Физика какая наука. Что изучает физика? Основные этапы развития физики

Физика (от греческого "природа") - это наука об окружающем нас мире.

Физика - всеобъемлющая наука. Никакой процесс природы не находится вне физики. Физика описывает все: механику, электричество, магнетизм, оптику…

Какие-то вещи очевидны для нас: притяжение, силы инерции и трения, кипение жидкости…

Другие моменты природы не так понятны, хотя мы к ним давно "привыкли": электричество, магнетизм, различные излучения…

Некоторые утверждения вообще с трудом даются пониманию: например, теория относительности А.Эйнштейна.

Наблюдая, казалось бы, простые явления природы, мы редко задумываемся, почему происходит именно так, а не иначе:

  • Почему идет снег?
  • Как мы слышим?
  • Для чего нам нужна кровь?
  • Почему звезды видны только ночью?
  • Почему, поскользнувшись, мы падаем назад, а споткнувшись - вперед?
  • Для чего у автомобилей колеса резиновые?
  • Почему нам тепло под одеялом?

Физика - это исследование мира и его устройства.

Классический курс изучения физики включает в себя, как правило, следующие разделы:

Механика . Изучение принципов движения является первым шагом понимания физических процессов, которые проявляются в наблюдении, измерении и создания математической модели на основе полученных данных.

Движение происходит под действием различных сил. Законы приложения сил - основа механики .

При описании движения объектов нам "пригодятся" представления об энергии и импульсе . Помните закон сохранения энергии?
"Энергия не берется из "ниоткуда" и не исчезает бесследно, - она просто переходит из одного вида в другой".

Тепло и холод - неотъемлемые спутники нашей повседневной жизни.

  • Почему утром бывает роса?
  • Почему в холодную погоду запотевают очки при входе в теплое помещение?
  • Почему в космосе холодно?

На эти и многие другие вопросы дает ответ термодинамика .

Электричество и магнетизм вводят нас в более загадочный физический мир. Ведь действие этих физических явлений нельзя почувствовать "напрямую". Комбинируя электричество и магнетизм можно получить такое удивительное явление, как свет , который лежит в основе видимости всего мира.

Надо сказать, что бОльшая часть физики связана с невидимым миром. Любое вещество состоит из атомов, увидеть которые не представляется возможным.

"Венцом" изучения физических явлений можно считать теорию относительности А.Эйнштейна . А как же иначе? Ведь при достижении скоростей, близких к скорости света, с миром происходят удивительные вещи: масса стремится к бесконечности; время - пытается замереть на месте. А вы знаете, что происходит в "черных дырах"? Не поверите, - "там" время и пространство меняются местами!

Вот какая она удивительная и многообразная - наука ФИЗИКА!

Основные этапы развития физики

  • В 17 веке Исааком Ньютоном создается классическая механика .
  • К концу 19 века было в основном завершено формирование классической физики .
  • В начале 20 века в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор).
  • В 20-е годы была разработана квантовая механика - последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно появилось новое учение о пространстве и времени - теория относительности Альберта Эйнштейна, физика делается релятивистской .
  • Во 2-й половине 20 века происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман), конденсированных сред (Д. Бардин, Л. Д. Ландау, Н. Н. Боголюбов).
  • Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (И. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация возникли и развились в результате достижений физики.

Введение к теме проекта

Физика — это наука о природе, изучающая наиболее общие свойства окружающего нас мира. Она изучает материю (вещество и поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Главная цель науки - выявить и объяснить законы природы, которыми определяются все физические явления, для использования их в целях практической деятельности человека.
Мир познаваем, и процесс познания бесконечен. Изучение окружающего нас мира показало, что материя находится в постоянном движении. Под движением материи понимают любое изменение, явление. Следовательно, окружающий нас мир - это вечно движущаяся и развивающаяся материя.

Физика изучает наиболее общие формы движения материи и их взаимные превращения. Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, — их называют физическими законами.

Тепловые явления в природе и технике


Оглянемся вокруг себя, и станет понятно, что физические явления окружают нас с детства, что мы многие физические знания о мире приобретаем наряду с обычным житейским опытом.

Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики.

Например, химия изучает атомы, образованные из них вещества и превращения одного вещества в другое. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

Электрические явления в живой природе и техн ике

Магнитные явления на Зе мле


Развитие науки идёт по следующему пути. В основе лежит наблюдение за явлениями природы, затем проведение экспериментов, создание гипотез, справедливость которых подтверждается опытами. Если гипотеза экспериментально обоснована, то на её основе создаётся теория, объясняющая данное явление не только с качественной, но и с количественной стороны.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы.

Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий.

Предмет физики

Научный метод

Физика - естественная наука. В ее основе лежит экспериментальное исследование явлений природы, а ее задача - формулировка законов, которыми объясняются эти явления. Физика сосредоточивается на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д. В основе физических исследований лежат наблюдения. Обобщение наблюдений позволяет физикам формулировать гипотезы о совместных общих черт этих явлений, по которым велись наблюдения. Гипотезы проверяются с помощью продуманного эксперимента, в котором явление проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями. Анализ данных совокупности экспериментов позволяет сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, то есть явление описывается количественно с помощью определенных параметров, характерных для исследуемых тел и веществ. Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применения. Общие физические теории позволяют формулировки физических законов, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения.

Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определенные надежды связываются с теорией струн.

Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

Теоретическая и экспериментальная физика

В основе своей физика - экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка , выдвинутой им для разрешения ультрафиолетовой катастрофы - парадокса классической теоретической физики излучения).

В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

Прикладная физика

От своего зарождения физика всегда имела большое прикладное значение и развивалась вместе с машинами и механизмами, которые человечество использовало для своих нужд. Физика широко используется в инженерных науках, немало физиков были одновременно изобретателями и, наоборот. Механика, как часть физики, тесно связана с теоретической механикой и сопротивлением материалов, как инженерными науками. Термодинамика связана с теплотехникой и конструированием тепловых двигателей. Электричество связано с электротехникой и электроникой, для становления и развития которой очень важны исследования в области физики твердого тела. Достижения ядерной физики обусловили появление ядерной энергетики, и тому подобное.

Физика также имеет широкие междисциплинарные связи. На границе физики, химии и инженерных наук возникла и быстро развивается такая отрасль науки как материаловедение. Методы и инструменты используются химией, что привело к становлению двух направлений исследований: физической химии и химической физики. Все мощнее становится биофизика - область исследований на границе между биологией и физикой, в которой биологические процессы изучаются исходя из атомарного структуры органических веществ. Геофизика изучает физическую природу геологических явлений. Медицина использует методы, такие как рентгеновские и ультразвуковые исследования, ядерный магнитный резонанс - для диагностики, лазеры - для лечения болезней глаз, ядерное облучение - в онкологии, и тому подобное.

Основные теории

Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов , скорости существенно меньше скорости света , и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке . Они составляют основу для всех физических исследований.

Теория Основные разделы Понятия
Классическая механика Законы Ньютона - Лагранжева механика - Гамильтонова механика - Теория хаоса - Гидродинамика - Механика сплошных сред Вещество - Пространство - Время - Энергия - Движение - Масса - Длина - Скорость - Сила - Мощность - Работа - Закон сохранения - Момент инерции - Угловой момент - Момент силы - Волна - Действие - Размерность
Электромагнетизм Электростатика - Электричество - Магнитостатика - Магнетизм - Уравнения Максвелла - Электродинамика Электрический заряд - Напряжение - Ток - Электрическое поле - Магнитное поле - Электромагнитное поле - Электромагнитное излучение
Термодинамика и Статистическая физика Тепловая машина - Молекулярно-кинетическая теория Температура - Постоянная Больцмана - Энтропия - Свободная энергия - Термодинамическое равновесие - Статистическая сумма - Микроканоническое распределение - Большое каноническое распределение
Квантовая механика Уравнение Шрёдингера - Интеграл Фейнмана - Квантовая теория поля Гамильтониан - Тождественные частицы - Постоянная Планка - Измерение - Квантовый осциллятор - Волновая функция - Нулевая энергия - Перенормировка
Теория относительности Специальная теория относительности - Общая теория относительности Принцип относительности - 4-вектор - Пространство-время - Скорость света - Тензор энергии-импульса - Кривизна пространства-времени - Чёрная дыра

