Физико-химическая модель процессов в анодном микроразряде

Разработка интерактивных моделей микромира и методика их использования при изучении школьного курса химии

1.4.1 Химические модели

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование. Одна из главных целей наблюдения - поиск закономерностей в результатах экспериментов. Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е., моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Так в химии модели условно можно разделить на две группы: материальные и знаковые.

Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

Наиболее распространенным изображением атома является модель, напоминающая строение Солнечной системы.

Для моделирования молекул веществ часто используют шаростержневые модели. Модели этого типа собирают из цветных шариков, обозначающих входящие в состав молекулы атомы. Шарики содиняют стержнями, символизирующие химические связи. С помощью шаростержневых моделей довольно точно воспроизводятся валентные углы в молекуле, но межъядерные расстояния отражаются лишь приблизительно, поскольку длины стержней, соединяющих шарики, не пропорциональны длинам связей.

Модели Дрединга достаточно точно передают валентные углы и соотношение длин связей в молекулах. Ядра атомов в них, в отличие от шаростержневых моделей, обозначаются не шариками, а точками соединения стержней.

Полусферические модели, называемые также моделями Стюарта - Бриглеба, собирают из шаров со срезанными сегментами. Модели атомов соединяют между собой плоскостями срезов с помощью кнопок. Полусферические модели точно передают как соотношение длин связей и валентных углов, так и заполненность межъядерного пространства в молекулах. Однако эта заполненность не всегда позволяет получить наглядное представление о взаимном расположении ядер.

Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии.

Однако чаще химики пользуются не материальными, а знаковыми моделями - это химические символы, химические формулы, уравнения химических реакций. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается справа от знака химического элемента.

Химическая формула - основная знаковая модель в химии. Она показывает: конкретное вещество; одну частицу этого вещества; качественный состав вещества, т.е., атомы каких элементов входят в состав данного вещества; количественный состав, т.е., сколько атомов каждого элемента входит в состав молекулы вещества.

Все вышеприведенные модели широко используются при создании интерактивных компьютерных моделей.

Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид

Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор - аппарат, в котором протекает химический процесс. Выбор типа...

Вначале создается компьютерная модель объекта, а также применяется компьютерное моделирование для формирования молекул на месте проведения исследования. Модель может быть как двухмерной, так и трехмерной...

Инновационный путь развития технологии создания новых лекарственных средств

В разумности модели молекулы, используемой для квантово-химических построений, согласно которой анализу подлежит система ядер и электронов и ее поведение описывается уравнениями квантовой теории, сомнений нет...

Инновационный путь развития технологии создания новых лекарственных средств

Для методов определения биологической активности вводится понятие о дескрипторах и QSAR. Молекулярный дескриптор - это числовые значения, характеризующие свойства молекул. Например, они могут представлять физико-химические свойства...

Исследование кинетики реакции алкилирования изобутана изобутиленом до изооктана методом математического моделирования

Исследование кинетики реакции хлорирования бензола

R = k*C1*Ck? Для наилучшей обработки полученной модели проведем преобразование вида функции, т. к. зависимость скорости реакции от времени постоянна и для первых 3 опытов равна 0,0056...

Метод моделирования в химии

В настоящее время можно найти множество различных определений понятий «модель» и «моделирование». Рассмотрим некоторые из них. «Под моделью понимают отображение фактов, вещей и отношений определенной области знаний в виде более простой...

Научные основы реологии

Напряженно-деформированное состояние тела в общем случае является трехмерным и описать его свойства с использованием простых моделей нереально. Однако в тех редких случаях, когда деформируются одноосные тела...

Синтез и анализ ХТС в производстве бензина

Химическая модель процесса каталитического крекинга имеет очень сложный вид. Рассмотрим наиболее простую из реакций протекающих вс процессе крекинга: СnН2n+2 > CmH2m+2 + CpH2p...

Синтез химико-технологической системы (ХТС)

Производственные процессы разнообразны по своим особенностям и степени сложности. Если процесс сложный и расшифровка его механизма требует большой затраты сил и времени, используют эмпирический подход. Математические модели...

Сравнение реакторов идеального вытеснения и полного смешения в изотермическом режиме работы

1

Федоров А.Я. 1 Мелентьева Т.А. 2 Мелентьева М.А. 3

1 Тульский институт управления и бизнеса им. Н.Д. Демидова

2 Тульский педагогический университет им. Л.Н. Толстого

3 Российская музыкальная академия им. Гнессиных

1. Ивашов П.В. Ландшафтно-геохимические исследования на базальтовых массивах. – М.: Из-во «Дальнаука», 2003. – 323 с.

2. Акимова Т.А., Кузьмин А.П., Хаскин В.В. Экология. – М.: Из-во «ЮНИТИ», 2001. – 343 с.

4. Экология; под ред. Терехиной Л.А. – Тула: Из-во «ТГПУ», 2004. – 221 с.

5. Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. Процесс очистки технологического газа. – Тула: Из-во «ТулГУ» Серия «Экология и безопасность жизнедеятельности», 2009. – Вып. 3. – С. 47–52.

6. Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. Моделирование металлургических процессов. – М.: Из-во «Академия Естествознания», 2011. – С. 56–58.

Из всех изверженных из земных недр пород наиболее широко распространены базальты - эффузионные образования, связанные с базальтовым магматизмом. Семейство базальтов петрологами обычно подразделяются на два больших типа: толеиновые базальты и щелочные оливиновые базальты. Толеиновые базальты состоят из двух пироксенов (авгита и бедного кальцием собственно пироксена) и плагиоклаза. В них также может присутствовать оливин. Щелочные оливиновые базальты отличаются наличием только одного пироксена (авгивита) в парагенезисе с плагиоклазом и оливином. Они особенно характерны для океанических островов. Толеинтовые базальты главным образом встречаются в глубоководных частях океанов, вдоль океанических хребтов, а также в форме покровных базальтов на материке. Континентальные телеиты имеют несколько более высокое содержание кальция и кремнезема по сравнению с океаническими телеитами.

В регионах распространение древней и современной вулканической деятельности в настоящее время доказана тесная и пространственная связь базальтов и андезитов как эффузионных образований с их интрузивными аналогами в виде габброидов и диоритов. Общность химических составов этих вулканических пород и интрузивных пород указывает на единство их глубинного происхождения .

Многие металлургические процессы основаны на переработке железосодержащих пород. Они основаны на восстановлении металлов из руд, где они содержатся преимущественно в виде окислов или сульфидов с помощью термических и электролитических реакций. Наиболее характерные химические реакции имеют вид:

Fe2O3 + 3C +O2 → 2Fe + CO + 2CO2,

5Сu2S + 5O2 → 10Cu + 5SO2, (1)

Al2O3 + 3O → 2Al + 3О2,

где Fe2O3, Al2O3 - оксиды железа и алюминия; Сu2S - сульфид меди; C - углерод; O2 - молекулярный кислород; O - атомарный кислород;Fe, Cu, Al - получаемые металлы; CO - оксид углерода; CO2 - диоксид углерода; SO2 - диоксид серы. Технологическая цепь в черной металлургии включает производство окатышей и агломератов, доменное, сталеплавильное, прокатное, ферросплавное, литейное производство и другие вспомогательные производства . Все металлургические переделы сопровождаются интенсивным загрязнением среды (таблица). В коксохимическом производстве дополнительно выделяются ароматические углеводороды, фенолы, аммиак, цианиды и целый ряд других веществ. Черная металлургия потребляет большое количество воды. Хотя промышленные нужды на 80-90 % удовлетворяются за счет систем оборотного водоснабжения., забор свежей воды и сброс загрязненных стоков достигают очень больших объемов, соответственно порядка 25-30 м3 и 10-15 м3 на 1 т продукции полного цикла. Со стоками в водные объекты поступают значительные количества взвешенных веществ, сульфатов, хлоридов, соединений тяжелых металлов.

Газовые выбросы основных переделов черной металлургии в кг/т соответствующего продукта

Примечание. * кг/м2 поверхности металла.

Технологии химической промышленности со всеми ее отраслями (неорганическая химия, нефтегазохимия, лесохимия, оргсинтез, фармакологическая химия, микробиологическая промышленность и др.) содержат множество незамкнутых материальных циклов. Основными источниками вредных эмиссий являются процессы производства неорганических кислот и щелочей, синтетического каучука, минеральных удобрений, ядохимикатов, пластмасс, красителей, растворителей, моющих средств, крекинг нефти. Кроме того, являются процессы очистки технологического газа . В техногенных потоках поллютантов ключевое место занимают транспортирующие среды - воздух и вода.

Обычно химический процесс получения металлов заключается в восстановлении данного металла - обычно окисла или сульфида - до свободного металла. В качестве восстановителя обычно применяют уголь, чаще всего в виде кокса (КМЗ, РМЗ) .

Россия занимает невыгодное географическое положение по отношению к трансграничному переносу аэрополлютантов. В связи с преобладанием западных ветров значительную долю загрязнения воздушного бассейна Европейской территории России (ЕТР) дает аэрогенный перенос из стран Западной и Центральной Европы и ближнего зарубежья.

Для интегральной оценки состояния воздушного бассейна применяют индекс суммарного загрязнения атмосферы:

где qi - средняя за год концентрация в воздухе i-го вещества; Ai - коэффициент опасности i-го вещества, обратный ПДК этого вещества; Ci - коэффициент, зависящий от класса опасности вещества. Im является упрощенным показателем и рассчитывается обычно для m = 5 - наиболее значимых концентраций веществ, определяющих загрязнение воздуха. В эту пятерку чаще других попадают такие вещества как бензопирен, формальдегид, фенол, аммиак, диоксид азота, сероуглерод, пыль. Индекс Im изменяется от долей единицы до 15-20 - чрезвычайных условий загрязнения.

