Число известных веществ в неорганической химии. Неорганическая химия. Виды химических соединений

Неорганическая химия - раздел химии, который связан с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область химии охватывает все соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различия между органическими и неорганическими соединениями , содержащими , являются по некоторым представлениям произвольными. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических). Число известных сегодня неорганических веществ приближается к 500 тысячам.

Теоретическим основанием неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева . Главной задачей неорганической химии является разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами.

Классификация химических элементов

Периодическая система химических элементов (таблица Менделеева ) - классификация химических элементов, которая устанавливает зависимость различных свойств химических элементов от заряда атомного ядра. Система — это графическое выражение периодического закона, . Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и назывался «Естественная система элементов», который устанавливал зависимость свойств химических элементов от их атомной массы. Всего предложено несколько сотен вариантов изображения периодической системы, но в современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в некоторой степени подобные друг другу.

Простые вещества

Они состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: и . Для первых характерна металлическая связь, для вторых - ковалентная. Также выделяются две примыкающие к ним группы - металлоподобных и неметаллоподобных веществ. Существует такое явление как аллотропия, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента, но с разным строением кристаллической решетки; каждый из таких типов называется аллотропной модификацией.

Металлы

(от лат. metallum - шахта, рудник) - группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 химических элементов, открытых на данный момент, к металлам относят:

  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды+ лантан,
  • 14 в группе актиноиды + актиний,
  • вне определённых групп .

Таким образом, к металлам относится 96 элементов из всех открытых.

Неметаллы

Химические элементы с типично неметаллическими свойствами, занимающие правый верхний угол Периодической системы элементов. В молекулярной форме в виде простых веществ в природе встречаются

Фундаментальные труды, связанные с изучением строения, свойств и способности реагировать химические элементы и их соединения, были объединены в раздел неорганической химии. Сегодня общее число известных неорганических веществ равно 400 тысячам.

Виды химических соединений

Ионы и нейтральные молекулы, образующиеся в процессе присоединения к комплексообразующим частицам нейтральных лигандов, которыми именуются другие ионы или молекулы, называются комплексные соединения. Они могут иметь внешнюю сферу, диссоциирующую на катион комплексного малодиссоциирующего типа, или же нерастворимые водой соединения без внешней сферы. Также стоит отметить , к которым относится большая часть соединений, исключающих наличие углерода.

Диссоциация подразумевает под собой распад химических соединений на отдельные самостоятельные элементы. Так, к примеру, гидроксид аммония и щелочные металлы, именуемые еще как щелочи, относят к себе легкорастворимые основания в воде.

Следующий класс химических соединений металлов и некоторых неметаллов представляют собой сульфиды.

Химические элементы 17-й группы, имею хорошую реакцию со всеми веществами простого типа, за исключением немногих неметаллов. Они являются энергичными окислителями, это служит причиной, почему данные химические элементы встречаются в природе только в виде соединений.

Важнейший биогенный элемент с электронной структурой, обеспечивающей мгновенное разрушение и образование связей химического вида с биологической молекулой, образует соединения фосфора. Если они имеют степень окисления 5+, значит, соединение преобразуется как фосфорная кислота.

Грауберова или горькая соль, колчедан и цинковая обманка — важнейшие соединения серы, которые в природе могут встречаться как в чистом виде, так и входить в состав нефти, живых организмов как аминокислоты. Серу из горных пород добывают с помощью водяного пара, еще доступно ее получение в лабораторных условиях путем окислительно-восстановительной реакции.

Свойства химических реакций и процессов

Простое вещество, которое состоит из атомов единственного элемента, может образовывать некоторое число химических связей с частицами остальных элементов. Данный процесс называется , он может менять молекулярное строение вещества, с которым тесно связана такая электроизоляционная черта, как проводимость материала. Наиболее известным методом нахождения коэффициента в уравнениях реакций окислительно-восстановительного типа выступаетэлектронный баланс.Геометрический образ, который вводится для анализа кристаллов, имеющих сходство с канвой, называется кристаллическая решетка.

Изменения количества и качества реагирующего вещества за определенный промежуток времени понимается какскорость химической реакции,чья величина всегда положительная. Химический процесс, способствующий выделению через электроды частей растворных веществ, является конечным результатом электродной вторичной реакции, которая возникает во время прохождения электричества, образуя расплавов. Вещество, проводящее электричество в результате ионной диссоциации или передвижении частиц по кристаллической решетке, служит примером раствора электролитов.

Рассматривая химические свойства оксидов,стоит указать, что они могут взаимодействовать с водой, с дальнейшим образованием щелочи или основания, с кислотами, образовывая воду или солевой раствор, а также с кислотными оксидами.

Курс химии в школах начинается в 8-м классе с изучения общих основ науки: описываются возможные виды связи между атомами, типы кристаллических решеток и наиболее распространенные механизмы реакций. Это становится фундаментом для изучения важного, но более специфического раздела - неорганики.

Что это такое

Это наука, которая рассматривает принципы строения, основные свойства и реакционную способность всех элементов таблицы Менделеева. Важную роль в неорганике играет Периодический закон, который упорядочивает систематическую классификацию веществ по изменению их массы, номера и типа.

