Определение осмолярности водных растворов (экспериментальная осмолярность). Осмотическое давление. Осмоляльность и осмоль Мосмоль л расшифровка

) и как осмоляльность (осмоль на кг растворителя).

Осмо́ль - единица осмотической концентрации, равная осмоляльности, получаемой при растворении в одном литре растворителя одного моль неэлектролита. Соответственно, раствор неэлектролита с концентрацией 1 моль/л имеет осмолярность 1 осмоль/литр.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Осмотическая концентрация" в других словарях:

    Важнейшие парные органы выделения позвоночных животных и человека, участвующие в водно солевом Гомеостазе, т. е. в поддержании постоянства концентрации осмотически активных веществ в жидкостях внутренней среды (см. Осморегуляция),… … Большая советская энциклопедия

    Осморецептор рецептор, воспринимающий изменения осмотической концентрации окружающей жидкости. У позвоночных животных осморецепторы, как правило, являются интерорецепторами, у насекомых они могут находиться на ротовых конечностях и… … Википедия

    ЭРИТРОЦИТЫ - (от греч. erythros красный и kytos клетка), красные кровяные тельца, своеобразно измененные клетки, составляющие основную массу форменных элементов крови и придающие ей ее обычную окраску. Количество Э. определяется обычно на 1 мм3 крови,. причем …

    ПОТЕНЦИАЛ - ПОТЕНЦИАЛ. Количество любого вида энергии может быть выражено произведением двух различных величин, из к рых одна характеризует «уровень энергии», определяет направле ние, в к ром должен совершаться ее переход; так напр. тяжелое тело… … Большая медицинская энциклопедия

    ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ - ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ, давление, производимое молекулами растворенного вещества на полупроницаемые стенки сосуда^ Теория О. д. Если чистая вода и какой либо раствор разделены перегородкой, задерживающей растворённые молекулы, ю> пропускающей… … Большая медицинская энциклопедия

    ОТЕК - (oedema), скопление водянистой жидкости (трансудата) в тканях (см. Водянка). Отеки бывают местные или общие, распространенные (см. Anasarca). Состав водяночной жидкости (см. Трансудат) подвержен в разных случаях О. значительным колебаниям,… … Большая медицинская энциклопедия

    ПРОНИЦАЕМОСТЬ - ПРОНИЦАЕМОСТЬ, способность перегородки или мембраны пропускать растворенные вещества. Если мембрана, пропуская одни вещества, задерживает другие, она называется полупроницаемой. Обычно полупроницаемые мембраны пропускают растворитель (напр. воду) … Большая медицинская энциклопедия

    I Желчегонные средства лекарственные средства, активизирующие внешнесекреторную функцию печени и увеличивающие выделение желчи в двенадцатиперстную кишку. Ж. с. условно разделяют на холеретические, т.е. усиливающие секрецию желчи гепатоцитами, и… … Медицинская энциклопедия

    ДИУРЕЗ - ДИУРЕЗ. Содержание: Физиология Д. Определение понятия и роль Д. в организме 374 Развитие учения о Д............. 375 Работа почки и потребление ею кислорода 380 Химический состав крови и Д........ 381 Экстраренальные регуляторы Д....... 383… … Большая медицинская энциклопедия

    РЕТИКУЛО - ЭНДОТЕЛИАЛЬНЫЙ АППАРАТ, ретикуло эндотелиальная система, ретикуло эндотелий. 1. Исторические сведения. Фактический материал, легший впоследствии в основу учения о Р. э. а. собирался многими авторами для разнообразных целей, начиная с 70 х годов… … Большая медицинская энциклопедия

ОПРЕДЕЛЕНИЕ ОСМОЛЯРНОСТИ ВОДНЫХ РАСТВОРОВ (ЭКСПЕРИМЕНТАЛЬНАЯ ОСМОЛЯРНОСТЬ)

Для практического определения осмолярности могут быть использованы три метода: криоскопический, мембранная и паровая осмометрия.

  • 1 осмоль на килограмм воды понижает точку замерзания на 1,86 °С и понижает давление пара на 0,3 мм рт. ст. при температуре 25 °С. Измерение этих изменений лежит в основе криоскопического метода и метода паровой осмометрии.
  • 1. Криоскопический метод

Метод основан на понижении точки замерзания растворов по сравнению с точкой замерзания чистого растворителя. Данный метод нашел самое широкое практическое применение как достаточно универсальный и точный.

1. Определение осмолярности с использованием термометра Бекмана. Определение температуры замерзания проводят на установке, изображенной на рис. 13.1. Установка состоит из сосуда А диаметром 30-35 мм и длиной около 200 мм, куда помещается испытуемый раствор (или растворитель); верхняя часть сосуда расширена и закрывается пробкой с двумя отверстиями для погружения термометра Б и мешалки В; сосуд А вставлен в более широкую емкость (Г) так, что не касается ее стенок или дна; термометр также не должен касаться стенок или дна сосуда А; уровень охлаждающей смеси в емкости Г должен быть не ниже уровня испытуемого раствора в сосуде А. При проведении эксперимента раствор (или растворитель) должен прикрывать основной ртутный резервуар термометра. Температура охлаждающей смеси должна быть на 3-5 °С ниже температуры замерзания растворителя (для бидистиллированной воды: от минус 3 до минус 5 °С); контроль минусовой температуры осуществляется минусовым термометром Д с ценой деления 0,5 °С. Состав охладительной смеси: лед + натрия хлорид кристаллический. Установку термометра Бекмана на криометрические исследования производят путем подбора количества ртути в основном резервуаре так, чтобы при замерзании чистого растворителя (бидистиллированной воды) мениск ртути в капилляре находился у верхней части шкалы измерения. При этом возможна регистрация ожидаемого понижения температуры замерзания водного раствора.

Рис. 13.1.

А - сосуд для испытуемого раствора; Б - термометр Бекмана; В - мешалка; Г - емкость с охлаждающей смесью; Д - термометр для измерения температуры охлаждающей смеси

Методика. Для определения температуры замерзания чистого растворителя пользуются следующим приемом: дают жидкости переохладиться (охлаждают без перемешивания), и когда термометр показывает температуру на 0,2-0,3 °С ниже ожидаемой точки замерзания, перемешиванием вызывают выпадение кристаллов растворителя; при этом жидкость нагревается до точки замерзания. Максимальную температуру (средний результат трех измерений, отличающихся не более чем на 0,01 °С), которую показывает термометр после начала выпадения кристаллов, регистрируют как температуру замерзания растворителя (Т±).

В высушенный сосуд А наливают достаточное количество испытуемого водного раствора; определение точки замерзания проводят, как описано выше для чистого растворителя; средний результат трех опытов регистрируют как температуру замерзания испытуемого раствора лекарственного вещества (Т2).

Осмолярность раствора рассчитывают по формуле:

Сосм.= х 1000 (мОсм/кг), (4)

где: Т2 - температура замерзания чистого растворителя, градусы Цельсия; Т - температура замерзания испытуемого раствора, градусы Цельсия (°С); К - криометрическая постоянная растворителя (для воды: 1,86).

2. Определение осмолярности растворов с использованием автоматического криоскопического осмометра. Данный вариант предусматривает применение автоматических осмометров, например, МТ-2, МТ-4 (производитель НПП «Буревестник», Санкт-Петербург). Испытуемый раствор (обычно 0,2 мл) помещают в стеклянный сосуд, погруженный в ванну с контролируемой температурой. Термопару и вибратор помещают под испытуемым раствором; температуру в ванной снижают до переохлаждения раствора. Включают вибратор и вызывают кристаллизацию воды в испытуемом растворе; выделившееся тепло поднимает температуру раствора до точки замерзания. По зафиксированной точке замерзания раствора рассчитывают осмолярность. Прибор калибруют с помощью стандартных растворов натрия или калия хлорида, которые перекрывают определяемый диапазон осмолярности (табл. 13.1).

Таблица 13.1

Стандартные справочные значения понижения температуры замерзания и эффективности осмотической концентрации водных растворов хлоридов натрия и калия

2. Метод мембранной осмометрии

Метод основан на использовании свойств полупроницаемых мембран избирательно пропускать молекулы веществ.

Движущей силой процесса является процесс осмоса. Растворитель проникает в испытуемый раствор до установления равновесия; возникающее при этом дополнительное гидростатическое давление приближенно равно осмотическому давлению и может быть рассчитано по формуле:

осмотическое давление;

гидростатическое давление;

плотность жидкости;

ускорение свободного падения;

высота столба жидкости.

Осмолярность может быть рассчитана по формуле:

где: R - универсальная газовая постоянная (8,314 Дж/мольК); Т- абсолютная температура, Кельвин.

Примечание. Данный метод применим только для растворов высокомолекулярных веществ (104-106 г/моль). При анализе растворов, содержащих электролиты и другие низкомолекулярные вещества, будет определяться только осмотическое давление, создаваемое высокомолекулярными компонентами раствора.

Методика. Испытуемый раствор с помощью шприца (рис. 13.2) с длинной иглой вносят в специальное отверстие измерительной ячейки. Калибровку проводят с помощью устройства, находящегося в приборе. Проводят не менее трех измерений. Для получения воспроизводимых результатов необходима проба объемом не менее 1,2 мл.

Рис. 13.2.

  • - испытуемый раствор;
  • - магистраль подвода/удаления испытуемого раствора (переключатель потоков установлен в положение «измерение»);
  • - мембрана;
  • - растворитель, подводимый по отдельной магистрали;
  • - термостатированные блоки;
  • - корпус ячейки;
  • - датчик давления.
  • 3. Метод паровой осмометрии

Метод основан на измерении разности температур термисторами (чувствительными к температуре сопротивлениями) вследствие различия между давлением пара над раствором вещества и чистым растворителем. При нанесении на оба термистора капли растворителя разность температур равна нулю. Если одну из капель заменяют каплей испытуемого раствора, то на поверхности этого тер-мистора происходит конденсация паров растворителя, так как давление пара растворителя над этой поверхностью меньше. При этом температура капли раствора повышается за счет экзотермического процесса конденсации до тех пор, пока давление пара над каплей раствора и давление чистого растворителя в ячейке не сравняются. Наблюдаемая разница температур измеряется. Разность температур практически пропорциональна моляльной концентрации раствора.

Методика. В предварительно термостатированную при температуре не ниже 25 °С и насыщенную парами растворителя (воды) ячейку на оба термистора наносят по капле воды (рис. 13.3).

Рис. 13.3.

  • - измерительный зонд;
  • - шприц;
  • - окна для контроля за состоянием ячейки

и термисторов (присутствуют не во всех моделях паровых осмометров);

  • - термисторы;
  • - измерительная ячейка;
  • - блоки для термостатирования.

Полученные показания прибора фиксируют. Далее проводят калибровку прибора по эталонным растворам нескольких концентраций. Перед каждым измерением один из термисторов промывают чистым растворителем и наносят каплю раствора. Объемы наносимых капель раствора и чистого растворителя должны быть одинаковы; объемы капель калибровочных растворов также должны быть равны.

По результатам калибровки строится график зависимости разницы температур от осмоляльности. Нулевая точка - показания прибора по чистому растворителю. Далее проводят анализ испытуемых растворов. Осмоляльность находят по калибровочному графику.

Осмолярность крови – это показатель соотношения всех активных микроэлементов крови , которые определяются на один литр крови. С помощью данного показателя можно судить о здоровье человека, а также корректности обменных процессов в организме. Существует несколько методов исчисления этого показателя, однако без специальной подготовки пациента получить точных результатов не удастся. О чем говорит осмолярность крови, как определяется и почему возникают отклонения от норм, рассмотрим далее.

Концентрация отдельных компонентов плазмы крови контролируется антидиуретическим гормоном . Вода, которая является естественным растворителем, играет ключевую роль в концентрации всех микрочастиц плазмы. Вместе с потом, мочой и выдыхаемым воздухом содержание жидкости постоянно уменьшается, что диктует необходимость питья.

Большие потери жидкости при отсутствии необходимого употребления воды провоцируют уменьшение объема и увеличение массы плазмы, в то время, как переизбыток жидкости делает плазму более жидкой, снижая осмолярность.

Учитывая такую особенность регуляции концентрации плазматической жидкости, можно установить массу отклонений и заболеваний, которые протекают в скрытой форме. Сюда относят:

  • первичная полиурия при отсутствии патологий почек;
  • несахарный диабет;
  • контроль баланса воды и предупреждения критических состояний, вызванных гипергидратацией и обезвоживанием;
  • исчисление уровня выработки антидиуретического гормона, что свидетельствует о работоспособности гипоталамуса;
  • интоксикация вредными веществами;
  • обменные процессы натрия, калия, мочевины и глюкозы в крови.