По ряду показателей, в первую очередь по массе и распространенности вредных эффектов, атмосферным загрязнителем номер один является диоксид серы. Поступление в атмосферу больших количеств SO2 и окислов азота приводит к заметному снижению PH атмосферных осадков. Это происходит из-за вторичных реакций в атмосфере, приводящих к образованию сильных кислот. В этих реакциях участвует кислород и пары воды, а также частицы техногенной пыли в качестве катализатора:

2SO2 + O2 + 2H2O → 2H2SO4,

4NO2 + 2H2O + O2 → 4HNO3, (3)

где H2SO4, HNO3 - серная и азотная кислоты. В атмосфере оказывается и ряд промежуточных продуктов указанных реакций. Растворение кислот в атмосферной влаге приводит к выпадению кислотных дождей. В промышленных районах и в зонах атмосферного заноса окислов серы и азота pH дождевой воды колеблется от 3 до 5. Кислотные осадки особенно опасны в районах с кислыми почвами и низкой буферностью природных вод. Это приводит к неблагоприятным изменениям в водных экосистемах. Природные комплексы Южной Канады и Серной Европы уже давно ощущают действие кислых осадков.

В 70-х годах появились сообщения о региональных снижениях озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн км2, где содержание O3 за 80-е годы уменьшилось почти на 50 %. Поскольку ослабление озонового экрана чрезвычайно опасно для всей наземной биоты и для здоровья людей, эти данные привлекли внимание ученых, а затем всего общества. Большинство специалистов склоняется к мнению о техногенном происхождении озоновых дыр. Наиболее обосновано предположение, согласно которому главной причиной является попадание в верхние слои атмосферы техногенного хлора и фтора, а также других атомов и радикалов, способных чрезвычайно активно присоединять атомарный кислород, тем самым конкурируя с реакцией:

О + О2 → O3, (4)

где O3 - озон. Занос активных галогенов в верхние слои атмосферы опосредован летучими хлорфторуглеродами (ХФУ) типа фреонов, которые, будучи в обычных условиях инертными и нетоксичными, под действием коротковолновых ультрафиолетовых лучей в стратосфере распадаются. Хлорфторуглероды обладают рядом полезных свойств, обусловивших широкое их применение в холодильных установках, кондиционерах, аэрозольных баллончиках, огнетушителях и др. (рисунок). С 1950 г. объем мирового производства ХФУ ежегодно возрастал на 7-10 %.

Мировое производство хлорфторуглеродов

В последующем были приняты международные соглашения, обязывающие стран - участниц сократить использование ХФУ. США еще в 1978 г. ввели запрет на использование ХФУ - аэрозолей. Но расширение других областей применения ХФУ снова привел к росту их мирового производства. Переход промышленности к новым озоносберегающим технологиям связан с большими финансовыми затратами. В последние десятилетия появились и другие, чисто технические пути заноса активных разрушителей озона в стратосферу: ядерные взрывы в атмосфере, выбросы сверхзвуковых самолетов, запуски ракет и космических кораблей многоразового использования. Не исключено, однако, что часть наблюдаемого ослабления озонового экрана Земли связана не с техногенными выбросами, а с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.

Библиографическая ссылка

Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. ХИМИЧЕСКАЯ МОДЕЛЬ ЗАГРЯЗНЕНИЯ ЗЕМЛИ // Современные наукоемкие технологии. – 2013. – № 2. – С. 107-109;
URL: http://top-technologies.ru/ru/article/view?id=31345 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Физико-химическая модель процессов в анодном микроразряде

В.Ф. Борбат, О.А. Голованова, А.М. Сизиков, Омский государственный университет, кафедра неорганической химии

Oксидные слои, образующиеся на анодах из алюминия, титана, тантала и некоторых других металлов при прохождении электрического тока между электродами, погруженными в электролит, обладают в ряде случаев высокими защитными и диэлектрическими свойствами. В настоящее время лабораториями различных стран проводится значительный объем исследований, направленных на установление возможностей улучшения защитных и электрических свойств анодных покрытий, поиск оптимальных составов электролитов, повышение технологичности процесса и так далее. Накопленный в последнее время практический опыт использования плазменно-электролитической анодной обработки для создания защитных покрытий значительно опередил имеющиеся в указанной области теоретические представления.

Исходя из литературных и наших экспериментальных данных можно принять физическую модель анодного микроразряда, основная идея которой состоит в том, что анодный микроразряд есть сочетание искрового пробоя барьерной части оксидной пленки и газового разряда в возникшем после пробоя газо-плазменном пузырьке. Рассмотрим соответствие предлагаемой модели экспериментальным результатам с учётом последовательности процессов.