Разделы физики

Макроскопическая физика

  • Механика твердого тела
  • Молекулярная оптика
  • Электродинамика
  • Микроскопическая физика

    • Статистическая физика
    • Физика конденсированных сред
      • Физика наноструктур

    Разделы физики на стыке наук

  • Медицинская физика
  • Техническая физика
  • Справка

    • Единицы измерения физических величин
    • Олимпиадные задачи по физике

    Важнейшие журналы

    Российские

    • Журнал экспериментальной и теоретической физики (ЖЭТФ)

    Зарубежные

    • Журналы Американского физического общества
      • Physics - короткие обзорные статьи по результатам, опубликованным в других журналах общества.
      • Reviews of Modern Physics (RMP) Публикует обзорные статьи по большим разделам физики
      • Physical Review Letters (PRL) Наиболее престижный (после Nature и Science) журнал: короткие статьи по новейшим исследованиям
      • Physical Review (A,B,C,D,E) Статьи разного формата, более подробные, но менее оперативно публикуемые, чем в Phys. Rev. Lett.
    • Журналы
    • Европейские журналы
      • Journal of Physics (A, B, C …)
      • Physica (A, B, C …)
      • Europhysics Letters
      • Zeitschrift für Physik Именно в этом журнале публиковались Эйнштейн, Гейзенберг, Планк…
      • Nuovo cimento (A, B, C …)
    • Научно-популярные журналы

    А также архив препринтов arXiv.org , на котором статьи появляются гораздо раньше их появления в журналах и доступны для свободного скачивания.

    См. также

    Ссылки

    Коды в системах классификации знаний

    • Государственный рубрикатор научно-технической информации (ГРНТИ) (по состоянию на 2001 год): 29 ФИЗИКА

    Примечания

    Литература

    • Иванов Б. Н. Законы физики. Изд.3, М.:URSS, 2010 г., 368 с

    Хотя история физики как самостоятельной науки началась только в XVII веке, ее истоки относятся к самой глубокой древности, когда люди начали систематизировать первые свои знания об окружающем их мире. До Нового времени они относились к натуральной философии и включали в себя сведения о механике, астрономии и физиологии. Настоящая же история физики началась благодаря опытам Галилея и его учеников. Также фундамент этой дисциплины был заложен Ньютоном.

    В XVIII и XIX столетии появились ключевые понятия: энергия, масса, атомы, импульс и т. д. В XX веке стала ясной ограниченность классической физики (помимо нее, зародилась квантовая физика, теория относительности, теория микрочастиц и т. д.). Естественнонаучные знания дополняются и сегодня, так как перед исследователями остается множество нерешенных проблем и вопросов о природе нашего мира и всей вселенной.

    Древность

    Многие языческие религии Древнего мира основывались на астрологии и знаниях звездочетов. Благодаря их исследованиям ночного неба произошло становление оптики. Накопление астрономических знаний не могло не повлиять на развитие математики. Однако теоретически объяснить причины природных явлений древние не могли. Жрецы приписывали молнии и солнечные затмения божественному гневу, что не имело ничего общего с наукой.

    В то же время в Древнем Египте научились измерять длину, вес и угол. Эти знания были необходимы архитекторам при строительстве монументальных пирамид и храмов. Развивалась прикладная механика. Сильны в ней были и вавилоняне. Они же, основываясь на своих астрономических знаниях, стали использовать сутки для измерения времени.

    Древнекитайская история физики началась в VII веке до н. э. Накопленный опыт в ремеслах и строительстве был подвергнут научному анализу, результаты которого были изложены в философских сочинениях. Самым известным их автором считается Мо-цзы, живший в IV столетии до н. э. Он предпринял первую попытку сформулировать основополагающий закон инерции. Уже тогда китайцы первыми изобрели компас. Они открыли законы геометрической оптики и знали о существовании камеры-обскуры. В Поднебесной появились зачатки теории музыки и акустики, о которых еще долгое время не подозревали на Западе.

