Говоря о кристаллической структуре воды, следует отметить, что известно 14 модификаций льда, большинство из которых не встречаются в природе, в которых молекулы воды и сохраняют свою индивидуальность, и соединены водородными связями. С другой стороны существует множество вариантов сетки водородных связей в клатратных гидратах. Энергии этих сеток (льдов высокого давления и клатратных гидратов) ненамного выше энергий кубического и гексагонального льдов. Поэтому фрагменты таких структур также могут появляться в жидкой воде. Можно сконструировать бесчисленное множество различных непериодических фрагментов, молекулы в которых имеют по четыре ближайших соседа, расположенных приблизительно по вершинам тетраэдра, но при этом их структура не соответствует структурам известных модификаций льда. Как показали многочисленные расчёты, энергии взаимодействия молекул в таких фрагментах будут близки друг к другу, и нет оснований говорить, что какая-то структура должна преобладать в жидкой воде.

Структурные исследования воды можно изучать разными методами; спектроскопией протонного магнитного резонанса, инфракрасной спекроскопии, дифракцией рентгеновских лучей и др. Например, дифракцию рентгеновских лучей и нейтронов в воде изучали много раз. Однако подробных сведений о структуре эти эксперименты дать не могут. Неоднородности, различающиеся по плотности, можно было бы увидеть по рассеянию рентгеновских лучей и нейтронов под малыми углами, однако такие неоднородности должны быть большими, состоящими из сотен молекул воды. Можно было бы их увидеть, и исследуя рассеяние света. Однако вода - исключительно прозрачная жидкость. Единственный же результат дифракционных экспериментов - функции радиального распределения, то есть расстояния между атомами кислорода, водорода и кислорода-водорода. Из них видно, что никакого дальнего порядка в расположении молекул воды нет. Эти функции для воды затухают гораздо быстрее, чем для большинства других жидкостей. Например, распределение расстояний между атомами кислорода при температуре, близкой к комнатной, даёт только три максимума, на 2,8, 4,5 и 6,7 Å. Первый максимум соответствует расстоянию до ближайших соседей, и его значение примерно равно длине водородной связи. Второй максимум близок к средней длине ребра тетраэдра - вспомним, что молекулы воды в гексагональном льду располагаются по вершинам тетраэдра, описанного вокруг центральной молекулы. А третий максимум, выраженный весьма слабо, соответствует расстоянию до третьих и более далёких соседей по водородной сетке. Этот максимум и сам не очень ярок, а про дальнейшие пики и говорить не приходится. Были попытки получить из этих распределений более детальную информацию. Так в 1969 году И.С. Андрианов и И.З. Фишер нашли расстояния вплоть до восьмого соседа, при этом до пятого соседа оно оказалось равным 3 Å, а до шестого - 3,1 Å. Это позволяет делать данные о дальнем окружении молекул воды.

Другой метод исследования структуры – нейтронная дифракция на кристаллах воды осуществляется точно также, как и рентгеновская дифракция. Однако из-за того, что длины нейтронного рассеяния различаются у разных атомов не столь сильно, метод изоморфного замещения становится неприемлемым. На практике обычно работают с кристаллом, у которого молекулярная структура уже приблизительно установлена другими методами. Затем для этого кристалла измеряют интенсивности нейтронной дифракции. По этим результатам проводят преобразование Фурье, в ходе которого используют измеренные нейтронные интенсивности и фазы, вычисляемые с учётом неводородных атомов, т.е. атомов кислорода, положение которых в модели структуры известно. Затем на полученной таким образом фурье-карте атомы водорода и дейтерия представлены с гораздо большими весами, чем на карте электронной плотности, т.к. вклад этих атомов в нейтронное рассеяние очень большой. По этой карте плотности можно, например, определить положения атомов водорода (отрицательная плотность) и дейтерия (положительная плотность).

Возможна разновидность этого метода, которая состоит в том, что кристалл образовавшийся в воде, перед измерениями выдерживают в тяжёлой воде. В этом случае нейтронная дифракция не только позволяет установить, где расположены атомы водорода, но и выявляет те из них, способные обмениваться на дейтерий, что особенно важно при изучение изотопного (H-D)-обмена. Подобная информация помогает подтвердить правильность установления структуры.

Другие методы также позволяют изучать динамику молекул воды. Это эксперименты по квазиупругому рассеянию нейтронов, сверхбыстрой ИК-спектроскопии и изучение диффузии воды с помощью ЯМР или меченых атомов дейтерия. Метод ЯМР-спектроскопии основан на том, что ядро атома водорода имеет магнитный момент - спин, взаимодействующий с магнитными полями, постоянными и переменными. По спектру ЯМР можно судить о том, в каком окружении эти атомы и ядра находятся, получая, таким образом, информацию о структуре молекулы.

В результате экспериментов по квазиупругому рассеянию нейтронов в кристаллах воды был измерен важнейший параметр - коэффициент самодиффузии при различных давлениях и температурах. Чтобы судить о коэффициенте самодиффузии по квазиупругому рассеянию нейтронов, необходимо сделать предположение о характере движения молекул. Если они движутся в соответствии с моделью Я.И. Френкеля (известного отечественного физика-теоретика, автора „Кинетической теории жидкостей“ - классической книги, переведённой на многие языки), называемой также моделью „прыжок-ожидание“, тогда время „осёдлой“ жизни (время между прыжками) молекулы составляет 3,2 пикосекунды. Новейшие методы фемтосекундной лазерной спектроскопии позволили оценить время жизни разорванной водородной связи: протону требуется 200 фс для того, чтобы найти себе партнёра. Однако всё это средние величины. Изучить детали строения и характера движения молекул воды можно только при помощи компьютерного моделирования, называемого иногда численным экспериментом.

Так выглядит структура воды по результатам компьютерного моделирования (по данным д.х.н. Г. Г. Маленкова). Общую беспорядочную структуру можно разбить на два типа областей (показаны тёмными и светлыми шариками), которые различаются по своему строению, например по объёму многогранника Вороного (а), степени тетраэдричности ближайшего окружения (б), значению потенциальной энергии (в), а также по наличию четырёх водородных связей у каждой молекулы (г). Впрочем, эти области буквально через мгновение, спустя несколько пикосекунд, изменят свое расположение.

Моделирование проводится так. Берётся структура льда и, нагревается до расплавления. Затем после некоторого времени, чтобы вода "забыла" о кристаллическом происхождении, снимаются мгновенные микрофотографии.

Для анализа структуры воды выбираются три параметра:
- степень отклонения локального окружения молекулы от вершин правильного тетраэдра;
-потенциальная энергия молекул;
-объём так называемого многогранника Вороного.

Чтобы построить этот многогранник, берут ребро от данной молекулы до ближайшей, делят его пополам и через эту точку проводят плоскость, перпендикулярную ребру. Получается объём, приходящийся на одну молекулу. Объём полиэдра - это плотность, тетраэдричность - степень искажения водородных связей, энергия - степень устойчивости конфигурации молекул. Молекулы с близкими значениями каждого из этих параметров стремятся сгруппироваться вместе в отдельные кластеры. Области как с низкой, так и с высокой плотностью обладают разными значениями энергии, но могут иметь и одинаковые значения. Эксперименты показали, что области с разным строением кластеры возникают спонтанно и спонтанно распадаются. Вся структура воды живёт и постоянно меняется, причём время, за которое происходят эти изменения, очень маленькое. Исследователи следили за перемещениями молекул и выяснили, что они совершают нерегулярные колебания с частотой около 0,5 пс и амплитудой 1 ангстрем. Наблюдались также и редкие медленные скачки на ангстремы, которые длятся пикосекунды. В общем, за 30 пс молекула может сместиться на 8-10 ангстрем. Время жизни локального окружения тоже невелико. Области, составленные из молекул с близкими значениями объёма многогранника Вороного, могут распасться за 0,5 пс, а могут жить и несколько пикосекунд. А вот распределение времён жизни водородных связей очень велико. Но это время не превышает 40 пс, а среднее значение - несколько пс.

В заключение следует подчеркнуть, что теория кластерного строения воды имеет много подводных камней. Например, Зенин предполагает, что основной структурный элемент воды - кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр - основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такие же структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно неясно, почему рост кластера Зенина остановился на 57 молекулах. Чтобы уйти от противоречий, Зенин и упаковывает кластеры в более сложные образования - ромбоэдры - из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает память воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой.

Какие свойства воды объясняет модель Зенина? Поскольку в основе модели лежат тетраэдрические постройки, её можно в той или иной степени согласовать с данными по дифракции рентгеновских лучей и нейтронов. Однако вряд ли модель может объяснить уменьшение плотности при плавлении - упаковка додекаэдров менее плотная, чем лёд. Но труднее всего согласуется модель с динамическими свойствами - текучестью, большим значением коэффициента самодиффузии, малыми временами корреляции и диэлектрической релаксации, которые измеряются пикосекундами.

К.х.н. О.В. Мосин

Cписок литературы:
Г.Г. Маленков. Успехи физической химии, 2001
С.В.Зенин, Б.М. Полануер, Б.В. Тяглов. Экспериментальное доказательство наличия фракций воды. Ж. Гомеопатическая медицина и акупунктура. 1997.№2.С.42-46.
С.В. Зенин, Б.В. Тяглов. Гидрофобная модель структуры ассоциатов молекул воды. Ж.Физ.химии.1994.Т.68.№4.С.636-641.
С.В. Зенин Исследование структуры воды методом протонного магнитного резонанса. Докл.РАН.1993.Т.332.№3.С.328-329.
С.В.Зенин, Б.В.Тяглов. Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах. Ж.Физ.химии.1994.Т.68.№3.С.500-503.
С.В. Зенин, Б.В. Тяглов, Г.Б.Сергеев, З.А. Шабарова. Исследование внутримолекулярных взаимодействий в нуклеотидамидах методом ЯМР. Материалы 2-й Всесоюзной конф. По динамич. Стереохимии. Одесса.1975.с.53.
С.В. Зенин. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. Диссертация. Доктор биологических наук. Государственный научный Центр «Институт медико-биологических проблем» (ГНЦ «ИМБП»). Защищена 1999. 05. 27. УДК 577.32:57.089.001.66.207 с.
В.И. Слесарев. Отчет о выполнении НИР

Кандидат химических наук Александр Смирнов, профессор МИРЭА.

Воде дана таинственная власть
Быть соком жизни на Земле.

Леонардо да Винчи

Рис. 1. Структура воды при температуре 20оС, размер по горизонтали - 400 мкм. Белые пятна - это эмулоны.

Рис. 2. Структура водных растворов при 20оС: А - дистиллированная вода; Б - дегазированная минеральная вода боржоми; В - спиртовая настойка 70%.

Рис. 3. Эмулоны в бидистиллированной воде при температурах 4оС (А), 20оС (Б), 80оС (В). Размеры снимков 1,5 × 1,5 мм.

Рис. 4. Изменение амплитуды сигналов акустической эмиссии и температуры воды в процессе таяния льда.

Рис. 5. Относительное изменение температуры при нагревании воды.

Подробности для любознательных. Схема опыта. За короткое время из стаканчика с положительным электродом (анодом) через «мостик» утекло 0,5 грамма воды.

«Парящий водяной мостик» длиной около 3 сантиметров.

Наэлектризованная стеклянная палочка искажает форму «мостика» и разбивает его на струйки.

Так могут выглядеть эмулоны, образующие нитевидную структуру «мостика».

Воду принято рассматривать и как практически нейтральный растворитель, в котором протекают биохимические реакции, и как субстанцию, разносящую по телу живых организмов различные вещества. Вместе с тем вода - непременный участник всех физико-химических процессов и, в силу своей огромной важности, самое изучаемое вещество. Изучение свойств воды не раз приводило к неожиданным результатам. Казалось бы, какие неожиданности может таить в себе несложная реакция окисления водорода 2H 2 + O 2 → 2H 2 O? Но работы академика Н. Н. Семёнова показали, что реакция эта - разветвлённая, цепная. Было это более семидесяти лет назад, и про цепную реакцию деления урана ещё не знали. Вода в стакане, реке или озере не просто огромные количества отдельных молекул, а их объединения, надмолекулярные структуры - кластеры. Для описания структуры воды предложен ряд моделей, которые более или менее правильно объясняют только некоторые её свойства, а в отношении других противоречат эксперименту.

теоретически кластеры рассчитывают обычно только для нескольких сотен молекул или для слоёв вблизи межфазной границы. Однако ряд экспериментальных фактов свидетельствует, что в воде могут существовать гигантские, по молекулярным масштабам, структуры (работы члена-корреспондента РАН Е. Е. Фесенко).

В тщательно очищенной дважды дистиллированной воде и некоторых растворах нам удалось методом акустической эмиссии обнаружить и с помощью лазерной интерферометрии визуализировать структурные образования, состоящие из пяти фракций размерами от 1 до 100 мкм. Эксперименты позволили установить, что каждый раствор имеет свою, присущую только ему структуру (рис. 1, 2).

Надмолекулярные комплексы образованы сотнями тысяч молекул воды, сгруппированных вокруг ионов водорода и гидроксила в виде ионных пар. Для этих надмолекулярных комплексов мы предлагаем название «эмулоны», чтобы подчеркнуть их сходство с частицами, образующими эмульсию. Комплексы состоят из отдельных фракций размерами от 1 до 100 мкм, причём фракций, имеющих размеры 30, 70 и 100 мкм, значительно больше остальных.

Содержание отдельных фракций эмулонов зависит от концентрации ионов водорода, температуры, концентрации раствора и предыстории образца (рис. 3). В бидистиллированной воде при 4 о С комплексы плотно упакованы и образуют текстуру, напоминающую паркет. Как известно, вода при этой температуре имеет максимальную плотность. При повышении температуры до 20 о С в структуре воды происходят существенные изменения: количество свободных эмулонов становится наибольшим. При дальнейшем нагреве они постепенно разрушаются, число их уменьшается, и этот процесс в основном заканчивается при 75 о С, когда скорость звука в воде достигает максимума.

За счёт дальнодействия электростатических сил эмулоны в воде образуют довольно стабильную сверхрешётку, которая, однако, чутко реагирует на электромагнитные, акустические, тепловые и другие внешние воздействия.

Обнаруженные надмолекулярные комплексы непротиворечиво включают в себя все ранее полученные сведения об организации воды в нанообъёмах и позволяют объяснить многие экспериментальные факты, которые не имели стройного, логичного обоснования. К ним относится, например, образование «парящего водяного мостика», описанного в ряде работ.

Суть эксперимента заключается в том, что если поставить рядом два небольших химических стакана с водой, опустить в них платиновые электроды под постоянным напряжением 15-30 кВ, то между сосудами образуется водяная перемычка диаметром 3 мм и длиной до 25 мм. «Мостик» парит длительное время, имеет слоистую структуру, и по нему происходит перенос воды от анода к катоду. Этот феномен и все его свойства - следствие наличия в воде эмулонов, которые, по-видимому, обладают дипольным моментом. Можно предсказать и ещё одно свойство явления: при температуре воды выше 75 о С «мостик» не возникнет.

Легко объясняются и аномальные свойства талой воды. Как отмечалось в литературе, многие свойства талой воды - плотность, вязкость, электропроводность, показатель преломления, растворяющая способность и другие - отличаются от равновесных параметров. Сведéние этих эффектов к удалению из воды дейтерия в результате фазового перехода (температура плавления «тяжёлого льда» D 2 O 3,82 о С) несостоятельно, поскольку концентрация дейтерия крайне незначительна - один атом дейтерия на 5-7 тыс. атомов водорода.

Изучение плавления льда методом акустической эмиссии позволило впервые установить, что после полного расплавления льда талая вода, находящаяся в метастабильном состоянии, становится источником акустических импульсов, что служит экспериментальным подтверждением образования в воде надмолекулярных комплексов (рис. 4).

Эксперименты показывают, что талая вода на протяжении почти 17 часов может находиться в активном метастабильном состоянии (после плавления льда его микрокристаллики сохраняются только доли секунды и совсем не определяют свойства талой воды). Это загадочное явление объясняется тем, что при разрушении гексагональной кристаллической решётки льда резко меняется структура вещества. Кристаллы льда разрушаются быстрее, чем перестраивается в устойчивое равновесное состояние образовавшаяся из него вода.

Уникальность фазового перехода лёд↔вода заключается в том, что в талой воде концентрация ионов водорода H + и гидроксила OH – непродолжительное время сохраняется неравновесной, какой она была во льду, то есть в тысячу раз меньшей, чем в обычной воде. Через некоторое время концентрация ионов H + и OH – в воде принимает своё равновесное значение. Поскольку ионы водорода и гидроксила играют решающую роль в формировании надмолекулярных комплексов воды (эмулонов), вода на некоторое время остаётся в метастабильном состоянии. Реакция её диссоциации H 2 O → H + + OH – требует значительной затраты энергии и протекает очень медленно. Константа скорости этой реакции составляет всего 2,5∙10 –5 c –1 при 20 о С. Поэтому время возвращения талой воды в равновесное состояние теоретически должно составлять 10-17 часов, что и наблюдается на практике. Исследования динамики изменения концентрации ионов водорода в талой воде во времени подтверждают это. Необычные свойства талой воды служат причиной разговоров о «памяти» воды. Но под «памятью» воды следует понимать зависимость её свойств от предыстории и ничего больше. Можно разными способами - замораживанием, нагреванием, кипячением, обработкой ультразвуком, воздействием различных полей и др. - перевести воду в метастабильное состояние, но оно будет неустойчивым, недолго сохраняющим свои свойства. Оптическим методом мы обнаружили в талой воде присутствие лишь одной фракции надмолекулярных образований с размерами 1-3 мкм. Возможно, что пониженная вязкость и более редкая пространственная сетка из эмулонов в талой воде увеличивают растворяющую способность и скорость диффузии.

Реальность существования эмулонов подтверждает классический метод термического анализа (рис. 5). На графике наблюдаются чётко выраженные пики, свидетельствующие о структурных перестройках в воде. Наиболее значимые соответствуют 36 о C - температуре минимальной теплоёмкости, 63 о C - температуре минимальной сжимаемости, и особенно характерен пик при 75 о C - температуре максимальной скорости звука в воде. Их можно трактовать как своеобразные фазовые переходы, связанные с разрушением эмулонов. Это позволяет сделать вывод: жидкая вода - очень своеобразная дисперсная система, включающая как минимум пять структурных образований с различными свойствами. Каждая структура существует в определённом, характерном для неё температурном интервале. Превышение температуры над пороговым уровнем, критичным для данной структуры, приводит к её распаду.

Литература

Зацепина Г. Л. Физические свойства и структура воды. - М.: Изд-во Московского университета. - 1998. - 185 с.

Кузнецов Д. М., Гапонов В. Л., Смирнов А. Н. О возможности исследования кинетики фазовых переходов в жидкой среде методом акустической эмиссии // Инженерная физика, 2008, № 1, с. 16-20.

Кузнецов Д. М., Смирнов А. Н., Сыроешкин А. В. Акустическая эмиссия при фазовых превращениях в водной среде // Российский химический журнал - М.: Рос. хим. об-во им. Д. И. Менделеева, 2008, т. 52, № 1, с. 114-121.

Смирнов А. Н. Структура воды: новые экспериментальные данные. // Наука и технологии в промышленности, 2010, № 4, с. 41-45.

Смирнов А. Н. Акустическая эмиссия при протекании химической реакции и физико-химических процессов // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2001, т. 45, с. 29-34.

Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2004, т. 48, № 2, с. 125-135.

Подробности для любознательных

Как возникает «мостик»

Образование «водяного мостика» описано в работах нидерландского физика Элмара Фукса с коллегами.

В две стоящие рядом небольшие ёмкости с водой погружают платиновые электроды и подают на них постоянное напряжение 15-20 кВ. На фотографиях из отчётливо видно, что вначале в анодном стакане, а затем и в катодном на поверхности воды возникают возвышения, которые сливаются, образуя между ёмкостями водяную перемычку круглого сечения диаметром 2-4 мм. После этого стаканы можно отодвинуть один от другого на 20-25 мм. Перемычка существует довольно долго, образуя «парящий водяной мостик». Вдоль «мостика» перетекает вода. Концы «мостика» разноимённо заряжены, поэтому вода в ёмкостях приобретает различные значения рН: 9 и 4. «Мостик» состоит из тонких струек; при поднесении к нему заряженной стеклянной палочки он расщепляется на несколько рукавов. Высокая техника эксперимента позволила зарегистрировать движение шаровидных образований по поверхности «водяного мостика» .

Санкт-Петербургский государственный архитектурно-строительный университет

Кафедра химии

Свойства и структура воды

Выполнил студент

группы 2-В-1

Горохов М. В.

Л. И. Акимов

Санкт-Петербург

1. Введение. Вода в природе............................................ 3

2. Структура воды............................................................ 5

3. Свойства воды.............................................................. 11

4. Серебряная и талая вода............................................. 20

5. Заключение.................................................................. 22

6. Литература.................................................................. 23

Введение. Вода в природе.

Самое важное для жизни – вода.

Вода имеет первостепенное значение при большинстве химических реакций, в частности и биохимических. Древнее положение алхимиков – «тела не действуют, пока не растворены» – в значительной степени справедливо.

Человеческий зародыш содержит воды, %: трехдневный - 97, трехмесячный - 91, восьмимесячный - 81. У взрослого человека доля воды в организме составляет 65%.

Человек и животные могут в своем организме синтезировать первичную ("ювенильную") воду, образовывать ее при сгорании пищевых продуктов и самих тканей. У верблюда, например, жир содержащийся в горбу, может путем окисления дать 40 л воды.

Связь между водой и жизнью столь велика, что даже позволила В. И. Вернадскому «рассматривать жизнь, как особую коллоидальную водную систему... как особое царство природных вод».

Количество воды, содержащейся в живых существа составляет в каждый данный момент громадную величину. Силами жизни в течение одного года перемещаются десятые доли процента всего океана, а в немногие сотни лет через живое вещество проходят массы воды, превышающие массу Мирового океана.

Геохимический состав океанической воды близок к составу крови животных и человека (см табл.).

Сравнительное содержание элементов в крови человека и в Мировом океане, %

Вода - весьма распространенное в природе вещество. 71 % поверхности земного шара покрыт водой, бразующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы. Общие запасы воды на Земле составляют 1454,3 млн. км 3 (из них менее 2% относится к пресным водам, а доступны для использования 0,3%).

Природная вода не бывает совершенно чистой. Наиболее чи­ той является дождевая вода, но и она содержит незначительные оличества различных примесей, которые захватывает из воздуха.

Количество примесей в пресных водах обычно лежит в преде­лах от 0,01 до 0,1% (масс.). Морская вода содержит 3,5 (масс.) ра творенных веществ, главную массу которых составляет хлорид натрия (поваренная соль).

Чтобы освободить природную воду от взвешенных в ней частиц, е фильтруют сквозь слой пористого вещества, например, угля, обожженной глины и т. п.

Фильтрованием можно удалить из воды только нерастворимые римеси. Растворенные вещества удаляют из нее путем перегонки (ди тилляции) или ионного обмена.

Вода имеет очень большое значение в жизни растений, живот ых и человека. Во всяком организме вода представля т собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме ого, она сама принимает участие в целом ряде биохимических реакций.

Вода - обязательный компонент практически всех технологических процессов как промышленного, так и сельскохозяйственного производства.

Структура воды

Английский физик Генри Кавендиш обнаружил, что водород Н и кислород О образуют воду. В 1785 г. французскими химиками Лавуазье и Менье было установлено, что вода состоит из двух весовых частей водорода и шестнадцати весовых частей кислорода.

Однако нельзя думать, что это представление, выражающееся химической формулой Н 2 О, строго говоря, верно. Атомы водорода и кислорода, из которых состоит природная вода, или, точнее, окись водорода, могут иметь различный атомный вес и значительно отличаться друг от друга по своим физическим и химическим свойствам, хотя и занимают в периодической системе элементов одно и то же место.

Это так называемые изотопы. Известны пять различных водородов с атомными весами 1, 2, 3, 4, 5 и три различных кислорода с атомными весами 16, 17 и 18. В природном кислороде на 3150 атомов изотопа О 16 приходится 5 атомов изотопа кислорода О 17 и 1 атом изотопа кислорода О 18 . В природном газообразном водороде на 5,5 тыс. атомов легкого водорода Н (протия) приходится 1 атом Н 2 (дейтерия). Что касается Н 3 (трития), а также Н 4 и Н 5 , то их в природной воде на Земле ничтожно мало, но участие их в космических процессах при низких температурах в межпланетном пространстве, в телах комет и т п. весьма вероятно.

Ядра атомов изотопов содержат одинаковое число протонов, но разное число нейтронов. Атомные массы изотопов различны.

Вокруг ядра атома водорода вращается один единственный электрон, поэтому атомный номер водорода равен единице. Этот электрон вращается по круговым орбитам, в совокупности образующим сферу. Орбит множество, и в зависимости от нахождения электрона на или иной круговой орбите у атома водорода может существовать множество энергетических состояний электрона, т. е. он может быть в спокойном или более или менее возбужденном состояниях.

У атома кислорода 8 электронов (атомный номер 8), 6 из которых движутся по наружным орбитам, представляющим форму восьмерки или гантели, и 2 по внутренней круговой орбите. В соответствии с количеством электронов в ядре атома кислорода 8 протонов, таким образом, сам атом в целом нейтрален.

Наиболее устойчивой наружной орбитой атома является состоящая из 8 электронов, а у кислорода их 6, т, е., не хватает 2 электронов. В то же время водород, как и кислород, существует в молекулах, содержащих 2 атома (Н 2), связанных между собой двумя электронами, которые легко замещают вакансию двух электронов наружной орбиты атома кислорода, образуя в совокупности молекулу воды, с полной устойчивой восьмиэлектронной наружной орбитой (см рис 1.).

Рис 1. Схема образования молекулы воды (б) из 1 атома кислорода и 2 атомов водорода (а).

Можно привести много различных схем образования молекулы воды, основанных на представлениях разных физиков. По существу в них нет никаких противоречий и принципиальных различий. Ведь в действительности ни строения атомов, ни строения молекулы никто не видел, поэтому гипотетические схемы строятся лишь на основе косвенных наблюдаемых приборами признаков, позволяющих предположить как поведение, так и свойства атомов и молекул.

Размеры атомов различных элементов колеблются примерно от 0,6 до 2,6 А, а величины длины световой волны – в несколько тысяч раз больше: (4,5-7,7)*10 -5 см. К тому же и атомы, и молекулы не имеют четких границ, чем и объясняется существующий разнобой вычисленных радиусов.

При нормальных условиях следовало бы ожидать, что связи атома кислорода с обоими водородными атомами в молекуле Н 2 О образуют у центрального атома кислорода очень тупой угол, близкий к 180°. Однако совершенно неожиданно этот угол равен не 180°, а всего лишь 104°31". Вследствие этого внутримолекулярные силы компенсируются не полностью и их избыток проявляется вне молекулы. На рис. 2 показаны основные размеры молекулы воды.

Рис 2. Молекула воды и ее размеры.

В молекуле воды положительные и отрицательные заряды распределены неравномерно, асимметрично. Такое расположение зарядов создает полярность молекулы. Хотя молекула воды нейтральна, но в силу своей полярности она ориентируется в пространстве с учетом тяготения своего отрицательно заряженного полюса к положительному заряду и положительно заряженного полюса к отрицательному заряду.

Внутри молекулы воды это разделение зарядов по сравнению с разделением зарядов у других веществ очень велико. Это явление называют дипольным моментом. Эти свойства молекул воды (называемые также диэлектрической проницаемостью, которая у Н 2 О очень велика) имеют очень большое значение, например в процессах растворения различных веществ.

Способность воды растворять твердые тела определяется ее диэлектрической проницаемостью e, которая у воды при 0° С равна 87,7; при 50° С – 69,9; при 100° С - 55,7. При комнатной температуре диэлектрическая проницаемость равна 80. Это значит, что два противоположных электрических заряда взаимно притягиваются в воде, с силой, равной 1/80 силы их взаимодействия в воздухе. Таким образом, отделение ионов от кристалла какой-либо соли в воде в 80 раз легче, чем в воздухе.

Но вода состоит не только из одних молекул. Дело в том, что молекула воды может диссоциировать (расщепляться) на заряженный положительно ион водорода Н + и на заряженный отрицательно гидроксильный ион ОН - . В обычных условиях чистая вода диссоциирована очень слабо: только одна молекула из 10 млн. молекул воды распадается на ион водорода и ион гидроксила. Однако с повышением температуры и изменением других условий диссоциация может быть значительно большей.

Хотя вода в целом в химическом отношении инертна, наличие ионов Н + и ОН - делает ее чрезвычайно активной.

В воде могут находиться и отрицательно заряженные ионы кислорода (О -). Более того, в природе могут встречаться и другие соединения водорода с кислородом. К таким соединениям в первую очередь принадлежит широко распространенный отрицательно заряженный гидрооксоний Н 3 О + . Он встречается в растворах галита (NaСl) при высоких температурах и давлениях. Гидрооксоний находится в узлах решетки льда (вместе с гидроксильным ином ОН -) в количестве (при 0° С) 0,27*10 -9 частей, а также в связанном состоянии во многих минералах.

Н 3 О + и ОН - в глубоких недрах являются переносчиками многих соединений (особенно в процессе гранитизации). К другим соединениям водорода с кислородом относятся перекись водорода (Н 2 О 2), перигидроксил (НО 2), гидроксил-моногидрат (Н 3 О 2) и т. п. Все они неустойчивы в условиях земной поверхности, однако при некоторых темературах и давлениях могут находиться в природе длительное время, а главное – превращаться в молекулу воды, о чем будет сказано ниже. Н 3 О 2 - обнаружен в облаках ионосферы на высоте более 100 км над уровнем моря.

Как уже было отмечено выше, молекула воды, как правило, нейтральна. Однако при вырывании из нее электрона бета-лучами (быстрыми электронами) может образоваться заряженная «молекула» воды – положительный ион H 2 O + . При взаимодействии воды с этим ионом возникает радикал ОН - по схеме:

H 2 O + + H 2 O = Н 3 О + + ОН - .

При рекомбинации гидрооксония Н 3 О + с электроном выделяется энергия, равная 196 ккал/моль, достаточная для расщепления Н 2 О на Н и ОН. Свободные радикалы играют весьма важную роль в астрофизике и в физике земной атмосферы. На Солнце был обнаружен радикал ОН, причем в пятнах в повышенном количестве. Он же обнаружен в звездах и в головной части комет.

Итак, рассматривая воду только как вещество, состоящее из атомов, молекул и ионов водорода и кислорода, и не принимая во внимание все другие элементы периодической системы и их неорганические и органические соединения, которые могут находиться воде в виде растворов, взвесей, эмульсий и примесей, газообразном, жидком и твердом состояниях, можно выделить 36 соединений – разновидностей водорода и кислорода, входящих в состав воды. В табл. 1 приведено девять изотопических разновидностей воды.

Некоторые изотопические разновидности воды с сравнении с содержанием отдельных элементов в морской воде

Как видим, кроме Н 2 О, других изотопических разновидностей обычно не так уж много, всего около 0,3%. Тритий (Н 3 , или Т) слабо радиоактивен, и его полураспад длится 12,3 года, в таблице он не помещен, так же как и другие радиоактивные изотопы водорода с атомным весом 4 (Н 4) и 5 (Н 5) с исключительно коротким периодом полураспада. Например, Н 4 всего 4/100000000000сек. или 4*10 -11 сек.

Помимо указанных выше четырех изотопов водорода имеются еще три радиоактивных изотопа кислорода: О 14 , О 15 , О 16 , но и они в природной воде большого значения иметь не могут, так как их периоды полураспада очень малы и оцениваются десятками секунд. Но это еще далеко не все, если говорить о разновидностях чистой воды.

До сих пор мы рассматривали только атомы, молекулы и ионы водорода и кислорода и их соединения, составляющие то, что мы называем чистой водой. В 1 см 3 жидкой воды при 0° С содержится 3,35*10 22 молекул.

Оказывается, частицы воды располагаются далеко не произвольно, а образуют во всех трех фазах воды определенную структуру, которая изменяется в зависимости от температуры и давления. Мы подошли к наиболее трудной для понимания, загадочной и далеко не разрешенной проблеме воды – ее структуре.

Модели структуры воды.

Известно несколько моделей структуры чистой воды, начиная с простейших ассоциатов, льдоподобной модели и желеподобными массами, свойственными полипептидам и полинуклеотидам, – бесконечно и беспорядочно разветвленный гель с быстро возникающими и и исчезающими водородными связями. Выбор определенной модели жидкой воды зависит от изучаемых свойств. Каждая модель передает те или иные характерные особенности ее структуры, но не может претендовать как на единственно правильную.

Большему количеству экспериментальных данных отвечает льдоподобная - модель О. Я. Самойлова. Согласно этой модели, ближняя упорядоченность расположения молекул, свойственная воде, представляет собой нарушенный тепловым движением льдоподобный тетраэдрический каркас, пустоты которого частично заполнены молекулами воды. При этом молекулы воды, находящиеся в пустотах льдоподобного каркаса, имеют иную энергию, чем молекулы воды в его узлах. Для структуры воды характерно тетраэдрическое окружение ее молекул. Три соседа каждой молекулы в жидкой воде расположены в одном слое и находятся на большем от нее расстоянии (0,294 нм), чем четвертая молекула из соседнего слоя (0,276 нм). Каждая молекула воды в ставе льдоподобного каркаса образует одну зеркальносимметричную (прочную) и три центральносимметричных (менее прочных) связи. Первая относится к связи между молекулами воды данного слоя и соседних слоев, остальные - к связям между молекулами воды одного слоя. Поэтому четвертая часть всех связей - зеркальносимметричные, а три четверти центральносимметричные. Представления о тетраэдрическом окружении молекул воды привели к выводу о высокой ажурности ее строения и наличии в ней пустот, размеры которых равны или превышают размеры молекул воды.

Рис 3. Элементы структуры жидкой воды.

а - элементарный водный тетраэдр (светлые кружки - атомы кислорода, черные половинки - возможные положения протонов на водородной связи);

б - зеркальносимметричное расположение тетраэдров;

в - центральносимметричное расположение; г - расположение кислородных центров в структуре обычного льда.

Жидкая вода характеризуется значительными силами межмолекулярного взаимодействия за счет водородных связей, которые образуют пространственную сетку. Водородная связь обусловлена способностью атома водорода, соединенного с электроотрицательным элементом, образовывать дополнительную связь с электроотрицательным атомом другой молекулы. Водородная связь относительно прочна и составляет несколько килоджоулей на моль. По прочности она занимает промежуточное место между энергией Ван-дер-Ваальса и энергией типично ионной связи.

В молекуле воды энергия химической связи H-O составляет 456 кДж/моль, а энергия водородной связи H…O 21 кДж/моль.

Рис 4. Схема водородной связи между молекулами воды

Свойства воды

Обратимся к общей характеристике свойств воды, делающих ее самым удивительным веществом на Земле.

И первое, самое поразительное, свойство воды заключается в том, что вода принадлежит к единственному веществу на нашей планете, которое в обычных условиях температуры и давления может находиться в трех фазах, или трех агрегатных состояниях: в твердом (лед), жидком и газообразном (невидимый глазу пар).

Как хорошо известно, вода принята за образец меры – эталон для всех других веществ. Казалось бы, за эталон для физических констант следовало бы выбрать такое вещество, которое ведет себя самым нормальным, обычным образом. А получилось как раз наоборот.

Вода – самое аномальное вещество в природе.

Прежде всего, вода обладает исключительно высокой теплоемкостью по сравнению с другими жидкими и твердыми телами. Если теплоемкость воды принята за единицу, то, например, для спирта и глицерина она составит только 0,3; для песка каменной соли – 0,2; для ртути и платины – 0,03; для дерева (дуб, ель, сосна) – 0,6; для железа – 0,1 и т.д.

Таким образом, вода в озере при одинаковой температуре воздуха и одинаковом получаемом ею солнечном тепле нагреется в 5 раз меньше, чем сухая песчаная почва вокруг озера, но во столько же раз вода будет больше сохранять полученное тепло, чем почва.

Другая аномалия воды – это необычайно высокие скрытая теплота испарения и скрытая теплота плавления, т. е. то количество тепла, которое необходимо, чтобы превратить жидкость в пар и лед в жидкость (иными словами, количество поглощаемой или высвобождаемой теплоты). Например, чтобы превратить 1 г льда в жидкость, необходимо закатить около 80 кал, в то время как само вещество лед – вода ни на долю градуса не повысит свою температуру. Как известно, температура тающего льда неизменно одинакова и равна 0° С. В то же время вода тающего льда из окружающей среды должна поглощать относительно громадное количество тепла (80 кал/г).

Такой же скачок мы наблюдаем при переходе воды в пар. Без повышения температуры кипящей воды, которая неизменно (при давлении 1 атм.) будет равна 100° С, сама вода должна поглотить из окружающей среды почти в 7 раз больше тепла, чем при таянии льда, а именно: 539 кал.

Если пар превращается в воду или вода переходит в лед, то такое же количество тепла в калориях (539 и 80) должно выделяться из воды и согревать среду, окружающую воду. У воды эти величины необыкновенно высоки. Например, скрытая теплота испарения у воды почти в 8 раз больше, а скрытая теплота плавления в 27 раз больше, чем у спирта.

Удивительной и совершенно неожиданной аномальной особенностью воды являются ее температуры замерзания и кипения. Если рассмотреть ряд соединений водорода с другими элементами, например с серой, селеном, теллуром, то можно заметить, что существует закономерность между их молекулярными весами и температурами замерзания и кипения: чем выше молекулярные массы, тем выше температурные значения (табл. 2).

Зависимость температуры замерзания и кипения

некоторых соединений водорода от молекулярного веса

Еще более удивительное и не менее неожиданное свойство воды – это изменение ее плотности в зависимости от изменения температуры. Все вещества (кроме висмута) по мере повышения температуры увеличивают свой объем и уменьшают плотность. На интервале от +4° С и выше вода увеличивает свой объем и уменьшает плотность, как и другие вещества, но начиная с +4° С и ниже, вплоть до точки замерзания воды, плотность ее вновь начинает падать, а объем расширяться, и в момент замерзания происходит скачок, объем воды расширяется на 1/11 от объема жидкой воды.

Исключительное значение такой аномалии всем достаточно понятно. Если бы этой аномалии не было, лед не смог бы плавать, водоемы промерзали бы зимой до дна, что было бы катастрофой для всего живущего в воде. Впрочем, это свойство воды не всегда приятно для человека – замерзание воды в водопроводных трубах приводит к их разрыву.

Существует много других аномалий воды, например, температурный коэффициент расширения воды на интервале от 0 до 45° С увеличивается с ростом давления, а у других тел обычно наоборот. Аномальны также теплопроводность, зависимость диэлектрической проницаемости от давления, коэффициент самодиффузии и многие другие свойства.

Возникает вопрос, чем же объяснить эти аномалии?

Путь к объяснению, возможно, лежит в выявлении особенностей структур, образуемых молекулами воды при различных агрегатных (фазовых) состояниях, связанных с температурами, давлениями и другими условиями, в которых находится вода. К сожалению, единство во взглядах на этот вопрос отсутствует. Большая часть современных исследователей придерживается мнения о двухструктурной модели воды, согласно которой вода представляет собой смесь:

1) рыхлой льдоподобной и

2) плотно упакованной структур.

Кристаллы льда относятся к гексагональной сингонии, т. е. они имеют форму шестигранных призм (гексагонов). В структуре льда каждая молекула воды окружена четырьмя ближайшими к ней молекулами, находящимися от нее на одинаковом расстоянии. Таким образом, каждая молекула воды обладает координационным числом.

Молекулы воды располагаются так, что они соприкасаются разноименными полюсами (заряженными положительно и отрицательно). В структуре льда типа тридимита расстояние между молекулами 4,5 А, а в структуре типа кварца – 4,2 А. В первом случае это вода тающего льда с температурой около 0° С. Во втором случае более плотная упаковка молекул воды предполагается при температуре около +4° С.

Таинственное расширение воды примерно на 10% при замерзании объясняется быстрой сменой плотно упакованной структуры на ажурную, рыхлую. В структуре льда из-за низкого координационного числа много пустот, которые даже больше самих молекул воды. Каждая пустота ограничена 6-ю молекулами воды, и в то же время вокруг каждой молекулы воды в структуре льда имеется 6 центров пустот.

При температуре около +4° С эти пустоты заполняются "свободными" молекулами воды и плотность ее становится максимальной. При дальнейшем повышении температуры вновь постепенно возникает все более и более рыхлая ажурная структура. В результате возрастающего теплового движения молекул (с повышением температуры) структура льда постепенно "размывается", происходит ослабление водородных связей и "размывание" структуры типа тридимита усиливается, плотность воды уменьшается, а объем ее увеличивается.

Необходимо еще раз подчеркнуть, что внутреннее строение жидкостей вообще, а воды в особенности, значительно сложнее, чем у твердых тел и газов. Природа воды чрезвычайно сложна и пока еще далеко не разгадана. Крупный исследователь структуры воды профессор О. Я. Самойлов поясняет процесс внезапного увеличения объема, занимаемого водой в момент замерзания или уменьшения объема при оттаивании льда двумя грубыми примерами-аналогиями, разумеется, чрезвычайно упрощенно схематизированными.

Представим себе ящик, в который сложены шары с плотнейшей упаковкой. При встряхивании ящика произойдет разупорядочение, объем, занимаемый шарами, увеличится и образуются пустоты.

Обратный процесс иллюстрируется следующим примером. Пусть на каждом шаре будут сделаны углубления и соответствующие им на других шарах выступы так, чтобы каждый шар был окружен только 4-мя шарами и выступы не входили бы в углубления. При встряхивании и вхождении выступов в углубления произойдет резкое и мгновенное уменьшение объема, занимаемого всеми шарами. Это пример перехода льда в воду с температур около +4° С.

В 1962 г. в Костроме доцентом Н. Н. Федякиным была открыта новая разновидность химически чистой воды (помимо ее изотопических разностей). Это так называемая аномальная («модифицированная») вода, образующаяся из обычной в кварцевых капиллярах или на кварцевых пластинках. В капиллярах появляются самостоятельные дочерние столбики новой аномальной воды высокой вязкости, с уменьшенным давлением паров, с вязкостью и коэффициентом теплового расширения, в несколько раз большими, и с плотностью, на 40% больше, чем у обычной воды.

Пока аномальную воду можно получить из обыкновенной воды при конденсации паров только на кварце. Чистая аномальная вода представляет собой аморфно-стекловидную некристаллизующуюся массу с консистенцией вазелина.

Эта модифицированная вода имеет высокую устойчивость и вне капилляров ведет себя так же, как и в них. Она не замерзает, оставаясь жидкой даже при – 50° С. При давлениях в 60 тыс. атм. и температуре в 1000° С она не появлялась.

Новый вид воды не смешивается с обычной, а образует с ней эмульсию. Модифицированная вода не кристаллизуется, она, подобно стеклу, представляет собой аморфную массу. Загадка ее происхождения пока не раскрыта, и ученые во всем мире ведут усиленные исследования. Во всяком случае, объяснить происхождение аномальной воды структурными особенностями нельзя. За рубежом ее назвали "сверхводой".

Ф. А. Летниковым и Т. В. Кащевой была открыта у воды "память", или, "закалка". Бралась очень тщательно очищенная перегонками вода и подвергалась нагреванию до 200, 300, 400 и 500° С при давлении 1, 88, 390 и 800 атм. Температура и давление изменяют свойства воды, это было известно давно. Но вот что удивительно – некоторые новые свойства сохраняются у воды и после снятия высоких температур и давлений. Например, у воды в 4 раза повышалась способность к растворению некоторых солей.

Уже давно замечено изменение ряда свойств води при воздействии на нее магнитного поля. Чем сильнее последнее, тем большие изменения происходят с водой. Так, при изменениях напряженности достаточно сильного магнитного поля концентрация водородных ионов (Н +) увеличивается в два раза, а поверхностное натяжение воды – в три раза.

Магнитное поле влияет также на скорость и характер кристаллизации солей, находящихся в воде в растворенном состоянии. Магнитная обработка воды приводит к уменьшению накипи в котлах, понижает смачиваемость водой поверхностей твердых тел, изменяет температуру кипения, степень вязкости, повышает скорости сгущения суспензий, фильтрации, затвердевания цемента, изменяет магнитную восприимчивость. Магнитное поле существенно меняет в концентрированных растворах теплоту гидратации (до 5%), что очень важно для глубинных рассолов.

Однако магнитное поле не оказывает влияния на чистую воду, т. е. воду, в растворе которой отсутствуют электролиты. При омагничивании воды происходит изменен ориентации ядерного спина (момента количества движения атомного ядра, тесно связанного с магнитным моментом) в молекуле Н 2 О.

Магнитная вода, как и свежеталая, также обладает "памятью". Ее новые свойства имеют «полураспад» примерно в течение суток. Талой воде, как это установлено многочисленными наблюдениями, присуща повышены биологическая активность, которая сохраняется некоторое время после таяния. По данным казанских биоников новые свойства как магнитной, так и талой воды объясняются изменениями, происходящими с ядрами водорода.

В настоящее время во многих странах организовано промышленное изготовление омагниченной воды в больших количествах.

Точкой перехода жидкой фазы воды в твердую при давлении в 1 атм. является температура 0° С. С повышением давления точка перехода воды в лед понижается при 600 атм. до – 5° С, при 2200 атм. до – 22° С. Но затем вода начинает вести себя совершенно удивительно: при 3530 атм. она переходит в лед только при -17° С, при 6380 атм. – при +0,16° С, а при 20 670 атм. лед имеет температуру +76° С – горячий лед, который мог бы дать ожог.

Немецкий ученый Г. Тамман и американский П. В. Бриджмен выявили шесть разновидностей льда:

I – обычный лед, существующий при давлении до 2200 атм., при дальнейшем увеличении давления переходит в II;

II – лед с уменьшением объема на 18%, тонет в воде, очень неустойчив и легко переходит в III;

III – также тяжелее воды и может непосредственно быть получен из льда I;

IV – легче воды, существует при небольших давлениях и температуре немного ниже 0° С, неустойчив и легко переходит в лед I;

V – может существовать при давлениях от 3600 до 6300 атм., он плотнее льда III, при повышении давления с треском мгновенно превращается в лед VI;

VI – плотнее льда V, при давлении около 21 000 атм. имеет температуру +76° С; может быть получен непосредственно воды при температуре +60° С и давлении 16 500 атм.

Приведенные выше давления могут существовать в геосферах до глубины 80 км. По мнению В. И. Вернадского, разности горячего льда существуют в литосфере в области физически связанных вод. Так, например, прочно связанная вода имеет плотность твердого тела (и это при обычном давлении) 2 г/см 3 . Такая вода замерзает лишь при – 78° С.

Поведение воды в природе в различных условиях давления, температуры, электромагнитных полей, а особенно разностей электрических потенциалов и многого другого, загадочно, тем более что природная вода – не химически чистое вещество, она содержит в растворе многие вещества (по существу все элементы периодической системы), и притом в различных концентрациях. Эта загадочность особенно велика для больших глубин литосферы Земли, где имеют место высокие давления и температуры. Но даже если взять «чистую» воду и посмотреть, как меняются ее некоторые свойства при относительно высоких давлениях и температурах, то, например, для плотности получим такие значения, г/см 3: при 100° С и 100 атм., а также при 1000° С и 10 000 атм. она будет одинакова и близка к 1; при 1000° С и 100 атм. – 0,017; при 800° С и 2500 атм. - 0,5; при 770° С и 13 000 атм. – 1,7, а электропроводность такой воды равна электропроводности пятинормальной соляной кислоты. Для рассолов, которые господствуют в глубинах литосферы, все эти значения изменятся.

В 1969 г. в астрофизическом центре при университете в Толедо (штата Огайо, США) американские ученые А. Делсемм и А. Венджер открыли новую сверхплотную модификацию льда при температуре –173° С и давлении около 0,007 мм рт. ст. Этот лед имел плотность 2,32 г/см 3 , т. е. был близок по плотности к некоторым разновидностям гнейса (2,4 г/см 3); он аморфен (не имеет кристаллического строения) и играет большую роль в физике планет и комет.

Свойства воды меняются также под воздействием электрического поля разной частоты. При этом интенсивность света в воде ослабевает, это связано с поглощением его лучей. Далее, примерно на 15% изменяется скорость испарения воды.

Вообще в последнее время все большее число исследователей на основании полевых и лабораторных наблюдений приходит к выводу о значительной роли разности естественных электрических потенциалов для физических и химических особенностей природных вод. Даже в приповерхностных зонах литосферы со сравнительно слабыми электрическими потенциалами разность потенциалов вызывает как движение самой воды, так и растворенных в ней катионов и анионов во взаимно противоположных направлениях. Некоторые ученые наблюдали возникновение электрических потенциалов (и их разностей) на контакте воды и льда, а также на сульфидных месторождениях. На больших глубинах литосферы следует ожидать более значительных разностей потенциалов между разными породами, так и разными растворами.

Американский ученый П. Маркс полагает, что на глубинах около 12 км образуются мощные гальванические батареи при наличии минерализованных растворов, металлов, серы, графита. Разности электрических потенциалов могут быть столь велики, что будут разлагать воду на водород и кислород.

Все, что мы до сих пор говорили о многообразии разновидностей воды, касалось чистой воды, без всяких примесей. Но химически чистой воды нигде в природе и быть не может. Даже искусственно дистиллированная вода после многократной перегонки будет содержать растворенные углекислоту, азот, кислород, а также в незначительной части вещества, из которых сделан сосуд, где она находится.

Таким образом, даже искусственно получить почти чистую воду очень затруднительно, хотя подобный опыт в начале века и был проведен немецким физиком Ф. Кольраушем. Им была получена в совершенно ничтожном объеме и на несколько секунд, за которые удалось определить ее электропроводность, абсолютно чистая вода.

Всякая вода в природе, включая снег, лед и дождь, является раствором различных веществ в форме ионов нейтральных молекул, мелких и крупных взвесей, живых существ (от бактерий до крупных животных) и продуктов их жизнедеятельности. Если говорить о находящихся в воде веществах, то, например, акад. В. И. Вернадский, рассматривавший воду как минерал, выделил 485 видов минералов группы воды (гидридов), сделав при этом оговорку, что им описана только меньшая часть видов воды и что общее их количество, вероятно, превысит 1500. Разумеется, такая классификация неприемлема, для практических целей, о ней упоминается только для иллюстрации многообразия химического состава природных вод, рассматривая воду как растворитель и минерал.

Природную воду можно классифицировать по следующим признакам: температуре, химическому составу растворенных компонентов, местонахождению, целевому использованию, происхождению, динамике циркуляции, фазовому состоянию, нахождению в той или иной геосфере и по многим другим свойствам и признакам.

1. В природе встречаются воды в пределах температур от почти абсолютного нуля (т. е. около – 273° С) до примерно 2000° С. Даже при обычном давлении вода, оставаясь жидкостью, может переохлаждаться до – 70° С и перегреваться, не переходя в пар, до +120° С, но только на очень короткий срок.

2. Всякая природная вода является раствором газов и минеральных веществ, а для наружных оболочек Земли (не глубже 3 – 5 км) и местом обитания живых организмов. Газы и твердые вещества могут быть растворены в воде от ничтожных количеств до возможных пределов растворимости тех или иных веществ. В зависимости от температуры и давления в воде растворяется все, в ней могут содержаться в растворе все элементы периодической системы, встречающиеся в природе, даже металлы и такие очень труднорастворимые соединения кремния, как стекло, кварц и т. п.

3. Все природные воды по химическому составу веществ, находящихся в растворе, удобнее всего делить на три класса по преобладающему в растворе аниону:

а) хлоридные (самый распространенный класс),

б) гидрокарбонатные и

в) сульфатные.

Каждый класс в свою очередь делится по преобладающему катиону на четыре группы: натриевые, кальциевые, магниевые и калиевые. Таким образом, мы имеем 12 крупных разновидностей воды.

По преобладающему в растворе газу воды делятся также на азотные, сероводородные, метановые, углекислые, кислородные и другие.

4. Вода может находиться как в свободном, так и в связанном состоянии. Свободные воды могут изливаться и передвигаться под влиянием силы тяжести (гравитации). Они так и называются «гравитационные».

Но вода в форме H 2 О или ее изотопических разновидностей, а также и форме гидроксила ОН, гидрооксония Н 3 О и других может входить в состав минералов как физически или химически связанная, иногда в значительных количествах. Так, в физически связанном состоянии вода присутствует в таких минералах, как гидробазалюминит Аl 4 [(ОН) 1 0 SO 4)] 3 ·36Н 2 0 - 60 вес. %, мирабилит Nа 2 SO 4 ·10H 2 0 – 56 вес. %, бура Nа 2 В 4 O 7 ·10Н 2 О – 47 вес. %; в химически связанном (в виде гидроксила OH) – в гидраргиллите Аl 3 ·10H 2 O- 65 вес. %, в тремолите Cа 2 Мg 5 12 ·[ОН] 2 - 42 вес. %, в турмалине (Nа, Cа) Mg, Аl) 6 ·[В 3 Аl 3 Si 6 ]x(O,OH) 30 – 31 вес. %.

5. По целевому назначению воды могут быть подразделены на минеральные (лечебные), питьевые, хозяйственно-технические, термальные (для энергетических, лечебных и обогревательных целей).

Все перечисленные воды могут использоваться для добычи минеральных веществ (например, йод-бромные, калийные и т. д.), в качестве путей сообщения (водоемы, водотоки), для получения электроэнергии для поливов (ирригации), для лечебных (душей, пресных ванн, купания в природных условиях) и многих других целей.

Но воды могут быть и "вредными" – ядовитыми, заливающими подземные выработки, вызывающими лавины, сели, сейши, наводнения.

6. По происхождению различают воды первичные и вторичные. Первые возникают на месте, например, даже при горении свечи (СН 4 +2O 2 = 2Н 2 О + С0 2), а вторые – в результате круговоротов воды.

7. По динамике циркуляции воды могут быть свободно текучими (например, реки), просачивающимися через породы с большей или меньшей скоростью и т. д. Никакие воды не могут быть в геологическом разрезе времени статичными (мертвыми запасами), неподвижными.

8. По фазовому (агрегатному) состоянию воды делят на твердые (снежинки, мельчайшие парящие в воздухе иглы, лед), жидкие (парящие мельчайшие капельки тумана и облаков, слитные жидкие массы в морях, ре и т. д.) и газообразные (невидимый глазу пар в воздухе, в подземных газах), проникающие в мельчайшие поры и трещинки твердых тел, и другие фазовые состояния.

Серебряная и талая вода

Серебряная вода применялась в глубокой древности. Во всяком случае еще 2,5 тыс. лет назад персидский царь Кир во время походов пользовался водой, сохраняемой в серебряных сосудах. В Индии обезвреживали воду, погружая в нее раскаленное серебро. Действительно, опыт тысячелетий показал, что вода, в течение некоторого времени находившаяся в серебряном сосуде, перелитая затем в бутыль и хранившаяся в течение года, не портилась.

Научные исследования серебряной воды были впервые поставлены в Швейцарии ботаником Негели в конце ХIХ в. В ХХ в. во многих странах, было проведено много работ по изучению эффективных способов получения и применения серебряной воды для самых разнообразных целей. В настоящее время в разных странах изготовляются фабричные ионаторы для получения больших количеств серебряной воды различных концентраций.

Ионы серебра обладают антимикробным действием. Серебряная вода с успехом применялась для обеззараживания питьевых вод. При полете космонавта В. Быковского использовалась для питья серебряная вода. Электролитический раствор серебра может применяться для консервирования молока, сливочного масла, меланжа, маргарина, для повышения стойкости некоторых микстур, для ускорения процессов старения вин и улучшения их вкусовых качеств. Серебряная вода служит эффективным лечебным средством при воспалительных и гнойных процессах, вызванных бактериальным заражением, а также при лечении желудочно-кишечных заболеваний, язвенной болезни, воспалительных процессов носоглотки, глаз, ожогов и т. д. Серебряная вода применяется также ветеринарии для профилактических и лечебных целей.

Не менее любопытно влияние на живой организм талой воды. Ее активное биологическое воздействие впервые было обнаружено в Арктике, когда при таянии льда было замечено интенсивное развитие планктона. Вода тающего льда (и конечно снега) увеличивает в 1,5-2 раза урожайность сельскохозяйственных культур, прирост молодняка, оказывает омолаживающее действие на организм как животных, так и человека.

В тал воде сохраняются очаги ледяных структур. Это своего рода "память" воды, о которой уже было рассказано выше. Дело в том, что ледяная структура воды более рыхлая и в пустоты ледяной решетки идеально укладываются биомолекулы без их повреждения, с сохранением потенциальных жизненных функций.

Любопытно, что замороженное до твердого состояния ископаемый тритон (углозуб), пролежавший в мерзлоте на глубине 14 м около миллиона лет, ожил.

Предполагается, что процесс старения организма сводится в значительной степени к нарастающему дефициту «ледяной» структуры биомолекул, разрушающейся влиянием менее структурированной воды.

При употреблении свежей талой воды очаги льдоподобной структуры размером 20А свободно проходят через стенки пищеварительного тракта и могут поступать в различные органы человека, производя оздоравливающее и омолаживающее воздействие на весь организм. В то же время установлено, что если растопить снег и вскипят полученную из него талую воду, то она теряет стимулирующее действие.

Заключение

«Что такое вода?» – вопрос далеко не простой. Все, о чем было рассказано о ней в данной работе не является исчерпывающим ответом на этот вопрос, а во многих случаях дать ясный ответ на него пока и совсем нельзя. Например, пока остается открытым вопрос о структуре воды, причинах многочисленных аномалий воды и, вероятно, еще о многих свойствах и разновидностях воды, о которых мы даже не подозреваем. Однозначно можно сказать лишь то, что вода - самое уникальное вещество на земле.

Напомним слова нашего гениального соотечественника акад. В. И. Вернадского о том, о "надо ждать особый исключительный характер физико-химических свойств воды среди всех других соединений, который отражается и на ее положении в мироздании и на структуре мироздания".

Литература :

1. Дерпгольц В. Ф. Вода во вселенной. - Л.: "Недра", 1971.

2. Крестов Г. А. От кристалла к раствору. - Л.: Химия, 1977.

3. Хомченко Г.П. Химия для поступающих в ВУЗы. - М., 1995г.