Оксидирование. При оксидировании (при постоянном напряжении на электродах) образуются слои толщиной до сотен микрон. Наряду с образованием новых слоев оксида, идет и процесс их растворения. В ряде работ показано, что в доискровой период роста оксидной пленки происходит включение в объем оксида анионов электролита, например, сульфат-ионов . В пористых пленках анионы появляются в анодном оксиде за счет механического "встраивания" компонентов раствора. Содержание включенных в оксид анионов определяется их способностью адсорбироваться на поверхности осадка или даже образовывать соединения нестехиометрического состава.

При изучении фазового и элементного состава покрытий, получаемых плазменно-электролитической обработкой, было установлено, что при данном способе получения покрытий происходит внедрение сульфат-ионов в пленку. Причем вид регистрограмм дает основание предположить, что "заработка" компонентов электролита происходит в местах возникновения анодных микроразрядов в момент их "залечивания", поэтому распределение компонентов электролита по пленке является не равномерным и отличается от распределения в пленках, полученных обычным анодированием.

Пробой - сложный вероятностный процесс, который может происходить в данной точке диэлектрика в достаточно широком диапазоне напряжений и времени. Важнейшими процессами для начала пробоя являются изменение объемного заряда около катода (раствора электролита) и увеличение объемной инжекции электронов в зону проводимости диэлектрической пленки. Эти процессы способствуют развитию пробоя. Начало пробоя связано с развитием электронных лавин. Вполне вероятно, что источником первичных ионов могут быть примесные уровни в оксиде. Такой механизм предполагает особую роль компонентов электролита, внедренных в оксид, в первую очередь анионов. Именно поэтому возможность получения анодно-искровых покрытий во многом определяется составом раствора. Электроны, попавшие в зону проводимости и ускоренные под действием поля, приобретают энергию, достаточную для того, чтобы вызвать ударную ионизацию атомов в оксиде. Последняя приводит к возникновению лавин, которые, достигая поверхности металла, образуют каналы пробоя. Существование линейной зависимости пробивного напряжения от толщины указывает на однородность поля при пробое и на электрический характер пробоя.

Разрушение оксидной пленки - при воздействии анодных микроразрядов на растворы серной кислоты действию ускоренных в электрическом поле электронов будут подвергаться молекулы воды и серной кислоты. Данные об ионизации этих растворов имеются в литературе . Исходя из них, наиболее вероятными ионами в плазме микроразрядов, скорее всего, будут ионы с наименьшими потенциалами появления, т.е. для молекул воды следует ожидать H2O+, для серной кислоты H2SO4+ и менее вероятно HSO4+.

Итак, процессы ионизации и диссоциативного прилипания электронов дают следующие ионы при воздействии микроразрядов на растворы серной кислоты (реакции 1-5). е + Н2О  Н2О+ + 2е (1), е + Н2SO4  H2SO4+ + 2e (2), или HSO4 + H+ + 2e (3), e + H2O  OH + H- (4), e + H2SO4  H + HSO4- (5).

Образующиеся по этим реакциям положительные и отрицательные ионы имеют два различных пути своих превращений: 1) нейтрализация зарядов; 2) ион-молекулярные реакции. Образующиеся в результате диссоциации возбужденных частиц и по ион-молекулярным реакциям радикалы вступают в реакции отрыва атома Н от молекул, находящихся в газовом пузырьке, и в реакции рекомбинации.

После образования радикалов идут реакции отрыва атома Н: H(OH, HSO4) + H2SO4  H2(H2O, H2SO4) + HSO4 (6), H(HSO3) + H2O  H2(H2SO3) + OH (7) и реакции рекомбинации радикалов: HSO4 + OH  H2SO4 (8), HSO4 + HSO4  H2S2O8 (9), OH + OH  H2O2 (10), H + HSO4  H2SO4 (11).

Образование диоксида серы возможно в результате взаимодействия возбужденных плазмой микроразрядов молекул серной кислоты с соседними молекулами: H2SO4* + H2SO4  H2SO3 + H2SO5 (12), или также возможен механизм: H2SO4*  H2SO3 + O (13). Образующиеся H2SO3 и H2SO5 из-за высокой температуры в зоне микроразрядов термически диссоциируют по уравнениям:

H2SO3  H2O + SO2 (14), 2H2SO5  2H2SO4 + 0,5 O2 (15).

Часть радикалов выходят за пределы газового пузырька микроразряда в окружающую его жидкость, где вступают в реакции рекомбинации друг с другом и реагируют с компонентами электролита. Выход продуктов в результате процессов, протекающих в припузырьковом слое электролита, будет зависеть от концентрации серной кислоты (т.е. от доли ионов, присутствующих в растворах серной кислоты разной концентрации).