    Античность

    Античная история физики больше всего известна благодаря греческим философам. Их исследования основывались на геометрических и алгебраических познаниях. Например, пифагорейцы первыми объявили о том, что природа подчиняется универсальным законам математики. Эту закономерность греки видели в оптике, астрономии, музыке, механике и других дисциплинах.

    История развития физики с трудом представляется без трудов Аристотеля, Платона, Архимеда, Лукреция Кара и Герона. Их сочинения сохранились до наших времен в достаточно целостном виде. Греческие философы отличались от современников из других стран тем, что они объясняли физические законы не мифическими понятиями, а строго с научной точки зрения. В то же время у эллинов случались и крупные ошибки. К ним можно отнести механику Аристотеля. История развития физики как науки многим обязана мыслителям Эллады уже хотя бы тем, что их натурфилософия оставалась основой международной науки до XVII столетия.

    Вклад александрийских греков

    Демокрит сформулировал теорию атомов, согласно которой все тела состоят из неделимых и крохотных частиц. Эмпедокл предложил закон сохранения материи. Архимед заложил основы гидростатики и механики, изложив теорию рычага и подсчитав величину выталкивающей силы жидкости. Он же стал автором термина «центр тяжести».

    Александрийский грек Герон считается одним из величайших инженеров в человеческой истории. Он создал паровую турбину, обобщил знания об упругости воздуха и сжимаемости газов. История развития физики и оптики продолжилась благодаря Евклиду, исследовавшему теорию зеркал и законы перспективы.

    Средневековье

    После падения Римской империи настал крах античной цивилизации. Многие знания были преданы забвению. Европа почти на тысячу лет остановилась в своем научном развитии. Храмами знаний стали христианские монастыри, которым удалось сохранить некоторые сочинения прошлого. Однако прогресс тормозила сама церковь. Она подчинила философию богословской доктрине. Мыслители, пытавшиеся выйти за ее пределы объявлялись еретиками и жестоко наказывались инквизицией.

    На этом фоне первенство в естественных науках перешло к мусульманам. История возникновения физики у арабов связана с переводом на их язык трудов античных греческих ученых. На их основе мыслители востока сделали несколько собственных важных открытий. К примеру, изобретатель Аль-Джазири описал первый коленчатый вал.

    Европейский застой продлился вплоть до Ренессанса. За Средние века в Старом Свете изобрели очки и объяснили возникновение радуги. Немецкий философ XV века Николай Кузанский первым предположил, что Вселенная бесконечна, и тем самым далеко опередил свое время. Через несколько десятилетий Леонардо да Винчи стал первооткрывателем явления капиллярности и закона трения. Также он пытался создать вечный двигатель, но не справившись с этой задачей, начал теоретически доказывать неосуществимость подобного проекта.

    Ренессанс

    В 1543 году польский астроном Николай Коперник опубликовал главный труд всей своей жизни «О вращении небесных тел». В этой книге впервые в христианском Старом Свете была произведена попытка защитить гелиоцентрическую модель мира, согласно которой Земля крутится вокруг Солнца, а не наоборот, как предполагала принятая церковью геоцентрическая модель Птолемея. Многие ученые физики и их открытия претендуют на звание великих, однако именно появление книги «О вращении небесных тел» считается началом научной революции, за которой последовало возникновение не только современной физики, но и современной науки в целом.

    Другой знаменитый ученый Нового времени Галилео Галилей больше всего прославился изобретением телескопа (также ему принадлежит изобретение термометра). Кроме того, он сформулировал закон инерции и принцип относительности. Благодаря открытиям Галилея зародилась совершенно новая механика. Без него история изучения физики застопорилась бы еще на долгое время. Галилею, как и многим его широко мыслившим современникам, пришлось сопротивляться давлению церкви, из последних сил пытавшейся защитить старый порядок.

    XVII столетие

    Набравший ход рост интереса к науке продолжился и в XVII веке. Немецкий механик и математик стал первооткрывателем в Солнечной системе Свои взгляды он изложил в книге «Новая астрономия», изданной в 1609 году. Кеплер оппонировал Птолемею, заключив, что планеты движутся по эллипсам, а не по окружностям, как считалось еще в античности. Этот же ученый внес значительный вклад в развитие оптики. Он исследовал дальнозоркость и близорукость, выяснив физиологические функции хрусталика глаза. Кеплер ввел понятия оптической оси и фокуса, сформулировал теорию линз.

    Француз Рене Декарт создал новую научную дисциплину - аналитическую геометрию. Также он предложил Главным трудом Декарта стала книга «Начала философии», изданная в 1644 году.

    Немногие ученые-физики и их открытия известны так, как англичанин Исаак Ньютон. В 1687 году он написал революционную книгу «Математические начала натуральной философии». В ней исследователь изложил закон всемирного тяготения и три закона механики (также ставшие известными как Этот ученый работал над теорией цвета, оптикой, интегральными и дифференциальными исчислениями. История физики, история законов механики - все это тесно связано с открытиями Ньютона.

    Новые рубежи

    XVIII век подарил науке множество выдающихся имен. Особенно выделяется среди них Леонард Эйлер. Этот швейцарский механик и математик написал более 800 работ по физике и таким разделам, как математический анализ, небесная механика, оптика, теория музыки, баллистика и т. д. Петербургская академия наук признала его своим академиком, из-за чего Эйлер значительную часть жизни провел в России. Именно этот исследователь положил начало аналитической механике.

    Интересно что история предмета физика сложилась такой, какой мы ее знаем, благодаря не только профессиональным ученым, но и исследователям-любителям, гораздо больше известным в совершенно другом качестве. Самым ярким примером такого самоучки стал американский политик Бенджамин Франклин. Он изобрел громоотвод, внес большой вклад в изучение электричества и сделал предположение о его связи с явлением магнетизма.

    В конце XVIII столетия итальянец Алессандро Вольта создал «вольтов столб». Его изобретение стало первой электрической батарей в истории человечества. Этот век также ознаменовался появлением ртутного термометра, создателем которого был Габриэль Фаренгейт. Другим важным событием изобретательства оказалось изобретение паровой машины, произошедшее в 1784 году. Оно породило новые средства производства и перестройку промышленности.

    Прикладные открытия

    Если история начала физики развивалась исходя из того, что наука должна была объяснить причину природных явлений, то в XIX веке ситуация значительно изменилась. Теперь у нее появилось новое призвание. От физики стали требовать управления природными силами. В связи с этим стала ускоренно развиваться не только экспериментальная, но и прикладная физика. «Ньютон электричества» Андре-Мари Ампер ввел новое понятие электрического тока. В этой же области работал Майкл Фарадей. Он открыл явление электромагнитной индукции, законы электролиза, диамагнетизм и стал автором таких терминов, как анод, катод, диэлектрик, электролит, парамагнетизм, диамагнетизм и т. д.

    Сложились новые разделы науки. Термодинамика, теория упругости, статистическая механика, статистическая физика, радиофизика, теория упругости, сейсмология, метеорология - все они формировали единую современную картину мира.

    В XIX столетии возникли новые научные модели и понятия. обосновал закон сохранения энергии, Джеймс Клерк Максвелл предложил собственную электромагнитную теорию. Дмитрий Менделеев стал автором значительно повлиявшей на всю физику периодической системы элементов. Во второй половине века появилась электротехника и двигатель внутреннего сгорания. Они стали плодами прикладной физики, ориентированной на решение определенных технологических задач.

    Переосмысление науки

    В XX веке история физики, кратко говоря, перешла к тому этапу, когда наступил кризис уже устоявшихся классических теоретических моделей. Старые научные формулы начали противоречить новым данным. К примеру, исследователи выяснили, что скорость света не зависит от, казалось бы, незыблемой системы отсчета. На рубеже столетий были открыты требовавшие подробного объяснения явления: электроны, радиоактивность, рентгеновские лучи.

