Потенциал покоя мембраны. Мембранный потенциал покоя. От химического - к электрическому

«Мембранный потенциал»

Выполнила Четверикова Р

Студентка 1 курса

биолого-почвенного факультета

Введение

Немного истории

Электричество в клетке

Мембранный потенциал

Потенциал действия

Порог раздражения

Характерные свойства потенциала действия

Заключение

Введение

Современная наука развивается стремительно, и чем больше мы движемся по пути прогресса, тем больше убеждаемся в том, что для решения каких-либо научных задач необходимо объединять усилия и достижения сразу нескольких отраслей науки.

Ранее господствовала концепция витализма, согласно которым биологические явления принципиально непостижимы на основе физики и химии, так как существует некая «жизненная сила», или энтелехия, не подлежащие физическому истолкованию. В 20 веке великий физик Бор рассматривал проблему взаимоотношения биологии и физики на основе концепции дополнительности, частным случаем которой является принцип неопределенности квантовой механики.

Бор считал, что ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии. Развитие молекулярной биологии привело к атомистическому истолкованию основных явлений жизни - таких как наследственность и изменчивость. В последние десятилетия успешно развивается и физическая теория целостных биологических систем, основанная на идеях синергетики. Эрвин Шредингер пришел к оптимистическому, хотя и не вполне успокоительному выводу: «Хотя современные физика и химия не могут объяснить процессы, происходящие в живом организме, нет никаких оснований сомневаться в возможности их научного объяснения». Сегодня имеются все основания утверждать, что современная физика не встречается с границами своей применимости к рассмотрению биологических явлений. Трудно думать, что такие границы обнаружатся в будущем.

Напротив, развитие биофизики как части современной физики свидетельствует о ее неограниченных возможностях.

На этом примере можно наглядно проследить, как достижения физики помогли ученым понять такое сложное явление.

Немного истории

Электричество у живых организмов человек обнаружил еще в глубокой древности. Вернее сказать, почувствовал, не подозревая при этом о его существовании. Этого понятия тогда не существовало. Например, древние греки остерегались встречаться в воде с рыбой, которая, как писал великий ученый Аристотель, "заставляет цепенеть животных". Рыба, наводившая страх на людей, была электрическим скатом и носила имя "торпедо". И только двести лет назад ученые поняли наконец природу этого явления.

Ученые давно хотели понять, какова же природа сигналов, перетекающих по нервам. Среди множества теорий возникавших в середине XVIII века, под влиянием всеобщей увлеченности электричеством, появилась теория о том, что по нервам передается ""электрический флюид"".

Идея летала в воздухе. Луиджи Гальвани, изучая грозовые разряды, использовал нервно-мышечный препарат лягушки. Подвесив его на медном крючке на ограждении балкона, Гальвани заметил, что когда лапки лягушки касались железного ограждения, происходило мышечное сокращение. На основании этого Гальвани делает вывод, что в биологическом объекте существует электрический сигнал. Однако, современник Гальвани - Алессандро Вольта исключил биологический объект и показал, что электрический ток может быть получен при контакте набора металлов, разделенных электролитом(вольтов столб). Так был открыт химический источник тока(названный, однако, позже, в честь его научного противника гальваническим элементом).

Этот спор был началом электробиологии. И вот через полвека немецкий физиолог Э. Дюбуа-Реймон подтвердил открытие Гальвани, продемонстрировав наличие электрических полей в нервах с помощью усовершенствованной электроизмерительной аппаратуры. Ответ на вопрос, как появляется электричество в клетке, был найден еще через полвека.