Согласно предлагаемому механизму химических превращений серной кислоты при увеличении ее концентрации в растворе, иначе - при возрастании ее концентрации в газовом пузырке микроразряда произойдет увеличение количества впрямую ионизованных и возбуженных электронным ударом молекул серной кислоты. Так как из-за малой ионизации при обычных для газового разряда энергиях электрона химические превращения веществ осуществляются в основном через возбужденные состояния, то в случае воздействия микроразрядов при возрастании концентрации серной кислоты следует ожидать увеличения выхода продуктов, для которых предшественником являются возбужденные частицы.

При увеличении концентрации серной кислоты (более 14М) доля молекул серной кислоты в газоплазменном пузырьке возрастает, соответственно происходит разложение растворенного вещества за счет прямого действия плазмы микроразрядов. Для растворов серной кислоты менее 14 М превращение растворенного вещества в основном происходит за счет действия плазмы на растворитель - косвенное действие. Благодаря этому возрастает вероятность протекания реакций 9,10,11,13, приводящих к образованию стабильных молекулярных продуктов: диоксида серы и перекисных соединений.

"Залечивание" поры - дальнейшее расширение плазменного образования достаточно быстро приводит к значительному снижению температуры последнего и, как следствие, к уменьшению концентрации носителей разряда, обрыву тока и стремительному охлаждению канала. Исчезновение газо-плазменного пузырька будет происходить после погашения газового разряда в нем. Погашение газового разряда, как известно, произойдет при снижении плотности тока в нем ниже минимально допустимой для самоподдержания разряда. В случае микроразрядов причинами уменьшения плотности тока газового разряда могут являться: 1) обеднение со временем припузырькового слоя электролита переносчиками тока, из-за чего электролит становится неспособным обеспечивать минимально допустимую для самоподдержания разряда плотность тока, и газовый разряд гаснет; 2) увеличение размеров пузырька микроразряда из-за испарения в него окружающей его жидкости; 3) заплавление или "залечивание" (путем анодирования в газовой плазме) канала пробоя в барьерной части оксидной пленки. Образовавшийся при первом пробое кратер обычно достигает поверхности металла. В этом месте плотность тока становится максимальной благодаря относительно малому сопротивлению электролита в кратере, что обеспечивает быстрое появление оксидной пленки (продукта плазмо-химической реакции МеxОy). Происходит "залечивание" места пробоя, нарастает толщина оксидной пленки, причем преимущественно в глубь материала подложки.

Таким образом, в работе на основании результатов эксперимента и литературных данных предложен механизм воздействия анодного микроразряда на растворы серной кислоты, включающий следующие стадии:

Образование возбужденных и ионизированных молекул в пузырьке микроразряда из-за протекания в нем газового разряда;

Протекание реакций с образованием радикалов и молекулярных продуктов, реакции которых друг с другом и исходными веществами дают основную массу конечных продуктов;

Диффузионный вынос образующихся радикалов и других частиц за пределы газового пузырька, реакции которых приводят к конечным молекулярным продуктам в припузырьковом слое электролита.

Список литературы

Баковец В.В., Поляков О.В., Долговесова И.П. Плазменно-электролитическая анодная обработка металлов // Новосибирск: Наука, 1991. С.63-68.

Nagatant T.,Yashinara S.T. Studies on the fragment ion distribution and their reaction by the of a charge spectrometer // J. Bull. chem. Soc. Jap., 1973. V.46. N 5. P.1450-1454.

Mann M., Hastrulid A., Tate J. Ionization and dissociation of water vapor and ammonia by electron impact // J. Phys. Rev. 1980. V.58. P.340-347.

Иванов Ю.А., Полак Л.С. Энергетическое рапределение электронов в низкотемпературной плазме // Химия плазмы М.: Атомиздат, 1975. Вып. 2. C.161-198.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/

Химические элементы образуют химические соединения в соответствии с законом постоянства состава. С точки зрения атомного строения вещества, атом легче вступает в химические реакции, если он имеет незаполненные электронные оболочки. Атом отдает или приобретает электроны на свою внешнюю электронную оболочку в зависимости от валентности – способности атома к образованию химической связи. Под химической связью понимается определенное взаимодействие атомов, которое приводит к заданной конфигурации атомов, отличающей одни молекулы от других. Вещество, которое состоит из атомов в определенном соотношении, объединенных определенной химической связью, является химическим веществом.

Ионная связь

Атомы могут терять или приобретать электроны, превращаясь в ионы (анионы и катионы). Анионы и катионы с полностью заполненной электронной оболочкой имеют устойчивую электронную конфигурацию. Между анионами и катионами возникает электростатическое притяжение. Химическая связь такого рода называется ионной связью. Наиболее типичные ионные соединения состоят из катионов металлом I и II групп и анионов неметаллических элементов VI и VII групп (например, NaCl).