Особенности осмолярности

В человеческом организме все взаимосвязано, поэтому повышенная осмолярность крови влечет за собой пониженную осмолярность мочи. На этом ключевом определении базируются все результаты исследований, по которым можно судить о патологиях почек, обменных процессах и распределению всех микрочастиц биологически активной жидкости.

Водно-солевой баланс, который контролирует работу всего организма, поддерживается с помощью непрерывного выделения и поглощения воды. Если жидкости недостаточно, то в организме замедляются все обменные процессы, а плазма крови перенасыщается микроэлементами.

Переизбыток воды не менее опасен, так как способствует усиленное выведение ее из организма, забирая вместе с собой важные соли и минералы.

Подготовка к анализу и что может повлиять на результат?

Для получения максимально точного результата, перед забором крови необходимо подготовиться :

Задайте свой вопрос врачу клинической лабораторной диагностики

Анна Поняева. Закончила нижегородскую медицинскую академию (2007-2014) и Ординатуру по клинико-лабораторной диагностике (2014-2016).

Осмосом называют спонтанное движение растворителя из рас­твора с низкой концентрацией частиц в раствор с высокой концентрацией их через мембрану, проницаемую только для рас­творителя. Осмотическое давление - избыточная величина гид­ростатического давления, которое должно быть приложено к раствору, чтобы уравновесить диффузию растворителя, через., полупроницаемую мембрану 1 .

1 Энциклопедический словарь медицинских терминов.- М.: Советская эн­циклопедия, 1983, с. 270.

Осмотическое давление плазмы крови составляет в среднем 6,62 атм (пределы колебаний 6,47-6,72 атм). Осмотическое давление зависит только от концентрации частиц, растворенных в растворе, и не зависит от их массы, размера и валентности. Таким образом, осмотическое давление создают в растворе все ц частицы - как ионы (Na+, К + , С1 - , НСО 3 -), так и нейтральные молекулы (глюкоза, мочевина).

В биологии и медицине осмотическое состояние сред при­нято выражать двумя понятиями: осмолярностью, представляю­щей собой суммарную концентрацию растворенных частиц в 1 л раствора (в миллиосмолях на литр), и осмоляльностью, являющейся концентрацией частиц в 1 кг растворителя, т. е. воды (мосмоль/кг).

Осмоляльность раствора численно равна суммарной кон­центрации, выраженной в количестве веществ (в миллимолях, но не в миллиэквивалентах), содержащихся в 1 кг раствори­теля (вода), плюс количество полностью диссоциированных электролитов, недиссоциированных веществ (глюкоза, мочеви­на) или слабодиссоциированных субстанций, таких как белок. Поскольку с помощью специального прибора осмометра опре­деляется осмоляльность (но не осмолярность), мы будем поль­зоваться этим термином.

Все одновалентные ионы (Na + , К + , Cl -) образуют в раство­ре число осмолей, равное числу молей и эквивалентов (элек­трических зарядов). Двухвалентные ионы образуют в растворе каждый по одному осмолю (и молю), но по два эквивалента.

Осмоляльность нормальной плазмы - величина достаточно постоянная и равна 285-295 мосмоль/кг. Из общей осмоляль­ности плазмы лишь 2 мосмол/кг обусловлены наличием рас­творенных в ней белков. Таким образом, главными компонен­тами, обеспечивающими осмоляльность плазмы, являются Na+ и С1- (около 140 и 100 мосмоль/кг соответственно). Постоянство осмотического давления внутриклеточной и внеклеточной 1 жидкости предполагает равенство молярных концентраций со­держащихся в них электролитов, несмотря на различия в ион­ном составе внутри клетки и во внеклеточном пространстве. С 1976 г. в соответствии с Международной системой (СИ) концентрацию веществ в растворе, в том числе осмотическую, принято выражать в миллимолях на 1 л (ммоль/л). Понятие «осмоляльность», или «осмотическая концентрация», эквивалент­но понятию «моляльность», или «моляльная концентрация». По существу понятия «миллиосмоль» и «миллимоль» для биологи­ческих растворов близки, хотя и не идентичны.


Часть осмотического давления, создаваемую в биологических жидкостях белками, называют коллоидно-осмотическим (онкотическим) давлением (КОД). Оно составляет примерно 0,7% осмотического давления (или осмотической концентрации), т. е. около 30 мм рт. ст. (2 мосмоль/кг), но имеет исключительно большое функциональное значение в связи с высокой гидро-фильностью белков и неспособностью их свободно проходить через полупроницаемые биологические мембраны.