Курс охватывает и соединения, образуемые при взаимодействии элементов таблицы (исключение составляет только область углеводородов, рассматриваемая в главах органики). Задачи по неорганической химии позволяют отработать полученные теоретические знания на практике.

Наука в историческом аспекте

Название "неорганика" появилось в соответствии с представлением, что она охватывает часть химического знания, которая не связана с деятельностью биологических организмов.

Со временем было доказано, что большая часть органического мира может производить и «неживые» соединения, а углеводороды любого типа синтезируются в условиях лаборатории. Так, из аммония цианата, являющегося солью в химии элементов, немецкий ученый Велер смог синтезировать мочевину.

Во избежание путаницы с номенклатурой и классификацией типов исследований обеих наук программа школьного и университетского курсов следом за общей химией предполагает изучение неорганики в качестве фундаментальной дисциплины. В научном мире сохраняется аналогичная последовательность.

Классы неорганических веществ

Химия предусматривает такую подачу материала, при которой вводные главы неорганики рассматривают Периодический закон элементов. особого типа, которая основана на предположении, что атомные заряды ядер оказывают влияние на свойства веществ, причем данные параметры изменяются циклически. Изначально таблица строилась как отражение увеличения атомных масс элементов, но вскоре данная последовательность была отвергнута ввиду ее несостоятельности в том аспекте, в котором требуют рассмотрения данного вопроса неорганические вещества.

Химия, помимо таблицы Менделеева, предполагает наличие около сотни фигур, кластеров и диаграмм, отражающих периодичность свойств.

В настоящее время популярен сводный вариант рассмотрения такого понятия, как классы неорганической химии. В столбцах таблицы указываются элементы в зависимости от физико-химических свойств, в строках - аналогичные друг другу периоды.

Простые вещества в неорганике

Знак в таблице Менделеева и простое вещество в свободном состоянии - чаще всего разные вещи. В первом случае отражается только конкретный вид атомов, во втором - тип соединения частиц и их взаимовлияние в стабильных формах.

Химическая связь в простых веществах обуславливает их деление на семейства. Так, можно выделить две обширные разновидности групп атомов - металлы и неметаллы. Первое семейство насчитывает 96 элементов из 118 изученных.

Металлы

Металлический тип предполагает наличие одноименной связи между частицами. Взаимодействие основано на обобществлении электронов решетки, которая характеризуется ненаправленностью и ненасыщаемостью. Именно поэтому металлы хорошо проводят тепло, заряды, обладают металлическим блеском, ковкостью и пластичностью.

Условно металлы находятся слева в таблице Менделеева при проведении прямой линии от бора к астату. Элементы, близкие по расположению к этой черте, чаще всего носят пограничный характер и проявляют двойственность свойств (например, германий).

Металлы в большинстве образуют основные соединения. Степени окисления таких веществ обычно не превышают двух. В группе металличность повышается, а в периоде уменьшается. Например, радиоактивный франций проявляет более основные свойства, чем натрий, а в семействе галогенов у йода даже появляется металлический блеск.

Иначе дело обстоит в периоде - завершают подуровни перед которыми находятся вещества с противоположными свойствами. В горизонтальном пространстве таблицы Менделеева проявляемая реакционная способность элементов меняется от основной через амфотерную к кислотной. Металлы - хорошие восстановители (принимают электроны при образовании связей).

Неметаллы

Данный вид атомов включают в основные классы неорганической химии. Неметаллы занимают правую часть таблицы Менделеева, проявляя типично кислотные свойства. Наиболее часто данные элементы встречаются в виде соединений друг с другом (например, бораты, сульфаты, вода). В свободном молекулярном состоянии известно существование серы, кислорода и азота. Существует также несколько двухатомных газов-неметаллов - помимо двух вышеупомянутых, к ним можно отнести водород, фтор, бром, хлор и йод.

Являются наиболее распространенными веществами на земле - особенно часто встречаются кремний, водород кислород и углерод. Иод, селен и мышьяк распространены очень мало (сюда же можно отнести радиоактивные и неустойчивые конфигурации, которые расположены в последних периодах таблицы).

В соединениях неметаллы ведут себя преимущественно как кислоты. Являются мощными окислителями за счет возможности присоединения дополнительного числа электронов для завершения уровня.

в неорганике

Помимо веществ, которые представлены одной группой атомов, различают соединения, включающие несколько различных конфигураций. Такие вещества могут быть бинарными (состоящими из двух разных частиц), трех-, четырехэлементными и так далее.

Двухэлементные вещества

Особенное значение бинарности связи в молекулах придает химия. Классы неорганических соединений также рассматриваются с точки зрения образованной между атомами связи. Она может быть ионной, металлической, ковалентной (полярной или неполярной) или смешанной. Обычно такие вещества четко проявляют основные (при наличии металла), амфортерные (двойственные - особенно характерно для алюминия) или кислотные (если есть элемент со степенью окисления от +4 и выше) качества.

Трехэлементные ассоциаты

Темы неорганической химии предусматривают рассмотрение и данного вида объединения атомов. Соединения, состоящие из более чем двух групп атомов (чаще всего неорганики имеют дело с трехэлементными видами), обычно образуются при участии компонентов, значительно отличающихся друг от друга по физико-химическим параметрам.