Ковалентная связь

Ковалентная связь образуется парой электронов , обобществленных между двумя соседними атомами (например, Н 2 , О 2)

Металлическая связь

Металлы в твердом состоянии существуют в форме кристаллов. Эти кристаллы состоят из положительных ионов, которые удерживаются в определенных положениях кристаллической решетки квазисвободными электронами. Электроны, участвующие в образовании металлической связи, являются внешним, или валентными электронами. Эти электроны уже не принадлежат отдельным атомам, а делокализованы между положительными ионами.

Структурная концепция

В соответствии со структурной концепцией молекулы представляют собой не произвольную, а пространственно упорядоченную совокупность атомов, входящих в нее. Химические связи в молекуле имеют пространственное распределение, а форма молекул определяется углами между направлениями связей, соединяющих атомы в данную молекулу (линейные молекулы, уголковые молекулы). Комбинируя атомы различных элементов, можно создавать структурные формы любого химического соединения, т.е. находить путь химического синтеза.

Однако с практической точки зрения важным явилось и знание химической активности реагентов. Созданная А.М.Бутлеровым теория химического строения объяснила причины химической активности одних веществ и пассивности других. Позже теория Бутлерова нашла обоснование на основе квантовой механики.

Химическую активность можно рассматривать с точки зрения превращения энергии: если при образовании химической связи сумма энергий связываемых компонент (атомов) больше, чем энергия образующейся молекулы, то такая связь оказывается устойчивой. Образование такой химической связи происходит с выделением энергии, такие реакции называются экзотермическими.

Видно, насколько энергия двойных и тройных связей больше энергии одинарных связей. Становится также понятно, почему углерод и азот так распространены в окружающем нас мире – их двойные связи самые прочные.

Чтобы разорвать химическую связь, необходимо затратить энергию, называемую энергией химической связи. В двухатомных молекулах энергия связи и энергия диссоциации молекул совпадают. В многоатомных молекулах они могут различаться. Одним из способов сообщения достаточной энергии является поддержание необходимой температуры.

Представление о химических связях и реакциях тесно связано с понятиями химической системы и химического процесса. Химические системы могут быть равновесными и неравновесными. В равновесных системах идут обратимые химические процессы, а в неравновесных – необратимые процессы, как правило, цепные и разветвленные. Именно в них возникают флуктуации и неустойчивости, а их развитие починяется законам нелинейной динамики.

Область химии, объясняющая типы реакций, их ход и возможность изменения направлений процессов, называется химической кинетикой. Самопроизвольные химические реакции идут в сторону образования более устойчивых химических соединений и сопровождаются выделением энергии. Скорость реакции зависит от температуры, при этом каждая молекула проходит стадию активации.Катализаторы уменьшают энергию активации, что увеличивает скорость химической реакции. Если скорости прямой и обратной реакции равны, то система находится в динамическом равновесии.

В современной химии важнейшее значение имеет проблема поиска эффективных катализаторов для различных химических технологий. В то же время в биохимии установлено, что основой химии живого являются каталитические реакции, т.н. биокатализ. Интенсивные исследования последнего времени направлены на выяснение механизмов химических превращений, присущих живой материи. Химиков-органиков интересуют перспективы синтеза сложных веществ, аналогичных образующимся в живом организме. Изучив принципы, заложенные эволюцией в химизм живой природы, можно использовать их для развития химической науки и технологии.

Чрезвычайно плодотворным с этой точки зрения является исследование ферментов. Ферменты – это белковые молекулы, синтезируемые живыми клетками, и являются биологическими катализаторами. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма. Биокатализаторы обладают высокой селективностью – один фермент катализирует обычно только одну реакцию.

Проблемы моделирования биокатализаторов показали необходимость детального изучения химической эволюции , т.е. установления закономерностей самопроизвольного синтеза новых химических соединений, являющихся более высокоорганизованными по сравнению с исходными веществами.

Примером самопроизвольных периодических химических реакций является реакция окисления лимонной кислоты в присутствии катализатора, впервые открытая Б.Белоусовым в 1951 г. При этом чередовались окислительно-восстановительные процессы, и раствор самопроизвольно периодически менял цвет. Подобные реакции в дальнейшем широко исследовались для различных веществ и получили название реакций Белоусова-Жаботинского.

В 1960-х годах было обнаружено самосовершенствование катализаторов в ходе реакции (обычно катализаторы в ходе реакции дезактивировались), что позволило говорить о самоорганизация химического процесса – такое состояние химической системы, которому присущи все более высокие уровни сложности и упорядоченности. Роль процессов самоорганизации катализаторов усиливается по мере усложнения состава и структуры химических систем.

Одна задач из эволюционной химии – понять, как из неорганической материи возникает жизнь. Поэтому эволюционную химию можно назвать «предбиологией».Есть два подхода к изучению предбиологических систем:

ü Синергетический , который в химии получил название функционального;

ü Субстратный, связанный с вещественной основой процессов химической самоорганизации.

