Положительный и отрицательный заряд тел. Положительные и отрицательные заряды. способ – микроструктурная поляризация

То, что отрицательные заряды помогают и дают хорошие результаты при разных заболеваниях показывают не только современные исследования, но и ряд исторических документов, собранных на протяжении столетий.

Все живые организмы, в том числе и человек, рождаются и развиваются в естественных условиях планеты Земля, которая имеет одну важную особенность - наша планета представляет собой постоянно отрицательно заряженное поле, а атмосфера вокруг земли имеет положительный заряд. Это означает, что каждый организм "запрограммирован" рождаться и развиваться в условиях постоянного электрического поля, существующего между отрицательно заряженной землёй и положительно заряженной атмосферой, которое играет очень существенную роль для всех биохимических процессов в организме.

  • острые пневмонии;
  • хронический бронхит;
  • бронхиальная астма (кроме гормонозависимой);
  • туберкулез (неактивная форма);

Заболевания желудочно-кишечного тракта:

  • ожоги;
  • обморожения;
  • пролежни;
  • экзема;
  • Предоперационная подготовка и послеоперационная реабилитация:

    • спаечная болезнь;
    • повышение иммунного статуса.

    Инфракрасное излучение

    Источником инфракрасного излучения является колебание атомов вокруг своего состояния равновесия у живых и не живых элементов.

    Микросферы в составе Активатора «На здоровье!» имеют уникальное свойство накапливать инфракрасное излучение и тепло тела человека и возвращать его обратно.

    Все виды волн короткого спектра после видимого света, жестко влияют на все живые организмы и потому опасны, и вредны. Чем короче длинна волны, тем жестче излучение. Эти волны, попадая на живую ткань, выбивают на своём уровне, электроны в молекулах, а позже и разрушают и сам атом. В результате образуются свободные радикалы, которые приводят к онкологическим, и радиационной болезни.

    Волны по другую сторону видимого спектра не вредны из-за более длинной волны. Весь инфракрасный спектр занимает от 0,7 – 1000 мкм (микрометров). Диапазон человека составляет от 6 – 12 мкм. Для сравнения, вода имеет 3 мкм и потому человек не может долго находится в горячей воде. Даже при 55 градусах, не более 1-го часа. Клетки организма при такой длине волны не чувствуют себя комфортно и работать хорошо не могут, в результате сопротивляются и дают сбои в работе. Воздействуя на клетки теплом, с длинной волны соответствующим теплу клетки, клетка получая родное тепло работает лучше. Инфракрасные лучи её подогревают.

    Нормальная температура для прохождения окислительно-востановительных реакций в нутрии клетки, составляет 38-39 градусов Цельсия, и если температура понижается, то процесс метаболизма замедляется или останавливается.

    Что происходит при воздействии инфракрасного тепла? Механизм спасения от перегревания:

    • Потоотделение.
    • Усиленная циркуляция крови.
    • Потоотделение.
    • Потовые железы на коже выделяют жидкость. Жидкость испаряется и охлаждает тело от перегревания.
    • Усиленная циркуляция крови.

    Артериальная кровь поступает к нагретому участку тела. Венозная - отводится, забирая часть тепла. Тем самым охлаждая участок от перегрева. Эта система похожа на радиатор. Кровь к участку перегрева поступает через капилляры. И чем больше капилляров тем лучше будет происходить отток крови. Допустим, что мы имеем 5-ть капилляров, а для того чтобы спасти от перегрева нам необходимо 50. Перед организмом стоит задача не допустить перегрев. И если мы будем прогревать этот участок регулярно, то он нарастит (увеличит) количество капилляров, в прогреваемом участке. Научно доказано, что организм человека может увеличивать количество капилляров в 10-ть раз! Учёные доказали. Что процесс старения у человека зависит от уменьшения капилляров. В пожилом возрасте количество капилляров уменьшается, особенно в ногах и венах ног. Даже в 120-ем возрасте восстановление капилляров – возможно.

    Итак: если прогревать определённый участок тела, регулярно, то организм нарастит в прогреваемом месте количество капилляров. Избавляя участок от постоянного перегрева. В добавок, тепло будет способствовать нормальной работе клеток, потому, что мы подогревая клетки улучшаем процесс метаболизма (обмена веществ). Это будет способствовать, восстановлению прогреваемых тканей и к ним будет возвращаться эластичность и упругость. Если есть проблемы такие как мозоль, натоптыши, шипы, шпоры, отложение солей, кожные заболевания, грибки на стопах инфракрасное тепло будет приводить ускоренному процессу регенерации (восстановления).

    Лимфо-дренажный эффект.

    Клетки со всех сторон омываются межклеточной жидкостью. Межклеточная жидкость собираясь отводится от тканей с помощью лимфатической системы. С помощью капилляров к каждой клетке приходит артериальная кровь. Отводится от клетки, венозная кровь. В процессе жизнедеятельности отработанные вещества, частично попадают в венозную кровь и частично в межклеточную жидкость. В случае наступления, какой либо болезни или стресса, механического воздействия, травм, может произойти такая ситуация, как - межклеточное вещество не успевает выносить шлаки (отработанные материалы в процессе жизнедеятельности клетки). Это известный термин – зашлакованость. Зашлакованость напрямую, связана с плохим оттоком лимфы. К шлакам путем диффузии подтягивается лишняя или неактивная вода, что приводит к отеку органа или тканей. Инфракрасное тепло улучшает отток лимфы, что приводит к выводу шлаков и избыточной воды (удаляет отечность). Снижается угроза заболевания раком, улучшается трофика тканей (питание клеток), где каждая клетка может обновляться. Межклеточное вещество, подымаясь по лимфотоку попадает в лимфоузел, который является фильтром.

    В лимфоузлах присутствуют белые клетки крови – лимфоциты (они выполняют роль стражей), они борются с инфекциями, вирусами и с онкологическими клетками в том числе. Клетки крови образуются в костном мозге.

    Воздействие инфракрасного тепла на вены и сосуды.

    Сосуды имеют внутри гладкую поверхность, чтобы эритроциты могли скользить по внутреннему руслу. Качество внутренней поверхности зависит, от количества капилляров внутри стенки сосуда. В следствии стресса, в пожилом возрасте, в результате табакокурения, внутри крупного сосуда нарушается микроциркуляция, что приводит к ухудшению состояния стенки сосуда. Стенка сосуда перестаёт быть гладкой и эластичной. Холестерин и крупные фракции образуют остеросклеротическую бляшку, затрудняя поток крови по данному руслу. По суженному руслу ухудшается поток крови, что способствует повышению давления. Инфракрасное тепло возобновляет ток по капиллярам внутри стенки сосуда, после чего внутренняя стенка приобретает гладкость и эластичность, а специальные системы в самой крови разъедают тромб (бляшку).

    Зарядим при помощи стеклянной палочки, потертой о шелк, легкую гильзу, подвешенную на шелковой нити, и поднесем к ней кусок сургуча, заряженного трением о шерсть. Гильза будет притягиваться к сургучу (рис. 7). Однако мы видели (§1), что эта же подвешенная гильза отталкивается от зарядившего ее стекла. Это показывает, что заряды, возникающие на стекле и сургуче, различаются по качеству.

    Рис. 7. Бумажная гильза, заряженная от стекла, притягивается к наэлектризованному сургучу

    Следующий опыт показывает это еще нагляднее. Зарядим два одинаковых электроскопа при помощи стеклянной палочки и соединим их стержни металлической проволокой, держа последнюю за изолирующую ручку. Если электроскопы вполне одинаковы, то после соединения отклонения их листков делаются равными, указывая этим на то, что полный заряд распределяется поровну между обоими электроскопами. Зарядим теперь один из электроскопов при помощи стекла, а другой – при помощи сургуча, и притом так, чтобы отклонения их листков стали одинаковы, и опять соединим их (рис. 8). Оба электроскопа окажутся незаряженными, а значит, заряды стекла и заряды сургуча, взятые в равных количествах, нейтрализуют, или компенсируют, друг друга.

    Рис. 8. Два одинаковых электроскопа, заряженные разноименными зарядами и соединенные проводником, разряжаются; равные разноименные заряды при соединении не дают никакого заряда

    Если бы в этих опытах мы использовали другие заряженные тела, то нашли бы, что часть из них действует как заряженное стекло, т. е. они отталкиваются от зарядов стекла и притягиваются к зарядам сургуча, а часть – как заряженный сургуч, т. е. они притягиваются к зарядам стекла и отталкиваются от зарядов сургуча. Несмотря на обилие различных веществ в природе, существует только два разных рода электрических зарядов.

    Мы видим, что заряды стекла и сургуча могут компенсировать друг друга. Но величинам, которые при сложении уменьшают друг друга, принято приписывать разные знаки.

    Поэтому условились приписывать и электрическим зарядам знаки, разделяя заряды на положительные и отрицательные (рис. 8).

    Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк. Отрицательно заряженными называют тела, которые действуют так же, как сургуч, наэлектризованный трением о шерсть. Из опытов, описанных выше, следует, что одноименные заряды отталкиваются, разноименные – притягиваются).

    4.1. К электроскопу, заряженному при помощи сургучной палочки, прикасаются заряженным стеклом. Как изменится отклонение листков?

    4.2. При натирании о шелк латунного стержня, зажатого в руке, последний не электризуется. Если, однако, произвести этот опыт, изолировав стержень от руки, например обернув его в резину, на нем возникнут заряды. Объясните различие результатов в этих двух опытах.

    4.3. Каким образом, имея под руками горелку, можно удалить электрические заряды с диэлектрика, например с наэлектризованной стеклянной палочки?

    4.4. Станьте на деревянную доску, положенную на четыре изолирующие подставки, например на крепкие стеклянные стаканы, возьмите в руку кусок меха и начните бить мехом по деревянному столу. Ваш товарищ может извлечь из вашего тела искру, поднеся к нему руку. Объясните, что при этом происходит.

    4.5. Как доказать на опыте, что шелк при трении о стекло электризуется и притом отрицательно?

    Темы кодификатора ЕГЭ : электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда.

    Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.

    Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

    1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд ).

    2. Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

    3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.

    Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы . Единицей измерения заряда является кулон (Кл).

    Два вида заряда

    Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные .

    Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.

    Рис. 1. Взаимодействие двух видов зарядов

    Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

    Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации ) тело немедленно начинает действовать на окружающие заряженные частицы.

    Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

    Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

    называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

    Заряд любого тела всегда складывается из целого количества элементарных зарядов:

    Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.

    Электризация тел

    Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

    Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

    Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

    Данный способ электризации тел называется электризацией трением . С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

    Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

    Рис. 2. Электростатическая индукция

    Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

    Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно.

    Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

    Рис. 3. Электроскоп

    Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

    Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

    Рис. 4. Электризация земли грозовой тучей

    Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

    Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

    Закон сохранения заряда

    Вернёмся к примеру электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

    Мы видим здесь закон сохранения заряда , который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами :

    Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

    При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!

    Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон ) превращается в две заряженные частицы - электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

    Рис. 5. Рождение пары электрон–позитрон

    Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

    Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

    Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

    Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

    Исторический вклад ученых в развитие электродинамики

    Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

    Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

    Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

    Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

    Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

    Определение зарядов и принципы их взаимодействия

    Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

    Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

    Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

    Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

    Все электрические заряды современная электродинамика разделяет на:

      положительные;

      отрицательные.

    При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.


    Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

    Принцип суперпозиции

    Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.


    Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

    Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

    Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

    Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

    Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.


    Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

    Как можно передавать заряд между телами

    Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

    У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

    Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.


    Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

    Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

    Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

    Виды носителей электрических зарядов

    Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

    В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

    В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

    Ионы образуются из нейтральных частиц.


    Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

    Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

    Использование ионизации в медицинских целях и быту

    Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

    Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

    В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

    Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

    Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.

    Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

    Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

    Тело имеет заряд , значит имеет лишние или недостающий электроны. Такой заряд обозначаетсяq =ne . (он равен числу элементарных зарядов).

    Наэлектризовать тело – создать избыток и недостаток электронов. Способы:электризация трением иэлектризация соприкосновением .

    Точечный заря д – заряд тела, которое можно принять за материальную точку.

    Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

    Закон сохранения заряда :в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой .

    Закон Кулона :силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры .

    , где
    Ф/м, Кл 2 /нм 2 – диэлектр. пост. вакуума

    - относит. диэлектрическая проницаемость (>1)

    - абсолютная диэлектрическая прониц. среды

    Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

    Свойства электрического поля:


    Характеристики электрического поля:

      Напряжённость (E ) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

    Измеряется в Н/Кл.

    Направление – такое же, как и у действующей силы.

    Напряжённость не зависит ни от силы, ни от величины пробного заряда.

    Суперпозиция электрических полей : напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

    Графически электронное поле изображают с помощью линий напряжённости.

    Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

    Свойства линий напряжённости : они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

    Виды полей:

      Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

      Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

      Постоянное электрическое поле – вектор напряжённости не изменяется.

      Непостоянное электрическое поле – вектор напряжённости изменяется.

      Работа электрического поля по перемещению заряда .

    , гдеF– сила,S– перемещение,- угол междуFиS.

    Для однородного поля: сила постоянна.

    Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

    Для неоднородного поля:

      Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

    -потенциал – энергетическая характеристика поля. Измеряется в Вольтах

    Разность потенциалов :

    Если
    , то

    , значит

    -градиент потенциала.

    Для однородного поля: разность потенциалов – напряжение :

    . Измеряется в Вольтах, приборы – вольтметры.

    Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

    .

    Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

    , гдеr– размер,
    - проницаемость среды вокруг тела.

    Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

    Конденсатор – устройство для накопления заряда. Электроёмкость:

    Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

    , гдеS– площадь пластин,d– расстояние между пластинами.

    Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

    Перенос малого заряда
    , напряжение измениться на
    , совершится работа
    . Так как
    , а С =const,
    . Тогда
    . Интегрируем:

    Энергия электрического поля :
    , гдеV=Sl– объём, занимаемый электрическим полем

    Для неоднородного поля :
    .

    Объёмная плотность электрического поля :
    . Измеряется в Дж/м 3 .

    Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя -l).

    Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается
    . Измеряется в Кулон-метрах.

    Диполь в однородном электрическом поле.

    На каждый из зарядов диполя действуют силы:
    и
    . Эти силы противоположно направлены и создают момент пары сил – вращающий момент:, где

    М – вращающий момент F– силы, действующие на диполь

    d– плечо силl– плечо диполя

    p– дипольный моментE– напряжённость

    - угол междуpи Еq– заряд

    Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы pи Е будут параллельны и однонаправлены.

    Диполь в неоднородном электрическом поле.

    Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

    -градиент напряжённости . Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

    Собственное поле диполя .

    Но . Тогда:

    .

    Пусть диполь находится в точке О, а его плечо мало. Тогда:

    .

    Формула получена с учётом:

    Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

    Диэлектрики в электрическом поле.

    Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

    Классы диэлектриков:

      с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

      с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

      кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

    Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

    Способы поляризации:

    1 способ – электрохимическая поляризация :

    На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10 -3 -10 -2 с.

    2 способ – ориентационная поляризация:

    На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10 -13 -10 -7 с. Частота 10 МГц.

    3 способ – электронная поляризация:

    Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10 -16 -10 -14 с. Частота 10 8 МГц.

    4 способ – ионная поляризация:

    Две решётки (NaиCl) смещаются относительно друг друга.

    Время релаксации:

    5 способ – микроструктурная поляризация:

    Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

    Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

    Числовые характеристики степени поляризации:


    Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

    Условия существования электрического тока :

      наличие свободных зарядов

      наличие электрического поля, т.е. сил, действующих на эти заряды

    Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

    Измеряется в Амперах.

    n– концентрация зарядов

    q– величина заряда

    S– площадь поперечного сечения проводника

    - скорость направленного движения частиц.

    Скорость движения заряженных частиц в электрическом поле небольшая – 7*10 -5 м/с, скорость распространения электрического поля 3*10 8 м/с.

    Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м 2 .

    . Измеряется в А/м 2 .

    - сила, действующая на ион со стороны эл поля равна силе трения

    - подвижность ионов

    - скорость направленного движения ионов =подвижность, напряжённость поля

    Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.