    Вследствие накопившихся загадок произошел пересмотр старой классической физики. Ключевым событием в этой очередной научной революции стало обоснование теории относительности. Ее автором был Альберт Эйнштейн, впервые поведывавший миру о глубинной связи пространства и времени. Возник новый раздел теоретической физики - квантовая физика. В ее становлении приняли участие сразу несколько ученых с мировым именем: Макс Планк, Макс Бон, Пауль Эренфест и другие.

    Современные вызовы

    Во второй половине XX века история развития физики, хронология которой продолжается и сегодня, перешла на принципиально новый этап. Этот период ознаменовался расцветом исследования космоса. Небывалый скачок сделала астрофизика. Появились космические телескопы, межпланетные зонды, детекторы внеземных излучений. Началось детальное изучение физических данных различных тел Солнечной планеты. С помощью современной техники ученые обнаружили экзопланеты и новые светила, в том числе радиогалактики, пульсары и квазары.

    Космос продолжает таить в себе множество неразгаданных загадок. Изучаются темная энергия, темная материя, ускорение расширения Вселенной и ее структура. Дополняется теория Большого взрыва. Данные, которые можно получить в земных условиях, несоизмеримо малы по сравнению с тем, сколько работы у ученых есть в космосе.

    Ключевые проблемы, стоящие перед физиками сегодня, включают в себя несколько фундаментальных вызовов: разработку квантового варианта гравитационной теории, обобщение квантовой механики, объединение в одну теорию всех известных сил взаимодействия, поиск «тонкой настройки Вселенной», а также точное определение явления темной энергии и темной материи.

    Физика в переводе с древне греческого - «природа». Физика — это область естествознания, наука, которая изучает наиболее фундаментальные закономерности, определяющие общую структуру и эволюцию материального мира. Являясь одним из трех китов, на которых зиждется современная система мироустройства, физика, является наукой о природе в самом широком понимании этого слова! Кроме того, что она изучает материальные и энергетические параметры организации вселенной, она также ставит перед собой задачи пояснения и логического обоснования фундаментальных взаимодействий в природе, управляющих движением материи.

    На самом деле, именно физика является основным двигателем технического прогресса человечества в целом. Не умаляя в этом заслуг и иных отраслей научной мысли, все же хочется упомянуть о таких величайших гениях рода человеческого как Исаак Ньютон, Альберт Эйнштейн, Никола Тесла и пр., и пр. Именно физики позволили человечеству сделать не просто шаг в направлении своего технического развития, но совершить гигантский скачок!!!

    За последние 100 лет человек овладел энергией атома, повсеместно внедрил электричество во все сферы жизни, создал то, без чего вы не смогли бы прочитать эти строки - интернет, завоевал воздушное, водное и начал исследование подводного пространства нашей планеты. Создал супер-прочные материалы, обладающие невиданными до селе свойствами, вычислительные машины, выполняющие миллиарды логических операций в секунду, проник в бескрайние глубины человеческого мозга, увидел мельчайших обитателей нашей планеты, которых теперь мы называем вирусами, научился искусственно выращивать и трансплантировать человеческие органы и вырвался за пределы атмосферы планеты земля. Всего не перечесть. Но и этого я думаю достаточно, чтобы понять в полной мере, что же из себя представляет физическая наука.

    Может возникнуть вопрос, - зачем физика нужна Вам? Позволим себе ответить на него опять же таки вопросом, - а зачем сороконожке ноги, птицам крылья, а растениям солнце? Правильно, - да потому, что без всего этого им не обойтись!!! :) Физика сегодня необходима нам как никогда раньше. Ведь вы используете законы физики каждый день, в своей повседневной жизни…- когда готовите еду, смотрите телевизор или же просто нежитесь в ванной. Законы Архимеда, законы, применяемые в оптике, или физические законы из раздела гидро-газо-динамики стали для нас чем-то на столько обыденным, что мы уже просто не обращаем на них своего внимания, а зря…Физика - это в первую очередь, возможность человека как можно более глубже познать окружающий его мир, упорядочить систему его мировосприятия и осознать себя неотъемлемой его частью!

    Физическая наука всеобъемлюща в своем стремлении охватить как можно больше и как можно более детально описать то, что попадает в поле зрения ее апологетов, и поэтому с полным правом может претендовать на почетное звание королевы наук!