Возможные виды связи - ковалентный, ионный и смешанный. Обычно трехэлементные вещества по поведению похожи на бинарные за счет того, что одна из сил межатомного взаимодействия значительно прочнее другой: слабая формируется во вторую очередь и имеет возможность диссоциировать в растворе быстрее.

Классы неорганической химии

Подавляющее большинство изучаемых в курсе неорганики веществ можно рассмотреть по простой классификации в зависимости от их состава и свойств. Так, различают оксиды и соли. Рассмотрение их взаимосвязи лучше начать со знакомства с понятием окисленных форм, в которых могут оказаться почти любые неорганические вещества. Химия таких ассоциатов рассматривается в главах об оксидах.

Оксиды

Окись представляет собой соединение любого химического элемента с кислородом в степени окисленности, равной -2 (в пероксидах -1 соответственно). Образование связи происходит за счет отдачи и присоединения электронов с восстановлением О 2 (когда наиболее электроотрицательным элементом является кислород).

Могут проявлять и кислотные, и амфотерные, и основные свойства в зависимости от второй группы атомов. Если в оксиде он не превышает степени окисления +2, если неметалл - от +4 и выше. В образцах с двойственной природой параметров достигается значение +3.

Кислоты в неорганике

Кислотные соединения имеют реакцию среды меньше 7 за счет содержания катионов водорода, которые могут перейти в раствор и впоследствии замениться ионом металла. По классификации являются сложными веществами. Большинство кислот можно получить путем разбавления соответствующих оксидов водой, например, при образовании серной кислоты после гидратации SO 3 .

Основная неорганическая химия

Свойства данного вида соединений обусловлены наличием гидроксильного радикала ОН, который дает реакцию среды выше 7. Растворимые основания называются щелочами, они являются наиболее сильными в этом классе веществ за счет полной диссоциации (распада на ионы в жидкости). Группа ОН при образовании солей может заменяться кислотными остатками.

Неорганическая химия - это двойственная наука, которая может описать вещества с разных точек зрения. В протолитической теории основания рассматриваются в качестве акцепторов катиона водорода. Такой подход расширяет понятие об этом классе веществ, называя щелочью любое вещество, способное принять протон.

Соли

Данный вид соединений находится межу основаниями и кислотами, так как является продуктом их взаимодействия. Так, в качестве катиона выступает обычно ион металла (иногда аммония, фосфония или гидроксония), а в качестве анионного вещества - кислотный остаток. При образовании соли водород замещается другим веществом.

В зависимости от соотношения количества реагентов и их силы по отношению друг к другу рационально рассматривать несколько видов продуктов взаимодействия:

  • основные соли получаются, если гидроксильные группы замещены не полностью (такие вещества имеют щелочную реакцию среды);
  • кислые соли образуются в противоположном случае - при недостатке реагирующего основания водород частично остается в соединении;
  • самыми известными и простыми для понимания являются средние (или нормальные) образцы - они являются продуктом полной нейтрализации реагентов с образованием воды и вещества только с катионом металла или его аналогом и кислотным остатком.

Неорганическая химия - это наука, предполагающая деление каждого из классов на фрагменты, которые рассматриваются в разное время: одни - раньше, другие - позже. При более углубленном изучении различают еще 4 вида солей:

  • Двойные содержат единственный анион при наличии двух катионов. Обычно такие вещества получаются в результате сливания двух солей с одинаковым кислотным остатком, но разными металлами.
  • Смешанный тип противоположен предыдущему: его основой является один катион с двумя разными анионами.
  • Кристаллогидраты - соли, в формуле которых есть вода в кристаллизованном состоянии.
  • Комплексы - вещества, в которых катион, анион или оба из них представлены в виде кластеров с образующим элементом. Такие соли можно получить преимущественно у элементов подгруппы В.

В качестве других веществ, включенных в практикум по неорганической химии, которые можно классифицировать как соли или как отдельные главы знания, можно назвать гидриды, нитриды, карбиды и интерметаллиды (соединения нескольких металлов, сплавом не являющиеся).

Итоги

Неорганическая химия - это наука, которая представляет интерес для каждого специалиста данной сферы вне зависимости от его интересов. Она включает в себя первые главы, изучаемые в школе по данному предмету. Курс неорганической химии предусматривает систематизацию больших объемов информации в соответствии с понятной и простой классификацией.

У этой науки было и другое название, ныне почти забытое: минеральная химия. Оно достаточно четко определяло содержание науки: изучение веществ, главным образом твердых, которые составляют мир неживой природы. Анализ природных неорганических веществ, прежде всего минералов, позволил в XVIII-XIX вв. открыть большое количество элементов, существующих на Земле. И каждое такое открытие давало неорганической химии новый материал, расширяло количество объектов для ее исследований.

Название «неорганическая» прочно закрепилось в научном языке тогда, когда стала интенсивно развиваться органическая химия, изучавшая природные и синтетические органические вещества. Их число в XIX в. стремительно возрастало с каждым годом, потому что синтезировать новые органические соединения было легче и проще, чем неорганические. И теоретическая база у органической химии долгое время была солиднее: достаточно назвать бутле-ровскую теорию химического строения органических соединений. Наконец, разнообразие органических веществ оказалось проще четко классифицировать.