КОД плазмы крови и других сред определяют с помощью специальных приборов онкометров. Нормальные величины осмо­ляльности биологических сред и жидкостей человеческого орга­низма приведены в табл. 1.2.

Таблица 1.2. Нормальные значения осмоляльности биологических сред

Осмотические силы играют основную роль в распределении жидкости в организме. Осмолярность плазмы зависит от взаимодействия множества компонентов, находящихся в растворе. Физиологическая концентрация осмотически активных веществ измеряется в милиосмолях (мосм).

Осмолярность плазмы не зависит от химической активности или степени ионизации соединений. Для незаряженных соединений, таких как глюкоза, 1 моль глюкозы, добавленный к 1 л дистиллированной воды, будет увеличивать ее осмолярность с 0 до 1 осм/л. Для веществ, способных к ионизации, которые диссоциируют с образованием двух ионов (такие как натрия хлорид), добавление 1 моль вещества к воде будет увеличивать ее осмолярность 2 осм/л. Основные вещества, обусловливающие осмолярность плазмы, — натрия хлорид, мочевина и глюкоза. Нормальная осмолярность плазмы составляет 285 мосм/л. Часто термины «осмолярность» и «осмоляльность» путают. Оба эти термина обозначают концентрацию осмотически активных веществ, но они выражаются в разных единицах. Осмолярность плазмы отражает содержание осмотически активного вещества в 1 л раствора (осм/л). Осмоляльность отражает содержание растворенного вещества на 1 кг растворителя (осм/кг). Лабораторные осмометры измеряют осмоляльность, но не осмолярность плазмы. Осмоляльность и осмолярность биологических жидкостей у человека в норме равны. Основные вещества, обусловливающие осмотическую активность плазмы, — натрия хлорид, глюкоза и мочевина.

Осмолярность может быть выражена простым уравнением:

мосм/л = 2 = Глюкоза ¸ 18 + Азот мочевины крови ¸ 2,8.

По взаимному соглашению лаборатории приводят значение измерений глюкозы и азота мочевины крови в миллиграммах на децилитр. Коэффициенты коррекции для глюкозы и мочевины в данном уравнении просто переводят миллиграммы на децилитр в миллимоль на литр. Поскольку вода свободно проникает через полупроницаемые мембраны, осмолярность внутриклеточной и внеклеточной жидкости одинакова.

Осмотическое давление

Осмотическое давление, или эффективная осмолярность, определяет движение воды сквозь клеточную мембрану. Осмотическое давление рассчитывают с учетом только концентрации не проходящих сквозь мембрану растворенных веществ. Мочевина свободно проникает сквозь клеточные мембраны, практически так же быстро, как вода. Это означает, что мочевина не вносит вклад в осмотическое давление. Нормальная эффективная осмотическая активность жидкостей организма составляет 280 мосм/кг. Снижение эффективной осмолярности плазмы подразумевает относительный избыток воды, тогда как возрастание эффективной осмолярной активности отражает относительную дегидратацию.

Регуляция осмолярности плазмы

Наибольшую роль в регуляции осмолярности внутрисосудистого объема играют почки. Осморецепторы в задней доле гипофиза улавливают малейшие изменения осмолярности сыворотки, а затем регулируют высвобождение антидиуретического гормона (АДН). Барорецепторы в почках, сонных артериях и в некоторых других зонах определяют малейшие изменения давления. Обычно барорецепторы играют лишь небольшую роль в поддержании объема жидкости.

Еще одним ключевым регулятором поддержания объемного равновесия служит ренин-ангиотензин-альдостероновая система. Ренин — фермент, секретируемый юкстагломерулярными клетками афферентных артериол в ответ на снижение артериального давления, снижение объема циркулирующей жидкости, уменьшение количества натрия, доставляемого в плотное пятно (гипонатриемия), и увеличение b-адренергической активности. Ренин превращает ангиотензиноген в ангиотензин-1, который в свою очередь превращается в ангиотензин-2 под действием ангиотензин превращающего фермента (АПФ) при прохождении через легкие. Ангиотензин вызывает высвобождение альдостерона из коркового слоя надпочечников. Альдостерон в свою очередь воздействует на дистальные канальцы и собирательные трубочки, усиливая реабсорбцию натрия и экскрецию калия. Ангиотензин также повышает симпатическую активность, сердечный выброс и периферическое сопротивление.