Результатом субстратного подхода является накопление информации о роли отдельных химических элементов и структур в ходе химической эволюции. В настоящее время известно более ста химических элементов, но основу живых систем составляют только шесть из них, т.н. органогенов (углерод, водород, кислород, азот, фосфор и сера). Их общая весовая доля в живой материи составляет 97.4%. Еще двенадцать элементов (Na, К, Ca, Mg, Fe, Si, Al, Cl, Cu, Zn, Co, Mn) составляют в живом примерно 1.6%, остальные слабо представлены в живой материи.

Таким образом, наблюдается резкая диспропорция между громадным множеством органических соединений и малым количеством составляющих их элементов. Это явление не связано с распространенностью элементов. На Земле наиболее распространены кислород, кремний, алюминий, железо, а углерод занимает только 16-е место. Совместная весовая доля четырех органогенов (C, N, P, S) в поверхностных слоях Земли составляет 0.24%. Следовательно, геохимические условия не сыграли сколько-нибудь существенной роли при формировании органических систем.

С химической точки зрения отбор элементов происходил по следующим признакам:

ü Способность образовывать достаточно прочные энергоемкие связи;

ü Образованные связи должны быть достаточно лабильными, т.е. изменчивыми.

Поэтому углерод был отобран эволюцией как органон №1. Он участвует почти во всех типах химических связей, известных в химии, образует углерод-углеродные связи, строя длинные и стабильные скелеты молекул в виде цепей, колец и даже сложных трехмерных образований (т.н. фуллеренов).

Нобелевская премия 1996 года по химии присуждена З. Керл, Р. Смэлли (США) и Г. Крото (Англия) за открытие и исследование фуллеренов - замкнутых объемных структур из атомов углерода. Этим открытием к известным "со школы" структурам углерода типа графита и алмаза добавились более сложные - типа экзотического бакминстерфуллерена с химической формулой С 60 , представляющий собой "шар" из шестидесяти атомов углерода. Разнообразие и богатство возникающих пространственных структур фуллеренов создает целую новую область химии с интереснейшими проблемами фазовых переходов, замещений, легирования и т.д., открывающую новые горизонты в катализе, материаловедении, синтезе.

Углеродные атомы создают связи с атомами H, N, O, P, S в различных комбинациях, что обеспечивает колоссальное разнообразие органических соединений, проявляющееся в размерах, структуре и химических свойствах молекул. Таким образом, лабильные атомы (S, P, Fe) имеют большое значение в биохимии, а стабильные атомы (SI, Al, Na) играют второстепенную роль. Кислород и водород можно рассматривать в качестве носителей крайних и односторонних свойств – окислительных и восстановительных.

Подобно тому, как только шесть органогенов отобраны природой в основу биосистем, также в предбиологической эволюции из миллионов органических соединений в построении живого участвуют лишь несколько сотен (из ста известных аминокислот в состав белков входят только двадцать). В природе происходит отбор тех соединений, которые получаются относительно большим числом химических путей и обладают широким каталитическим спектром.

В ходе дальнейшей эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности каталитических групп. Следующим фрагментом эволюции, сливающим химическую и биологическую линии эволюции, является развитие полимерных структур типа РНК и ДНК, выполняющих роль каталитических матриц, на которых осуществляется воспроизведение себе подобных структур.

Согласно теории развития элементарных открытых каталитических систем (1964 г., профессор МГУ А.П.Руденко), химическая эволюция представляет собой саморазвитие каталитических систем, и следовательно, эволюционирующим веществом являются катализаторы. Одно из важнейших следствий этой теории – установление пределов химической эволюции и перехода хемогенеза в биогенез (т.е. зарождение живого).


Похожая информация.


Структура связей технологической системы.

Последовательность прохождения потоков через элементы ТС определя­ет структуру связей и обеспечивает необходимые условия работы элементов системы.

При всей сложности ТС существуют типовые соединения операторов меж­ду собой, объединяющие их в единую схему. К ним относятся:

Последовательное соединение;

Ветвление;

Объединение.

Последовательная связь (рис. 14) является основным соединением техно­логических операторов между собой.

Рис. 14. Последовательное соединение

При этом соединении весь технологический поток, выходящий из преды­дущего элемента ТС, полностью поступает на последующий элемент ТС, при­чем каждый элемент поток проходит только один раз.

Применение: последовательная переработка сырья в разных операциях, более полная переработка сырья последовательными воздействиями на него, управление процессом путем необходимого управляющего воздействия на каж­дый элемент.

Разветвленная связь (рис. 15) После некоторой операции поток разветв­ляется, и далее отдельные потоки перерабатываются различными способами. Используется для получения разных продуктов.

Объединение (рис. 16): потоки смешиваются и поступают в реактор, где происходит их обработка.

Существует также разновидность сложных соединений, объединяющих несколько типов элементарных соединений одновременно - параллельное, последовательно-обводное (байпасное) и рециркуляционное соединения.