Электричество в клетке

В 1890 году Вильгельм Оствальд, занимавшийся полупроницаемыми искусственными пленками предположил, что полупроницаемость может быть причиной не только осмоса, но и электрических явлений. Осмос возникает тогда, когда мембрана избирательно проницаема, т.е. пропускает одни частицы и не пропускает другие. Чаще всего проницаемось мембраны зависит от размера частицы. Такими частицами могут быть и ионы. Тогда мембрана будет пропускать ионы только одного знака, например, положительного. Действительно, если посмотреть на формулу Нернста для диффузионного потенциала Vд возникающего на границе двух растворов с концентрациями электролита С1 и С2:

где u - скорость более быстрого иона, v - скорость более медленного иона, R - универсальная газовая постоянная, F - число Фарадея, T - температура, и предположить, что мембрана для анионов не проницаема, то есть v = 0, то можно видеть, что должны появляться большие значения для Vд

(2)

Потенциал на мембране, разделяющей два раствора

Таким образом, Оствальд объединил формулу Нернста и знание о полупроницаемых мембранах. Он предположил, что свойствами такой мембраны объясняются потенциалы мышц и нервов и действие электрических органов рыб.

Мембранный потенциал (потенциал покоя)

Под мембранным потенциалом понимают разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны


С помощью электрофизиологических исследований было доказано, что в состоянии физиологического покоя, на наружной поверхности мембраны имеется положительный заряд, а на внутренней поверхности - отрицательный.

Юлиус Бернштейн создал теорию, согласно которой разноимённость зарядов определяется различной концентрацией ионов натрия, калия, хлора внутри и за пределами клетки. Внутри клетки в 30-50 раз выше концентрация ионов калия, в 8-10 раз ниже концентрация ионов натрия и в 50 раз меньше ионов хлора. Согласно законам физики, если бы живая система не регулировалась, то концентрация этих ионов сравнялась бы с обеих сторон мембраны и мембранный потенциал бы исчезал. Но этого не происходит, т.к. мембрана клетки - это активная транспортная система. В мембране имеются специальные каналы для того или иного иона, каждый канал специфичен и транспорт ионов внутри и за пределы клетки является в значительной мере активным. В состоянии относительного физиологического покоя натриевые каналы закрыты, а калиевые и хлорные - открыты. Это приводит к тому, что калий выходит из клетки, а хлор заходит в клетку, в результате этого увеличивается количество положительных зарядов на поверхности клетки и уменьшается количество зарядов внутри клетки. Таким образом, на поверхности клетки сохраняется положительный заряд, а внутри - отрицательный. Такое распределение электронных зарядов обеспечивает сохранение мембранного потенциала.

молекулярный биология мембрана потенциал

Потенциал действия



Это приводит к тому, что на внутренней поверхности мембраны накапливаются положительные заряды, а на наружной - отрицательные заряды. Такое перераспределение зарядов называется деполяризацией.

В этом состоянии клеточная мембрана существует недолго (0,1-5 м.с.). Для того, чтобы клетка опять стала способной к возбуждению, её мембрана должна реполяризироваться, т.е. вернуться в состояние потенциала покоя. Для возвращения клетки к мембранному потенциалу, необходимо «откачать» катионы натрия и калия против градиента концентрации. Такую работу выполняет натриево-каливый насос, который восстанавливает исходное состояние концентрации катионов натрия и калия, т.е. восстанавливается мембранный потенциал.

Порог раздражения

Для возникновения деполяризации и последующего возбуждения раздражитель должен иметь определённую величину. Минимальная сила действующего раздражителя, способного вызвать возбуждение, называется порогом раздражения. Величина выше пороговой называется сверхпороговой, а ниже пороговой - подпороговой. Возбудимые образования подчиняются закону «всё или ничего», это значит, что при нанесении раздражения по силе, равной пороговой, возникает максимальное возбуждение. Раздражение ниже подпороговой силы не вызывает раздражение.

Для характеристики силы действующего раздражителя от времени его действия, выводят кривую, которая отражает, сколько времени должен действовать пороговый или сверхпороговый раздражитель, чтобы вызвать возбуждение. Действие раздражителя пороговой силы вызовет возбуждение только в том случае, если данный раздражитель будет действовать определенное время. Минимальная сила тока или возбуждения, которые должны действовать на возбудимые образования, чтобы вызвать раздражение называется реобазой. Минимальное время, в течении которого должен действовать раздражитель силой одной реобазы, чтобы вызвать возбуждение называется минимальным полезным временем.

Величина порога раздражения зависит не только от длительности действующего стимула, но и от крутизны нарастания. При уменьшении крутизны нарастания раздражителя ниже определённой величины, возбуждения не возникает, до какой бы силы мы не довели раздражитель. Это происходит потому, что в месте нанесения раздражителя постоянно повышается порог, и до какой бы величины не довели раздражитель, возбуждения не возникает. Такое явление-приспособление возбудимого образования к медленно нарастающей силе раздражителя называется аккомодацией.

Разные возбудимые образования имеют разную скорость аккомодации, поэтому чем выше скорость аккомодации, тем крутизна нарастания раздражителя выше.

Этот же закон работает не только для электростимуляторов, но и для других (химических, механических раздражителей/стимуляторов).

Характерные свойства потенциала действия

Полярный закон раздражения.

Это закон впервые был открыт П.Ф. Флюгером. Он установил, что постоянный ток обладает полярным действием на возбудимую ткань. Это выражается в том, что в момент замыкания цепи, возбуждение возникает только под катодом, а в момент размыкания - под анодом. Причем под анодом, при размыкании цепи, возбуждение значительно выше, чем при замыкании под катодом. Это обусловлено тем, что положительно заряженный электрод (анод) вызывает гиперполяризацию мембраны, когда поверхности касаются катода(отрицательно заряженного), он вызывает деполяризацию.

Закон «всё, или ничего»

Согласно этому закону, раздражитель подпороговой силы не вызывает возбуждения (ничего); при пороговом раздражении, возбуждение принимает максимальную величину (всё). Дальнейшёё увеличение силы раздражителя не усиливает возбуждения.

Долгое время полагали, что этот закон является общим принципом возбудимой ткани. При этом считали, что «ничего» - это полное отсутствие возбуждения, а «всё», - это полное проявление возбудимого образования, т.е. его способность к возбуждению.

Однако, с помощью микроэлектронных исследований было доказано, что даже при действии подпорогового раздражителя в возбудимом образовании происходит перераспределения ионов между наружной и внутренней поверхностями мембраны. Если с помощью фармакологического препарата повысить проницаемость мембраны для ионов натрия или снизить проницаемость для ионов калия, то амплитуда потенциалов действия повышается. Таким образом, можно заключить, что этот закон должен рассматриваться лишь, как правило, характеризующее особенности возбудимого образования.

Проведение возбуждения. Возбудимость.

В демиелинизированных и миелинезированных волокнах возбуждение передается по-разному, это обусловлено анатомическими особенностями данных волокон. Миелинизированные нервные волокна имеют перехваты Ранвье. Передача сигналов через такие волокна осуществляется с помощью перехватов Ранвье. Сигнал проскакивает через миелинизированные участки, и тем самым, проведение возбуждения по ним происходит быстрее, чем в немиелинизированных участках, возврат импульса обратно невозможен, поскольку в предыдущем перехвате повышается порог раздражений.

Возбудимость - это способность такни на раздражение или возбуждение и, следовательно, возникновением потенциала действия. Чем порог раздражения выше, тем возбуждение выше, и наоборот.

Величина порога раздражения находится в обратной зависимости от длительности (t) действия стимула и крутизны нарастания его силы


Таким образом, мы видим, что без помощи физики не удалось бы открыть тайну электричества в живых организмах, передачу нервных импульсов, мембранный потенциал - одни из важнейших аспектов современной биологии.

Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивное движение и активный избирательный транспорт положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны имеется разность электрических зарядов (потенциалов) – мембранный потенциал. Существует три отличающихся друг от друга проявления мембранного потенциала – мембранный потенциал покоя, местный потенциал , или локальный ответ , и потенциал действия .

Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя. Для наружной поверхности мембраны клетки потенциал покоя всегда положителен, а для внутренней поверхности клеточной мембраны всегда отрицателен. Принято измерять потенциал покоя на внутренней поверхности мембраны, т.к. ионный состав цитоплазмы клетки более стабилен, чем межклеточной жидкости. Величина потенциала покоя относительно постоянна для каждого типа клеток. Для поперечнополосатых мышечных клеток она составляет от –50 до –90 мВ, а для нервных клеток от –50 до –80 мВ.

Причинами возникновения потенциала покоя являются разная концентрация катионов и анионов снаружи и внутри клетки, а также избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 30–50 раз больше катионов калия, в 5–15 раз меньше катионов натрия и в 10–50 раз меньше анионов хлора, чем внеклеточная жидкость.

В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых каналов открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они проходят через мембрану. Поскольку внутри клетки ионов калия гораздо больше, то осмотическая сила выталкивает их из клетки. Вышедшие катионы калия увеличивают положительный заряд на наружной поверхности клеточной мембраны. В результате выхода ионов калия из клетки должна была бы вскоре уравняться их концентрация внутри и вне клетки. Однако этому препятствует электрическая сила отталкивания положительных ионов калия от положительно заряженной наружной поверхности мембраны.

Чем больше становится величина положительного заряда на наружной поверхности мембраны, тем труднее ионам калия проходить из цитоплазмы через мембрану. Ионы калия будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления К + . При таком уровне потенциала на мембране вход и выход ионов калия из клетки находятся в равновесии, поэтому электрический заряд на мембране в этот момент называется калиевым равновесным потенциалом . Для нейронов он равен от –80 до –90 мВ.


Поскольку в покоящейся клетке почти все натриевые каналы мембраны закрыты, то ионы Nа + поступают в клетку по концентрационному градиенту в незначительном количестве. Они лишь в очень малой степени возмещают потерю положительного заряда внутренней средой клетки, вызванную выходом ионов калия, но не могут эту потерю существенно компенсировать. Поэтому проникновение в клетку (утечка) ионов натрия приводит лишь к незначительному снижению мембранного потенциала, вследствие чего мембранный потенциал покоя имеет несколько меньшую величину по сравнению с калиевым равновесным потенциалом.

Таким образом, выходящие из клетки катионы калия совместно с избытком катионов натрия во внеклеточной жидкости создают положительный потенциал на наружной поверхности мембраны покоящейся клетки.

В состоянии покоя плазматическая мембрана клетки хорошо проницаема для анионов хлора. Анионы хлора, которых больше во внеклеточной жидкости, диффундируют внутрь клетки и несут с собой отрицательный заряд. Полного уравнивания концентраций ионов хлора снаружи и внутри клетки не происходит, т.к. этому препятствует сила электрического взаимного отталкивания одноименных зарядов. Создается хлорный равновесный потенциал, при котором вход ионов хлора в клетку и их выход из нее находятся в равновесии.

Мембрана клетки практически непроницаема для крупных анионов органических кислот. Поэтому они остаются в цитоплазме и совместно с поступающими анионами хлора обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся нервной клетки.

Важнейшее значение мембранного потенциала покоя состоит в том, что он создает электрическое поле, которое воздействует на макромолекулы мембраны и придает их заряженным группам определенное положение в пространстве. Особенно важно то, что это электрическое поле обусловливает закрытое состояние активационных ворот натриевых каналов и открытое состояние их инактивационных ворот (рис. 61, А). Этим обеспечивается состояние покоя клетки и готовности ее к возбуждению. Даже относительно небольшое уменьшение мембранного потенциала покоя открывает активационные «ворота» натриевых каналов, что выводит клетку из состояния покоя и дает начало возбуждению.

Все живые клетки обладают способностью под влиянием раздражителей переходить из состояния физиологического покоя в состояние активности или возбуждения.

Возбуждение - это комплекс активных электрических, химических и функциональных изменений в возбудимых тканях (нервной, мышечной или железистой), которыми ткань отвечает на внешнее воздействие. Важную роль при возбуждении играют электрические процессы, обеспечивающие проведение возбуждения по нервным волокнам и приводящие ткани в активное (рабочее) состояние.

Мембранный потенциал

Живые клетки обладают важным свойством: внутренняя поверхность клетки всегда заряжена отрицательно по отношению к внешней ее стороне. Между внешней поверхностью клетки, заряженной электроположительно по отношению к протоплазме, и внутренней стороной клеточной мембраны существует разность потенциалов, которая колеблется в пределах 60-70 мВ. По данным П. Г. Ко- стюка (2001), у нервной клетки эта разность колеблется в пределах от 30 до 70 мВ. Разность потенциалов между внешней и внутренней сторонами мембраны клетки называют мембранным потенциалом, или потенциалом покоя (рис. 2.1).

Мембранный потенциал покоя присутствует на мембране до тех пор, пока клетка жива, и исчезает с гибелью клетки. Л. Гальвани еще в 1794 г. показал, что если повредить нерв или мышцу, сделав поперечное сечение и приложив к поврежденной части и к месту повреждения электроды, соединенные с гальванометром, то гальванометр покажет ток, который течет всегда от неповрежденной части ткани к месту разреза. Это течение он назвал током покоя. По своей физиологической сути ток покоя и мембранный потенциал покоя - одно и то же. Измеренная в данном опыте разность потенциалов составляет 30-50 мВ, поскольку при повреждении ткани часть тока шунтируется в межклеточном пространстве и окружающей исследуемую структуру жидкости. Разность потенциалов можно рассчитать по формуле Нернста:

где R - газовая постоянная, Т - абсолютная температура, F - число Фарадея, [К] вн. и [К] нар. - концентрация калия внутри и снаружи клетки.

Рис. 2.1.

Причина возникновения потенциала покоя общая для всех клеток. Между протоплазмой клетки и внеклеточной средой существует неравномерное распределение ионов (ионная асимметрия). Состав крови человека по солевому балансу напоминает состав океанской воды. Внеклеточная среда в центральной нервной системе также содержит много хлорида натрия. Ионный состав цитоплазмы клеток беднее. Внутри клеток в 8-10 раз меньше ионов Na + и в 50 раз меньше ионовС!". Основным катионом цитоплазмы является К + . Его концентрация внутри клетки в 30 раз выше, чем во внеклеточной среде, и приблизительно равняется внеклеточной концентрации Na Основными противоионами для К + в цитоплазме являются органические анионы, в частности анионы аспарагиновой, гистаминовой и других аминокислот. Такая асимметрия - это нарушение термодинамического равновесия. Для того чтобы восстановить его, ионы калия должны постепенно покидать клетку, а ионы натрия - стремиться в нее. Однако этого не происходит.

Первым препятствием для выравнивания разности концентраций ионов является плазматическая мембрана клетки. Она состоит из двойного слоя молекул фосфолипидов, покрытых изнутри слоем белковых молекул, а снаружи - слоем углеводов (мукополисахари- дов). Некоторая часть клеточных белков встроена непосредственно в двойной липидный слой. Это внутренние белки.

Мембранные белки всех клеток делят на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы служат для перемещения ионов и молекул против градиентов концентрации, используя для этого метаболическую энергию. Белковые каналы, или поры, обеспечивают избирательную проницаемость (диффузию) через мембрану соответствующих им по размеру ионов и молекул. Рецепторные белки, обладающие высокой специфичностью, распознают и связывают, прикрепляя к мембране, многие типы молекул, необходимых для жизнедеятельности клетки в каждый определенный момент времени. Ферменты ускоряют течение химических реакций у поверхности мембраны. Структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры.

Все эти белки специфичны, но не строго. В определенных условиях тот или иной белок может быть одновременно и насосом, и ферментом, и рецептором. Через каналы мембраны молекулы воды, а также соответствующие размерам пор ионы входят в клетку и выходят из нее. Проницаемость мембраны для различных катионов не одинакова и изменяется при разных функциональных состояниях ткани. В покое мембрана в 25 раз более проницаема для ионов калия, чем для ионов натрия, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую. В состоянии покоя равные концентрации калия в цитоплазме и натрия во внеклеточной среде должны обеспечить и равное количество положительных зарядов по обе стороны мембраны. Но поскольку проницаемость для ионов калия выше в 25 раз, то калий, выходя из клетки, делает ее поверхность все более положительно заряженной по отношению к внутренней стороне мембраны, около которой все более накапливаются слишком крупные для пор мембраны отрицательно заряженные молекулы аспарагиновой, гистаминовой и других аминокислот, «отпустивших» калий за пределы клетки, но «не дающих» ему уйти далеко благодаря своему отрицательному заряду. С внутренней стороны мембраны копятся отрицательные заряды, а с внешней - положительные. Возникает разность потенциалов. Диффузный ток ионов натрия в протоплазму из внеклеточной жидкости удерживает эту разность на уровне 60-70 мВ, не давая ей возрастать. Диффузный ток ионов натрия в покое в 25 раз слабее, чем встречный ток ионов калия. Ионы натрия, проникая внутрь клетки, снижают величину потенциала покоя, позволяя ей удерживаться на определенном уровне. Таким образом, величина потенциала покоя мышечных и нервных клеток, а также нервных волокон определяется соотношением числа положительно заряженных ионов калия, диффундирующих в единицу времени из клетки наружу, и положительно заряженных ионов натрия, диффундирующих через мембрану в противоположном направлении. Чем это соотношение выше, тем больше величина потенциала покоя, и наоборот.

Вторым препятствием, удерживающим разность потенциалов на определенном уровне, является натрий-калиевый насос (рис. 2.2). Он получил название натрий-калиевого или ионного, поскольку осуществляет активное выведение (выкачивание) из протоплазмы проникающих в нее ионов натрия и введение (нагнетание) в нее ионов калия. Источником энергии для работы ионного насоса является расщепление АТФ (аденозинтрифосфата), которое происходит под воздействием фермента аденозинтрифосфатазы, локализованного в мембране клетки и активируемого теми же ионами, т. е. калием и натрием (нагрий-калий-зависимая АТФ-аза).

Рис. 2.2.

Это крупный белок, превышающий по размеру толщину клеточной мембраны. Молекула этого белка, пронизывая мембрану насквозь, связывает с внутренней стороны преимущественно натрий и АТФ, а с наружной - калий и различные ингибиторы типа глико- зидов. При этом возникает мембранный ток. Благодаря этому току обеспечивается соответствующее направление переноса ионов. Перенос ионов происходит в три этапа. Сначала ион соединяется с молекулой переносчика, образуя комплекс ион-переносчик. Затем этот комплекс проходит через мембрану или переносит через нее заряд. В завершении - ион освобождается от переносчика на противоположной стороне мембраны. Одновременно происходит аналогичный процесс, переносящий ионы в противоположном направлении. Если насос осуществляет перенос одного иона натрия на один ион калия, то он просто поддерживает концентрационный градиент по обе стороны мембраны, но не вносит вклада в создание мембранного потенциала. Чтобы внести этот вклад, ионный насос должен переносить натрий и калий в соотношении 3:2, т. е. на 2 иона калия, поступающих в клетку, из клетки он должен выводить 3 иона натрия. Работая с максимальной нагрузкой, каждый насос способен перекачивать через мембрану около 130 ионов калия и 200 ионов натрия в секунду. Это предельная скорость. В реальных условиях работа каждого насоса регулируется в соответствии с потребностями клетки. У большинства нейронов на один квадратный микрон мембранной поверхности приходится от 100 до 200 ионных насосов. Следовательно, мембрана любой нервной клетки содержит 1 миллион ионных насосов, способных перемещать до 200 миллионов ионов натрия в секунду.

Таким образом, мембранный потенциал (потенциал покоя) создается в результате как пассивных, так и активных механизмов. Степень участия тех или иных механизмов в разных клетках неодинакова, из чего следует, что мембранный потенциал может быть неодинаковым в разных структурах. Активность насосов может зависеть от диаметра нервных волокон: чем тоньше волокно, тем отношение размера поверхности к объему цитоплазмы выше, соответственно, и активность насосов, необходимая для поддержания разницы концентраций ионов на поверхности и внутри волокна, должна быть больше. Другими словами, мембранный потенциал может зависеть от структуры нервной ткани, а значит, и от ее функционального назначения. Электрическая поляризация мембраны - главное условие, обеспечивающее возбудимость клетки. Это ее постоянная готовность к действию. Это запас потенциальной энергии клетки, который она может использовать в случае, если нервной системе понадобится ее немедленная реакция.

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны.Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». ВеличинаМПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембранаполяризована. Уменьшение величины МПП называютдеполяризацией, увеличение -гиперполяризацией, восстановление исходного значенияМПП -реполяризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называетсяравновесным потенци­алом. Его величина может быть рассчитана из уравнения Нернста:

10 В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания. На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление. Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ. Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его. Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны. потенциал действия Для более полного понимания факторов, являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов. Электроупавляемые натриевые и калиевые каналы. Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na+/K+ -насосу и каналам К*/Na+-утечки. Электроуправляемый натриевый канал. В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна. Активация натриевого канала. Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз. Инактивация натриевого канала. В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации. Существует другая важная характеристикая процесса инактивации натриевого канала: инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.

13Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона. В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Существует три закона проведения раздражения по нервному волокну. Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе. В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки. В безмякотных нервных волокнах возбуждение передается изолированно. Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.

14 Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.

Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).

Все структуры, обеспечивающие передачу сигнала с одной нервной структуры на другую – синапсы .

Значение – передает нервные импульсы с одного нейрона на другой => обеспечивает передачу возбуждения по нервному волокну (распространение сигнала).

Большое количество синапсов обеспечивает большую площадь для передачи информации.

Строение синапса:

1. Пресинаптическая мембрана - принадлежит нейрону, ОТ которого передается сигнал.

2. Синаптическая щель , заполненная жидкостью с высоким содержанием ионов Са.

3. Постсинаптическая мембрана - принадлежит клеткам, НА которые передается сигнал.

Между нейронами всегда существует перерыв, заполненный межтканевой жидкостью.

В зависимости от плотности мембран, выделяют:

- симметричные (с одинаковой плотностью мембран)

- асимметричные (плотность одной из мембран выше)

Пресинаптическая мембрана покрывает расширение аксона передающего нейрона.

Расширение - синаптическая пуговка/синаптическая бляшка .

На бляшке - синаптические пузырьки (везикуль).

С внутренней стороны пресинаптической мембраны – белковая/гексогональная решетка (необходима для высвобождения медиатора), в которой находится белок - нейрин . Заполнена синаптическими пузырьками, которые содержат медиатор – специальное вещество, участвующее в передаче сигналов.

В состав мембраны пузырьков входит - стенин (белок).

Постсинаптическая мембрана покрывает эффекторную клетку. Содержит белковые молекулы, избирательно чувствительные к медиатору данного синапса, что обеспечивает взаимодействие.

Эти молекулы – часть каналов постсинаптической мембраны + ферменты (много), способные разрушать связь медиатора с рецепторами.

Рецепторы постсинаптической мембраны.

Постсинаптическая мембрана содержит рецепторы, обладающие родством с медиатором данного синапса.

Между ними находится снаптическая щель . Она заполнена межклеточной жидкостью, имеющей большое количество кальция. Обладает рядом структурных особенностей – содержит белковые молекулы, чувствительные к медиатору, осуществляющему передачу сигналов.

15 Синаптическая задержка проведения возбуждения

Для того, чтобы возбуждение распространилось по рефлекторной дуге затрачивается определенное время. Это время состоит из следующих периодов:

1. период временно необходимый для возбуждения рецепторов (рецептора) и для проведения импульсов возбуждения по афферентным волокнам до центра;

2. период времени, необходимый для распространения возбуждения через нервные центры;

3. период времени, необходимый на распространение возбуждения по эфферентным волокнам до рабочего органа;

4. латентный период рабочего органа.

16 Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут подходить сотни и тысячи импульсов по разным терминалям. Вместе с тем число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение латеральных путей обеспечивает выделение существенных сигналов из фона. Блокада торможения ведет к широкой иррадиации возбуждения и судорогам, например при выключении пресинаптического торможения бикукулином.