Все это на первых порах привело к разграничению объектов исследования двух основных разделов химической науки. Органическую химию стали определять как область химии, изучающую углеродсодер-жащие вещества. Уделом же неорганической оказывалось познание свойств всех прочих химических соединений. Это различие сохранилось и в современном определении неорганической химии: науки о химических элементах и образуемых ими простых и сложных химических соединениях. Всех элементов, кроме углерода. Правда, всегда делают оговорку, что некоторые простые соединения углерода - оксиды и их производные, карбиды и некоторые другие - должны быть причислены к неорганическим веществам.

Однако стало очевидным, что резкого разграничения между неорганикой и органикой нет. В самом деле, ведь известны такие обширные классы веществ, как элементоорганические (в особенности металло-органические) и координационные (комплексные) соединения, которые не просто однозначно отнести ни к органической, ни к неорганической химии.

История научной химии началась с неорганики. И потому не удивительно, что именно в русле неорганической химии возникли важнейшие понятия и теоретические представления, способствовавшие развитию химии в целом. На материале неорганической химии была разработана кислородная теория горения, установлены основные стехиометрические законы (см. Стехиометрия), наконец, создано атом-но-молекулярное учение. Сравнительное изучение свойств элементов и их соединений и закономерностей изменения этих свойств по мере увеличения атомных масс привело к открытию периодического закона и построению периодической системы химических элементов, которая стала важнейшей теоретической основой неорганической химии. Способствовало ее прогрессу и развитие производства многих практически важных веществ - кислот, соды, минеральных удобрений. Заметно вырос престиж неорганической химии после осуществления промышленного синтеза аммиака.

Тормозом для развития химии вообще, а неорганической в особенности было отсутствие точных представлений о строении атомов. Создание теории строения атомов имело для нее колоссальное значение. Теория объяснила причину периодического изменения свойств элементов, способствовала появлению теорий валентности и представлений о природе химической связи в неорганических соединениях, понятия об ионной и ковалентной связи. Более глубокое понимание природы химической связи было достигнуто в рамках квантовой химии.

Так неорганическая химия стала строгой теоретической дисциплиной. Но постоянно совершенствовалась и техника эксперимента. Новое лабораторное оборудование позволяло применять для химических синтезов неорганических соединений температуры в несколько тысяч градусов и близкие к абсолютному нулю; использовать давления в сотни тысяч атмосфер и, наоборот, проводить реакции в условиях глубокого вакуума. Действие электрических разрядов, излучений большой интенсивности также было взято на вооружение химиками-неорганиками. Больших успехов достиг каталитический неорганический синтез.

Почти все известные химические элементы, не только существующие на Земле, но и полученные в ядерных реакциях, находят практическое применение. Например, плутоний стал основным ядерным горючим, и его химия изучена, пожалуй, полнее, чем многих других элементов менделеевской системы. Но чтобы практика сочла возможным использовать какой-либо химический элемент, химики-неорганики предварительно должны были всесторонне познать его свойства. Особенно это касается так называемых редких элементов.

Перед современной неорганической химией стоят две основные задачи. Объектами исследования первой из них являются атом и молекула: важно знать, как связаны свойства веществ со строением атомов и молекул. Здесь неоценимую помощь оказывают различные физические методы исследования (см. Физическая химия). Идеи и представления физической химии давно используются химиками-неорганиками.

Вторая задача - разработка научных основ получения неорганических веществ и материалов с заранее заданными свойствами. Такие неорганические соединения необходимы новой технике. Ей нужны вещества жаростойкие, имеющие высокую механическую прочность, устойчивые по отношению к самым агрессивным химическим реагентам, а также вещества очень высокой степени чистоты, полупроводниковые материалы и т. д. Постановке экспериментов здесь предшествуют строгие и сложные теоретические расчеты, и для их проведения часто используются электронные вычислительные машины. Во многих случаях неорганической химии удается правильно предсказать, будет ли предполагаемый продукт синтеза обладать требуемыми свойствами.

Объем исследований в неорганической химии сейчас настолько велик, что в ней сформировались самостоятельные разделы: химии отдельных элементов (например, химия азота, химия фосфора, химия урана, химия плутония) или их определенных совокупностей (химия переходных металлов, химия редкоземельных элементов, химия трансурановых элементов). В качестве самостоятельных объектов исследования могут рассматриваться различные классы неорганических соединений (скажем, химия гидридов, химия карбидов). Этим отдельным «ветвям» и «веточкам» могучего «древа» неорганической химии ныне посвящаются специальные монографии. И конечно же, возникают и будут возникать новые разделы этой древней и всегда молодой науки. Так, в последние десятилетия возникли химия полупроводников и химия инертных газов.

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Учебно-методический комплекс

Часть первая. Программа лекционного курса

Нижний Новгород, 2006


УДК 546 (073.8)

Неорганическая химия: Учебно-методический комплекс. Часть первая. Программа лекционного курса / А.А.Сибиркин.- Нижний Новгород: ННГУ, 2006.- 34 с.

Первая часть учебно-методического комплекса содержит план курса лекций по неорганической химии для студентов первого курса химического факультета ННГУ им. Н.И.Лобачевского.