При параллельном соединении (рис. 17) технологический поток разделя­ется на несколько потоков, которые поступают на различные элементы ТС, причем каждый аппарат поток проходит только один раз.

Применение параллельного соединения:

1).Если мощность некоторых аппаратов ограничена, то устанавливают несколь­ко аппаратов параллельно, обеспечивая суммарную производительность всей системы.

2).Использование периодических стадий в непрерывном процессе.

В этом случае поочередно работает один из параллельных аппаратов. По­сле завершения рабочего цикла одного аппарата поток переключают на дру­гой аппарат, а отключенный подготавливают к очередному рабочему циклу.

Так включены адсорберы с коротким сроком службы сорбента. Пока в одном из них происходит поглощение, в другом сорбент регенерируют.

3).Резервирование на случай выхода га строя одного из аппаратов, когда такое нарушение может привести к резкому ухудшению работы всей системы и даже к аварийному состоянию.

Такое резервирование называют «холодным», в отличие от резервирова­ния, обусловленного периодичностью процесса - «горячего».

При последовательно-обводном (байпасном) соединении (рис. 18) через ряд последовательно соединенных элементов ТС проходит только часть по­тока, а другая часть обходит часть аппаратов, а затем соединяется с частью потока, прошедшего через элементы ТС.

Различают простой (рис. 18) и сложный (рис. 19) байпасы.

Рис. 18. Последовательно-обводное (байпасное) соединение

Рис. 19. Сложное последовательно-обводное (байпасное) соединение

Байпас используется в основном для управления процессом. Например, в процессе эксплуатации теплообменника условия передачи теплоты в нем ме­няются (загрязнения поверхности, изменение нагрузки). Поддерживают необ­ходимые температуры потоков байпасированием их мимо теплообменника.

Величину байпаса β определяют как долю основного потока, проходящего мимо аппарата (обозначения потоков показаны на рис. 18):

β= V b /V 0 .

Рециркуляционное соединение (рис. 20) характеризуется наличием обрат­ного технологического потока в системе последовательно соединенных эле­ментов, который связывает выход одного из последующих элементов с входом одного из предыдущих элементов.

Рис. 20. Рециркуляционное соединение

Через аппарат, в который направляется поток V p , проходит поток V боль­ший, чем основной, так что:

V = V P + V 0 .

Количественно величину рецикла характеризуют двумя величинами:

1. Кратностью циркуляции К р = V/Vо,

2. Отношением циркуляции R = V p /V.

Следовательно, величина К р и R связаны между собой:

Если выходящий из аппарата поток разветвляется и одна его часть об­разует обратную связь (рис. 20), то такая связь образует полный рецикл составы выходящего потока и рециклирующего одинаковы.

Такую схему используют для управления процессом, создания благопри­ятных условий для его протекания. В цепных реакциях скорость превраще­ния возрастает по мере накопления промежуточных активных радикалов. Если на вход реактора вернуть часть выходного потока, содержащего актив­ные радикалы, то превращение будет интенсивным с самого начала.

В случае разделения потоков на фракции возможен возврат (рецикл) ча­сти компонентов после системы разделения (на рис. 22 элемент разделения обозначен символом Р). Это - фракционный рецикл (возвращается фракция потока). Широко применяется для более полного использования сырья.

Рис. 22.Фракционное рециркуляционное соединение (по компоненту)

К фракционному рециклу можно отнести рисунок 23. Свежая смесь на­гревается в теплообменнике теплом выходящего из реактора потока. Рециркулирует тепловая фракция потока (а не компонентная, как на рис. 23).

Вывод

Рассмотрены все типы связей элементов ТС.

Они присутствуют практически во всех ТС, обеспечивая необходимые условия их функционирования.

Рис. 23. Фракционное рециркуляционное соединение (по теплу)

Следует учесть, что при синтезе и оптимизации ТС обычно требуется рассматривать достаточно большое количество вариантов схем, отличающих­ся технологической топологией. Сократить это количество, а следовательно, сэкономить время и деньги помогает наряду с интуицией разработчика его умение предварительно оценить эффект, которого возможно ожидать при различных видах соединений между элементами ТС.


Методы описания ТС. Химическая модель.

Различают описательные и графические виды моделей ТС.

К описательным относят: химическую, операциональную, математическую.

К графическим относят: функциональную, технологическую, структурную, специальную.

Химическая модель

Химическая модель (схема) представлена основными реакциями (химиче-скими уравнениями), которые обеспечивают переработку сырья в продукт.

Например, синтез аммиака из водорода и азота можно записать такой формулой

А производство аммиака из природного газа - системой уравнений:

Последовательность химических взаимодействий удобно представить и такой схемой, как, например, производстве соды Na 2 СО 3 из поваренной соли NaCl и известняка СаСО3: