Основные понятия общей теории динамических систем. Динамическая система. Смотреть что такое "Теория динамических систем" в других словарях

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т.п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей - существенных, повторяющихся связей между предметами и явлениями - задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна "Д. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая- то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х *Д = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон - закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения - статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория X. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

На многообразиях и их подмножествах. Тесно связан с теорией дифференциальных уравнений , поскольку обыкновенное дифференциальное уравнение задает однопараметрическую группу диффеоморфизмов своего фазового пространства .

Эту область изучения часто называют просто «Динамические системы», «Теория систем», или длиннее как «Теория математических динамических систем».

Шаблон:Системы


Wikimedia Foundation . 2010 .

  • Теория групп Ли
  • Теория дифференциальных уравнений

Смотреть что такое "Теория динамических систем" в других словарях:

    МЕТРИЧЕСКАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - то же, что эргодическая теория … Математическая энциклопедия

    ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть {Tt} динамич. система (обычно измеримый поток или каскад)с фазовым пространством Wи инвариантной мерой Пусть … Математическая энциклопедия

    Кафедра нелинейных динамических систем и процессов управления ВМК МГУ - Кафедра Нелинейных Динамических Систем и Процессов Управления факультета Вычислительной математики и кибернетики МГУ им М. В. Ломоносова (НДСиПУ ВМК МГУ). Заведующий кафедрой (с 1989 года) – лауреат Ленинской, Государственных (СССР и РФ),… … Википедия

    Теория катастроф (математика) - Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    Теория бифуркаций - динамических систем это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров). Содержание 1 Обзор 2 Бифуркация равновесий … Википедия

    Теория линейных стационарных систем - раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела.… … Википедия

    Теория случайных матриц - Теория случайных матриц раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… … Википедия

    Теория узлов - Теория узлов изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу. В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вообще вложения многообразий. Содержание 1… … Википедия

    Теория Колмогорова - Теория Колмогорова Арнольда Мозера, или теория КАМ названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти… … Википедия

    Теория катастроф (значения) - Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

Книги

  • Синхронизация динамических систем , . В настоящей книге делается попытка систематического изложения фактов и результатов, относящихся к быстро развивающейся области науки и техники- синхронизации динамических систем. Книга… Купить за 735 руб
  • Теория динамических систем , Г. А. Степаньянц. Настоящая книга посвящена изложению основ общей теории динамических систем, созданной трудами ряда выдающихся отечественных и зарубежных математиков. Знакомствос этой теорией позволяет…

Исходным моментом в создании Левиным теории мотивации стали представления о том, что сознание детерминировано двояко: процессом ассоциации и волей. Он рассматривал их как отдельные тенденции. Левин показал, что детерминирующая тенденция, называемая им квазипотребностью, не является частным случаем, а, наоборот, является динамической предпосылкой любого поведения. Энергетическая составляющая поведения всегда представляла для Левина центральное звено в объяснении намерений и действий человека.

Тип энергии, осуществляющий психическую работу, Левин назвал психической энергией. Она высвобождается, когда психическая система пытается вернуть равновесие, вызванное неуравновешенностью. Последняя связана с нарастанием напряжения в одной части системы относительно других.

Первой сравнительно большой общетеоретической работой Левина, в которой он предложил достаточно детально разработанную общепсихологическую объяснительную модель поведенческой динамики, стала его книга "Намерение, воля и потребность", опиравшаяся на результаты первых экспериментов Овсянкиной, Зейгарник, Биренбаум, Карстен. В этой книге Левин, почти не дискутируя открыто с З. Фрейдом, предлагает весьма убедительный ответ академической психологии на вызов Фрейда, первым обратившего внимание на игнорировавшуюся до него область изучения побудительных сил человеческих поступков.

Ключевые понятия Левина вынесены в заголовок книги. Согласно Левину, основанием человеческой активности в любых ее формах, будь то ассоциация, поступок, мышление, память, является намерение - потребность. Потребности он рассматривает как напряженные системы, порождающие напряжение, разрядка которого происходит в действии при наступлении подходящего случая. Чтобы отличить свое понимание потребности от уже сложившегося в психологии и связанного главным образом с биологическими, врожденными потребностями, которые соотносятся с некоторыми внутренними состояниями, Левин называет их "квазипотребностями". В понятие волевых процессов он включает спектр преднамеренных процессов разной степени произвольности, обращая внимание на такой их признак, как произвольное конструирование будущего поля, в котором наступление самого действия должно произойти уже автоматически. Особое место занимает в модели Левина понятие ”Aufforderungscharakter", переводится этот термин как побудительность (там, где есть квалификатор чего) или побудитель (там, где такого уточнения нет). Квазипотребности образуются в актуальной ситуации в связи с принятыми намерениями и проявляются в том, что определенные вещи или события приобретают побудительность, контакт с которыми влечет за собой тенденцию к определенным действиям. Констатируя известный факт, что мы всегда воспринимаем предметы пристрастно, они обладают для нас определенной эмоциональной окраской, Левин замечает, что помимо этого они как бы требуют от нас выполнения по отношению к себе определенной деятельности: "Хорошая погода и определенный ландшафт зовут нас на прогулку, ступеньки лестницы побуждают двухлетнего ребенка подниматься и спускаться; двери - открывать и закрывать их". Побудительность может различаться по интенсивности и знаку (притягательный или отталкивающий), но это, по мнению Левина, не главное. Гораздо важнее то, что объекты побуждают к определенным, более или менее узкоочерченным действиям, которые могут быть чрезвычайно различными, даже если ограничиться только положительными побудителями. Приводимые Левином факты свидетельствуют о прямой связи изменений побудительности объектов с динамикой потребностей и квазипотребностей субъекта, а также его жизненных целей.

Левин дает богатое описание феноменологии побудительности, которая меняется в зависимости от ситуации, а также в результате осуществления требуемых действий: насыщение ведет к потере объектом и действием побудительности, а пресыщение выражается в смене положительной побудительности на отрицательную; одновременно положительную побудительность приобретают посторонние вещи и занятия, особенно в чем-то противоположные исходному. Действия и их элементы также могут утрачивать свою естественную побудительность в результате автоматизации. И наоборот: с повышением интенсивности потребностей не только усиливается побудительность отвечающих им объектов, но и расширяется круг таких объектов (голодный человек становится менее привередливым).

Левин полагал, что личность - сложная энергетическая система, а тип энергии, осуществляющий психологической работу, называется психической энергией. Психическая энергия высвобождается, когда человек пытается вернуть равновесие после того, как оказался в состоянии неуравновешенности. Неуравновешенность продуцируется возрастанием напряжения в одной части системы относительно др. частей в результате внешней стимуляции или внутренних изменений. Личность живет и развивается в психологическом поле окружающих ее предметов, каждый из которых имеет определенный заряд (валентность). Валентность - концептуальное свойство региона психологической среды, это ценность региона для человека. Его эксперименты доказывали, что для каждого человека эта валентность имеет свой знак, хотя в то же время существуют такие предметы, которые для всех имеют одинаково притягательную или отталкивающую силу. Воздействуя на человека, предметы вызывают в нем потребности, которые Левин рассматривал как своего рода энергетические заряды, вызывающие напряжение человека. В этом состоянии человек стремится к разрядке, т.е. к удовлетворению собственной потребности. Левин различал два рода потребностей - биологические и социальные (квазипотребности). Одно из наиболее известных уравнений Левина, которыми он описывал поведение человека в психологическом поле под влиянием различных потребностей, показывает, что поведение является одновременно функцией личности и психологического поля.

Для объяснения динамики Левин использует некоторые понятия. Напряжение - состояние внутриличностного региона относительно других внутриличностных регионов. Организм стремится к выравниванию напряжения данного региона по сравнению с другими. Психологическим средством выравнивания напряжения является процесс - мышление, запоминание и др. Потребность - возрастание напряжения или высвобождение энергии во внутриличностном регионе. Потребности в структуре личности не изолированы, но находятся в связи друг с другом, в определенной иерархии. Потребности делятся на физиологические состояния (истинные потребности) и намерения, или квазипотребности. Понятие потребности отражает внутреннее состояние индивида, состояние нужды, а понятие квазипотребности эквивалентно специфическому намерению удовлетворить потребность. "Это значит, что к намерению вынуждены прибегать тогда, когда нет естественной потребности в выполнении соответствующего действия, или даже когда налицо естественная потребность противоположного характера".

Дифференциация - одно из ключевых понятий теории "поля". и относится ко всем аспектам жизненного пространства. Например, для ребенка, по Левину, характерна большая подверженность влиянию среды и, соответственно, большая слабость границ во внутренней сфере, в измерении "реальность-нереальность" и во временной сфере. Возрастающую организованность и интеграцию поведения личности теория "поля". определяет как организационную взаимозависимость. С приходом зрелости возникает большая дифференциация и в самой личности, и в психологическом окружении, увеличивается прочность границ, усложняется система иерархических и селективных отношений между напряженными системами.

Конечной целью всех психических процессов является стремление вернуть человеку равновесие. Этот процесс может осуществляться путем поиска определенных валентных объектов психологической среды, которые могут снять напряжение.

Левиновский подход отличало два момента. Во-первых, он перешел от представления о том, что энергия мотива замкнута в пределах организма, к представлению о системе "организм-среда". Индивид и его окружение выступили в виде нераздельного динамического целого. Во-вторых, в противовес трактовке мотивации как биологически предопределенной константы, Левин полагал, что мотивационное напряжение может быть создано как самим индивидом, так и другими людьми (например, экспериментатором, который предлагает индивиду выполнить задание). Тем самым за мотивацией признавался собственно психологический статус. Она не сводилась более к биологическим потребностям, удовлетворив которые организм исчерпывает свой мотивационный потенциал.

Свое представление о мотивации Левин выводил из неразрывной связи субъекта и объекта. При этом противопоставление внутреннего и внешнего снималось, т.к они объявлялись разными полюсами единого пространства - поля по Левину. Для гештальтпсихологов поле - это то, что воспринимается в качестве непосредственно данного сознанию. Для Левина поле - это структура, в которой совершается поведение. Она охватывает мотивационные устремления индивида и одновременно объекты этих устремлений. Левин выводил поведение из факта взаимодействия личности и среды. Его не интересовали объекты как вещи, а лишь то, в каком отношении они находятся к потребностям личности. Мотивационные изменения выводились не из внутренних структур личности, а из особенностей самого поля, из динамики целого.

Эти результаты сближают позицию Левина с идеями Адлера и гуманистической психологией: важность сохранения целостности личности, ее Самости, необходимость осознания человеком структуры своей личности. Сходство этих концепций, к которым пришли ученые разных школ и направлений, говорит об актуальности данной проблемы, о том, что, осознав влияние бессознательного на поведение, человечество приходит к мысли о необходимости провести границу между человеком и другими живыми существами, понять не только причины его агрессивности, жестокости, сладострастия, которые великолепно объяснил психоанализ, но и основы его нравственности, доброты, культуры. Большое значение имело и стремление в новом мире, после войны, показавшей ничтожность и хрупкость человека, преодолеть складывающееся ощущение типичности и взаимозаменяемости людей, доказать, что люди - целостные, уникальные системы, каждый из которых несет в себе свой внутренний мир, не похожий на мир других людей.

Динамические и статистические теории

Одна из главных задач любой научной теории заключается в том, чтобы по заданному состоянию системы предсказать ее будущее или восстановить прошлое состояние. Однако, поскольку состояние системы можно описывать по-раз­но­му (пп. 3.4.1, 3.4.2, 3.5.3), различается и характер предсказаний. В этом отношении все теории можно разделить на два класса: динамические и статистические . В динамической теории состояние системы определяется значениями характеризующих ее физических величин. Соответственно, динамическая теория позволяет предсказывать значения физических величин, характеризующих систему.

Исторически первая научная теория - классическая механика - теория динамическая. Она стала образцом, по которому кроились другие разделы классического естествознания: термодинамика, электродинамика, теория относительности, теория химического строения, систематика живых существ… Сформировалось убеждение, что динамические теории несут наиболее фундаментальное знание.

Теория, в которой состояние системы определяется заданием вероятностей тех или иных значений физических величин, относится к статистическим теориям.

Статистическая теория позволяет предсказывать лишь вероятности тех или иных значений физических величин, характеризующих систему.

Первые статистические теории стали возникать в XIX веке: молекулярно-ки­не­ти­чес­кая теория и, более широко, статистическая механика в физике, дарвиновская теория эволюции (основанная на представлениях о неопределенной, то есть, случайной изменчивости), менделевская генетика. Большинство же ныне действующих статистических теорий появились уже в XX веке. Со статистическими теориями в естествознание вошло фундаментальное понятие флуктуации .

Флуктуация - это случайное отклонение характеристик системы
от наиболее вероятного или среднего значения.

Причины флуктуаций могут быть различными. Например, голубой цвет неба, в конечном счете, обусловлен тем, что количество молекул воздуха в заданном объеме не постоянно: оно все время колеблется вокруг среднего значения. Причина - беспорядочное тепловое движение молекул: в какой-то момент больше молекул покинет данный объем, чем влетит в него извне, а в следующий момент - наоборот. Нулевые колебания полей в физическом вакууме (п. 3.3.4) - это тоже флуктуации, но уже квантового происхождения. В биологии флуктуации скрываются за терминами «не­о­пре­де­лен­ная изменчивость», «му­та­ции»; здесь их основная причина - влияние множества неучитываемых факторов. Понятие флуктуации фактически ис­поль­зу­ет­ся и в социальных науках, когда говорится о субъ­ек­тив­ных факторах общественных процессов, роли личности в истории и т.д.

Динамические теории не учитывают (и не допускают возможности) флуктуаций; статистические - допускают, учитывают и даже выводят на передний план.

Динамические и статические законы.

2. Динамические закономерности

Физические явления в механике, электромагнетизме и теории относительности в основном подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа.

Динамические законы - это законы Ньютона, уравнения Максвелла, уравнения теории относительности.

Классическая механика Ньютона

Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном.

1. Согласно сформулированному Галилеем закону инерции, тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

2. Этот закон устанавливает связь между массой тела, силой и ускорением.

Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела)

Второй закон справедлив только в инерциальных системах отсчета. Первый закон можно получить из второго.

3. Устанавливает связь между силой действия и силой противодействия.

Третий закон Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

4. В качестве IV закона выступает закон всемирного тяготения.



Два любых тела притягиваются друг к другу с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.

Уравнения Максвелла.

Уравнения Максвелла - наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами

(электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Уравнения теории относительности.

Специальная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).

В основе специальной теории относительности лежат постулаты Эйнштейна:

принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;

принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны

по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату, постоянство скорости света в вакууме - фундаментальное свойство природы.

Общая теория относительности, называемая иногда теорией тяготения - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменятся от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

МЕХАНИЧЕСКИЙ ДЕТЕРМИНИЗМ

Детерминисты считают, что все происходящее в мире рассматривается как следствие действия объективных однозначных законов, а случайность является выражением непознанной необходимости. Возникло философское учение механический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749-1827) - французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерминизма - уверенность в том, что всё происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Концепция детерминизма по Лапласу, предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности. В мире все объективно предопределено и детерминировано. Не может быть никаких "либо, либо". Будущее также однозначно, как и прошлое. Механический детерминизм объединяет в единое целое такие понятия, как "материя", "информация", "пространство" и "время". Все эти понятия должны рассматриваться как разные проявления единого нечто, которое условно может быть названо абсолютом.

1. Ввиду однозначности динамических законов природы, будущее также однозначно как и прошлое. Не существует никаких случайных событий, случайность - это непознанная необходимость.

2. Время - это средство реализации причинно-следственных связей, а так как причина всегда предшествует следствию, то течение времени всегда однозначно и однонаправлено.

3. Перемещение во времени возможно только от причины к следствию. Поэтому перемещение в прошлое из будущего возможно только в том случае, если это перемещение исключает возможность какого-либо активного вмешательства в течение прошлого.

4. Вместе с тем возможно пассивное перемещение, как в прошлое, так и в будущее, при условии только наблюдения за

происходящим и невозможности активного воздействия на него. Возможно только пассивное созерцание картин происходившего и будущего.

5. Течение времени может происходить в разных координатных системах, не совпадающих друг с другом, однако переход из одной - в другую, не может привести к нарушению причинно-временных связей и однозначности будущего.

Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений. Сущностью детерминизма является идея о том, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин.
Индетерминизм - учение, отрицающее объективную причинную обусловленность явлений природы, общества и человеческой психики.
В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей и находит свое более полное и общее отражение в фундаментальных физических теориях.
Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы типа закона Архимеда, закона Ома, закона электромагнитной индукции и т.д.
Ученые-науковеды едины во мнении, что основу любой физической теории составляют три главных элемента:
1) совокупность физических величин, с помощью которых описываются объекты данной теории (например, в механике Ньютона - координаты, импульсы, энергия, силы); 2) понятие состояния; 3) уравнения движения, то есть уравнения, описывающие эволюцию состояния рассматриваемой системы.
Кроме того, для решения проблемы причинности важное значение имеет подразделение физических законов и теорий на динамические и статистические (вероятностные).