Для студентов 1 курса химического факультета, изучающих курс неорганической химии.

© А.А.Сибиркин, 2006

© Нижегородский госуниверситет

им. Н.И.Лобачевского, кафедра

неорганической химии


Пояснительная записка

Курс неорганической химии, преподаваемый на химическом факультете ННГУ, ставит своей целью обеспечить овладение студентами основами неорганической химии как одной из фундаментальных дисциплин в системе химического знания.

Основными задачами курса являются: усвоение студентами основных закономерностей химических превращений; знание фактического материала, относящегося к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ; формирование умения решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ; овладение на практике основами химического эксперимента, важнейшими методами получения и очистки неорганических веществ.

Содержание курса предусматривает разъяснение важнейших понятий физической химии и строения вещества, развитие умения применять изученные закономерности для решения практических задач, что реализует идею концентричности химического образования в высшей школе. Понимание закономерностей протекания реакций и реакционной способности веществ является основой для формирования обширных и глубоких знаний фактического материала по химии элементов и их соединений.

В результате изучения курса неорганической химии студенты должны:

Знать, как научные теории объясняют процессы взаимодействия веществ, описывают количественные соотношения между участниками химического превращения, указывают на возможность самопроизвольного протекания процесса, характеризуют скорость превращений, рассматривают состояние вещества и его превращения в растворах.

Знать фактический материал, относящийся к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ.

Уметь анализировать свойства химических элементов на основании их положения в периодической системе, объяснять тенденции изменения свойств в ряду аналогичных веществ, на основании теории строения атома и химической связи раскрывать зависимость свойств веществ от их состава и строения, прогнозировать свойства веществ, предсказывать вероятные продукты химического превращения в конкретных условиях, связывать свойства вещества с возможными областями их применения.

Уметь пользоваться химической символикой, номенклатурой неорганических веществ, терминологией физической и неорганической химии.

Уметь составлять химические уравнения, расставлять стехиометрические коэффициенты, решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ и закономерностям их превращения.

Обладать навыками работы с учебной, справочной, монографической литературой, самостоятельно находить необходимые сведения по химии элементов и их соединений, уметь объединять, анализировать и систематизировать литературные данные.

Обладать практическими навыками лабораторного химического эксперимента, методами безопасной работы в химической лаборатории, реализовывать методики синтеза и очистки неорганических веществ, уметь формулировать заключение о природе вещества по совокупности полученных экспериментальных данных.

Иметь представление об электронном строении атомов, молекул, твердых тел, комплексных соединений, о методах исследования неорганических веществ.

Теоретической базой, необходимой для успешного освоения курса неорганической химии, являются:

1. Курсы химии, математики и физики, преподаваемые в средних общеобразовательных школах или в средних специальных учебных заведениях химического профиля.

2. Курсы строения вещества и кристаллохимии, преподаваемые параллельно с курсом неорганической химии на химическом факультете ННГУ.

3. Знание основных разделов физической химии, предусмотренных этой программой, изучение которых предшествует изложению основного материала неорганической химии.

Лекционный курс по неорганической химии и его программа состоят из четырех разделов. Раздел «Теоретические основы неорганической химии» объединяет учебный материал, посвященный химической терминологии, символике и номенклатуре, газовым законам и стехиометрии, основам химической термодинамики, теории растворов и фазовых равновесий, электрохимии, химической кинетике, учению о координационных соединениях. Усвоение этих понятий необходимо для того, чтобы последующее изучение фактического материала неорганической химии можно было вести на современной теоретической базе и заложить основы решения расчетных задач.

Разделы «Химия элементов – неметаллов» и «Химия элементов – металлов» раскрывают основное содержание курса – фактический материал неорганической химии, который систематизирован на основе периодического закона. Сведения о химических элементах излагаются в определенной последовательности: нахождение в природе, изотопный состав, положение в периодической системе, строение атома и валентные возможности, биологическая роль. Знания о соединениях химических элементов формируются в следующем логическом порядке: получение, строение, физические и химические свойства, применение, техника безопасной работы. Программой предусмотрена сравнительная характеристика свойств элементов и их соединений на основании положения в периодической системе (устойчивость степеней окисления, изменение кислотно-основных и окислительно-восстановительных свойств соединений), которая обобщает учебный материал по данному элементу или подгруппе.

В «Заключении» на основе периодического закона систематизированы общие свойства неметаллов и металлов, раскрываются некоторые вопросы геохимии и радиохимии, кратко освещаются методы исследования неорганических соединений. Изучение этих разделов способствует закреплению логических связей, сформированных в ходе рассмотрения фактического материала курса.

Лекционный курс по неорганической химии рассчитан на 140 часов в первом и втором учебных семестрах. Курс сопровождается проведением практических занятий (70 часов), на которых студенты знакомятся с приемами решения расчетных задач, и выполнением лабораторного практикума (140 часов). Изучение курса неорганической химии предполагает самостоятельную работу студента (150 часов), сдачу коллоквиумов и написание контрольных работ. В каждом из семестров студенты сдают зачет по лабораторному практикуму и экзамен по теоретическому курсу.

Теоретические основы неорганической химии

Основные понятия и законы химии. Атомно-молекулярное учение. Классическое и современное понятие атома. Строение атома. Атомное ядро, нуклоны, электроны, электронные оболочки. Атомный номер и массовое число. Изотопы. Химические элементы. Химическая связь. Ионная и ковалентная связь. Молекулы и формульные единицы.

Моль. Постоянная Авогадро. Количество вещества. Масса, объем и плотность вещества. Атомная и молярная массы. Молярный объем. Атомная единица массы. Относительная атомная и молекулярная массы.

Химический индивид и его признаки. Однородность вещества, понятия фазы и области гомогенности. Характерное строение. Молекулярное и кристаллохимическое строение. Основные понятия химии твердого тела. Элементарная ячейка. Трансляция. Дальний порядок. Представление о полиморфизме и изоморфизме. Определенность состава и закон постоянства состава. Закон кратных отношений. Химический индивид и чистое вещество. Сложное вещество и химическое соединение. Простое вещество и химический элемент. Аллотропия и полиморфизм.

Химическая символика. Номенклатура неорганических соединений.

Система и окружающая среда. Закрытые, открытые и изолированные системы. Гомогенные и гетерогенные системы. Состояние системы и параметры состояния. Стационарное и равновесное состояния системы. Процессы в системе и их классификация. Интенсивные и экстенсивные параметры состояния.

Понятие компонента. Способы выражения состава систем. Массовая и молярная доли. Молярная и моляльная концентрации. Титр. Растворимость. Закон сохранения массы и условие материального баланса. Молярная масса смеси.

Вариантность системы. Понятие независимого компонента. Правило фаз. Диаграмма состояния индивидуального вещества. Фигуративные точки. Фазовые переходы. Применение правила фаз для анализа диаграмм состояния.

Методы определения атомных и молекулярных масс. Экспериментальные методы определения молярных масс летучих веществ. Методы Реньо, Майера и Дюма. Расчет молярных масс из газовых законов. Определение молярных масс нелетучих веществ из коллигативных свойств растворов. Экспериментальное определение атомных масс. Методы, основанные на законе простых объемных отношений. Метод Канниццаро. Масс-спектрометрический метод. Оценка атомных масс из правила Дюлонга и Пти.

Газовые законы. Понятие идеального газа. Уравнение состояния идеального газа. Универсальная газовая постоянная и ее физический смысл. Условия измерения объема. Молярный объем идеального газа. Закон Авогадро. Плотность и относительная плотность газов. Уравнения Клапейрона, Бойля и Мариотта, Гей-Люссака, Шарля.

Смеси идеальных газов. Парциальное давление компонента. Закон парциальных давлений. Объемная доля компонента газовой смеси. Давление насыщенного пара. Математическое описание эвдиометра.

Стехиометрия. Химическая переменная и ее связь с другими экстенсивными величинами. Избыток и недостаток реагентов. Выход продукта реакции. Массовая доля элемента в соединении и установление формул веществ. Простейшая и истинная формулы. Установление состава смесей. Стехиометрия реакций с участием газообразных веществ. Закон простых объемных отношений.

Понятие эквивалента. Эквивалентное число реакции. Эквивалентное число вещества и его физический смысл. Закон эквивалентов. Эквивалентная масса и эквивалентный объем. Эквивалентная масса бинарного соединения. Эквивалентная (нормальная) концентрация. Стехиометрия окислительно-восстановительных реакций и электрохимических процессов. Законы Фарадея. Постоянная Фарадея.

Основы термодинамики. Предмет термодинамики и ее возможности. Энергия и ее виды. Механическая и внутренняя энергия. Теплота и работа – формы передачи энергии. Знаки элементарной теплоты и элементарной работы. Зависимость теплоты и работы от пути процесса. Условия передачи теплоты и совершения работы. Представление теплоты и работы через факторы интенсивности и емкости. Полезная работа и работа расширения. Химическое сродство. Энтропия. Энтропия и термодинамическая вероятность. Постулат Больцмана.

Первое начало термодинамики, его содержание и математическое выражение. Энтальпия. Тепловой эффект. Тепловой эффект при постоянном давлении и постоянном объеме. Теплоемкость. Теплоемкость при постоянном давлении и постоянном объеме. Зависимость энтальпии от температуры. Уравнение Кирхгофа. Удельная и молярная теплоемкости.

Второе начало термодинамики, его содержание. Фундаментальное уравнение термодинамики. Критерий самопроизвольного протекания процесса в изолированной и закрытой системах.

Функция Гиббса и ее дифференциал. Функция Гиббса как критерий самопроизвольного протекания реакции. Уравнение Гиббса и Гельмгольца и его виды. Физический смысл слагаемых в уравнении Гиббса и Гельмгольца.

Зависимость функции Гиббса от давления. Химический потенциал. Стандартный химический потенциал. Относительное парциальное давление. Стандартное состояние газа. Стандартные условия.

Химическая термодинамика. Применение термодинамики к химическим процессам. Изменение экстенсивного свойства в ходе реакции. Взаимосвязь изменений термодинамических функций в ходе реакции. Термохимические уравнения и их линейные преобразования.

Законы Лавуазье – Лапласа и Гесса. Расчет изменений термодинамических функций в ходе реакции их молярных значений этих функций и функций образования и сгорания. Энтальпии образования и энтальпии сгорания веществ. Следствия из закона Гесса. Применение значений энергетических эффектов фазовых превращений и средних энергий химической связи в термохимических расчетах. Экспериментальное определение тепловых эффектов калориметрическим методом. Условие теплового баланса.

Химическое сродство. Уравнение изотермы химической реакции. Термодинамическая константа химического равновесия. Уравнение изобары реакции. Зависимость константы равновесия от температуры. Выражение константы равновесия через парциальные давления и концентрации. Взаимосвязь констант химического равновесия. Предсказание направления процесса из уравнений изотермы и изобары реакции. Принцип динамического равновесия Ле Шателье. Расчет состава равновесной смеси из табличных значений термодинамических функций.

Термодинамика фазовых переходов. Зависимость давления пара от температуры. Энтропия фазового перехода. Зависимость энтропии вещества от температуры. Абсолютная энтропия вещества.

Растворы. Истинные и коллоидные растворы. Насыщенные и ненасыщенные растворы. Концентрированные и разбавленные растворы.

Растворение как физико-химический процесс. Растворимость веществ и ее температурная зависимость. Энтальпия растворения, энергия кристаллической решетки и энтальпия сольватации.

Коллигативные свойства растворов. Изотонический коэффициент, его связь со степенью диссоциации. Давление пара над раствором. Тоноскопический закон. Повышение точки кипения раствора. Эбулиоскопический закон. Понижение точки начала кристаллизации растворителя. Криоскопический закон. Осмос. Осмотическое давление. Применение коллигативных свойств для определения молярных масс веществ.

Химический потенциал растворенного вещества и растворителя. Несимметричная система стандартных состояний. Реальные газы и реальные растворы. Летучесть и активность. Объединенная система стандартных состояний.

Равновесие газ – жидкость. Закон Генри и его термодинамическое обоснование. Константа Генри. Коэффициент растворимости Оствальда. Коэффициент абсорбции Бунзена.

Равновесие жидкость – жидкость. Закон распределения Нернста и его термодинамическое обоснование. Коэффициент распределения. Исходный раствор, экстрагент, экстракт и рафинат. Коэффициент экстракции. Доля неэкстрагированного вещества. Однократная и многократная экстракция, их характеристические уравнения.

Равновесие твердое тело – жидкость. Диаграммы плавкости двухкомпонентных систем. Фигуративные точки и их значение. Диаграмма плавкости системы, образующей непрерывный ряд твердых растворов. Диаграммы плавкости эвтектического типа с полной взаимной нерастворимостью и ограниченной растворимостью компонентов в твердом состоянии. Диаграмма плавкости системы, компоненты которой образуют химическое соединение. Область гомогенности химического соединения. Применение правила фаз к анализу диаграмм плавкости. Расчет количеств равновесных фаз и частей системы. Кривые охлаждения как источник диаграмм плавкости.

Электролитическая диссоциация. Электролиты. Электролитическая диссоциация и ее термодинамическое описание. Константа и степень диссоциации. Сильные и слабые электролиты.

Основные идеи теорий кислот и оснований. Теория электролитической диссоциации Аррениуса, теория сольвосистем Франклина, протонная теория Бренстеда и Лоури, теория Усановича, теория жестких и мягких кислот и оснований Пирсона. Автопротолиз растворителя. Водородный показатель.

Кислотно-основное равновесие. Точный и приближенный расчет ионных равновесий. Ионные равновесия в растворах сильных кислот и оснований. Ионные равновесия в растворах слабых кислот и оснований. Закон разбавления Оствальда. Гидролиз. Способы усиления и подавления гидролиза. Ионные равновесия в растворах гидролизующихся солей. Константа и степень гидролиза. Буферные растворы. Ионные равновесия в буферных растворах.

Равновесие осаждения – растворения и его термодинамическое описание. Произведение растворимости. Условия выпадения и растворения осадка.

Равновесие комплексообразования. Комплексообразователь и лиганды. Координационное число. Общая и ступенчатые константы образования. Константа нестойкости.

Применение значений констант диссоциации, произведения растворимости и констант комплексообразования для предсказания возможности протекания ионных реакций.

Окислительно-восстановительные реакции. Окисление и восстановление. Окислитель и восстановитель. Важнейшие окислители и восстановители, продукты их химического превращения в различных средах. Расстановка коэффициентов в уравнениях реакций методами электронного баланса и полуреакций.

Электрохимия. Проводники первого и второго рода. Понятие электрода и электродной реакции. Классификация электродов. Электродный потенциал. Зависимость электродного потенциала от концентрации. Уравнение Нернста.

Электрохимическая ячейка. Гальванический элемент и его термодинамическое описание. ЭДС гальванического элемента. Определение термодинамических функций по электрохимическим данным. Электролиз. Напряжение разложения. Составление уравнений процессов электролиза. Практическое применение электролиза.

Химическая кинетика и катализ. Скорость химической реакции. Механизм реакции. Простые и сложные реакции.

Зависимость скорости реакции от концентрации реагентов. Закон действующих масс. Кинетическое уравнение. Константа скорости химической реакции. Порядок и молекулярность реакций. Кинетические кривые и их уравнения.

Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса. Температурный коэффициент скорости реакции. Энергия активации и ее физический смысл. Энергетическая диаграмма реакции. Предэкспоненциальный множитель. Частотный и пространственный факторы.

Катализ и катализаторы. Гомогенный и гетерогенный катализ. Ингибиторы. Промоторы. Примеры каталитических реакций.

Комплексные соединения. Основные понятия и определения. Комплексное соединение. Внешняя сфера. Внутренняя сфера. Комплексообразователь (центральный атом). Лиганды (адденды). Координационное число. Дентатность. Мостиковые лиганды. Кластеры.

Основные положения координационной теории А.Вернера. Главная и побочная валентности.

Классификация комплексных соединений. Классификация по заряду внутренней сферы. Нейтральные, катионные и анионные комплексы. Классификация по природе лиганда. Аквакомплексы, аммиакаты, гидроксикомплексы, ацидокомпексы, карбонилы, смешаннолигандные комплексы. Классификация по числу центральных атомов во внутренней сфере. Одноядерные и многоядерные комплексы. Особые группы комплексных соединений. Хелаты, двойные соли, изополисоединения, гетерополисоединения.

Изомерия комплексных соединений. Структурная изомерия. Междусферная изомерия (ионизационная, гидратная, молекулярная (сольватная) изомерия). Лигандная изомерия (изомерия лиганда, связевая (солевая) изомерия). Координационная изомерия (метамерия и полимерия). Пространственная изомерия (геометрическая и оптическая изомерия).

Номенклатура комплексных соединений. Тривиальная и систематическая номенклатура. Правила формирования названий катионных, нейтральных и анионных комплексов. Указание числа лигандов, природы лиганда и степени окисления центрального атома. Указание числа сложных лигандов. Указание на мостиковые лиганды и лиганды, координированные несколькими атомами. Составление систематических названий комплексных соединений.

Термодинамическая и кинетическая стабильность комплексов. Устойчивые и неустойчивые комплексы. Инертные и лабильные комплексы. Обсуждение термодинамической стабильности комплексов с позиций теории жестких и мягких кислот и оснований.

Природа химической связи в комплексных соединениях. Основные идеи метода валентных связей, теории кристаллического поля, метода молекулярных орбиталей и теории поля лигандов. Методологическое значение теории строения комплексных соединений.

Предсказание строения и свойств комплексных соединений с позиций метода валентных связей. Определение электронной конфигурации центрального атома. Внешнеорбитальные и внутриорбитальные комплексы. Высокоспиноовые и низкоспиновые комплексы. Роль природы лиганда в образовании внешнеорбитальных и внутриорбитальных комплексов. Предсказание кинетической устойчивости комплексов. Отнесение комплексного соединения к внешнеорбитальным и внутриорбитальным комплексам. Предсказание координационного числа, типа гибридизации и геометрической формы комплекса и его магнитных свойств.

Предсказание строения и свойств комплексных соединений с позиций теории кристаллического поля. Предсказание относительного расположения орбиталей центрального атома в поле лигандов октаэдрической, тетраэдрической и плоскоквадратной симметрии. Параметр расщепления. Спектрохимический ряд. Оценка величины расщепления d- подуровня центрального атома. Заполнение расщепленного уровня электронами в случае лигандов сильного и слабого поля. Предсказание окраски комплексного соединения из значения параметра расщепления. Предсказание поведения комплекса в магнитном поле. Энергия стабилизации кристаллическим полем (ЭСКП). Расчет ЭСКП для октаэдрических и тетраэдрических комплексов, образованных лигандами сильного и слабого поля. Предсказание кинетической устойчивости комплексов с позиций теории кристаллического поля.

Хелатные комплексы. Хелатный эффект. Правило циклов. Примеры хелатообразующих лигандов. Внутрикомплексные соединения.

π-Комплексы. Образование координационной связи в π-комплексах. Примеры π-комплексов. π-Дативное взаимодействие на примере ферроцена и бис-(бензол)хрома.

Химические реакции с участием комплексных соединений. Реакции перемещения лигандов между внешней и внутренней сферами. Диссоциация комплексных соединений по внешней и внутренней сферам. Ступенчатые и общие (полные) константы образования. Константа нестойкости. Расчет ионных равновесий в растворах комплексных соединений. Реакции замещения лиганда. Диссоциативный и ассоциативный механизмы замещения. Представление процессов диссоциации комплекса как процессов замещения лигандов молекулами воды. Стереохимия процессов замещения в квадратных и октаэдрических комплексах. Явление транс-влияния. Ряд транс-влияния. Предсказание строения продуктов замещения с позиций представлений о транс-влиянии. Перераспределение лигандов и образование смешанных комплексов. Внутримолекулярные превращения комплексного соединения. Химические превращения координированных лигандов. Протонирование и депротонирование лиганда. Гидроксоляция и ее последствия. Преодоление гидроксоляции в кислых и щелочных средах. Изомеризация лигандов. Реакции присоединения, внедрения и конденсации с органическим координированным лигандом. Металлокомплексный катализ. Окислительно-восстановительные превращения центрального атома. Влияние природы лиганда на значения окислительно-восстановительных потенциалов превращений центрального атома.

Значение комплексных соединений в природе, технологии, сельском хозяйстве, медицине.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-24