Химические элементы клетки его содержание в организме. Презентация по биологии на тему "химические элементы и их биологическая роль в организме". Неорганические компоненты клетки

Больше, других - меньше.

На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.

Условно все элементы клетки можно разделить на три группы.

Макроэлементы

Цинк - входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь - входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен - участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото , серебро оказывают бактерицидное воздействие, подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий . Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

Молекулярный состав клетки

См. также

  • Сравнение строения клеток бактерий, растений и животных

Wikimedia Foundation . 2010 .

Смотреть что такое "Химический состав клетки" в других словарях:

    Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения. Клеточная стенка.… … Биологическая энциклопедия

    Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений. Клеточные оболочки. В клеточных оболочках красных… … Биологическая энциклопедия

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… …

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

1. Дайте определения понятий.
Элемент - совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева.
Микроэлемент - элемент, который в организме находится в очень низких концентрациях.
Макроэлемент - элемент, который в организме находится в высоких концентрациях.
Биоэлемент - химический элемент, участвующий в жизнедеятельности клетки, составляет основу биомолекул.
Элементный состав клетки - процентное содержание химических элементов в клетке.

2. Что является одним из доказательств общности живой и неживой природы?
Единство химического состава. Никакаих элементов, характерных только для неживой природы, не существует.

3. Заполните таблицу.

ЭЛЕМЕНТНЫЙ СОСТАВ КЛЕТКИ

4. Приведите примеры органических веществ, молекулы которых состоят из трех, четырех и пяти макроэлементов.
3 элемента: углеводы и липиды.
4 элемента: белки.
5 элементов: нуклеиновые кислоты, белки.

5. Заполните таблицу.

БИОЛОГИЧЕСКАЯ РОЛЬ ЭЛЕМЕНТОВ

6. Изучите в § 2.2 раздел «Роль внешних факторов в формировании химического состава живой природы» и ответьте на вопрос: «Что такое биохимические эндемии, и каковы причины их происхождения?»
Биохимические эндемии – это заболевания растений, животных и человека, вызванные резким недостатком либо избытком какого-либо элемента в определенной области.

7. Какие вам известны заболевания, связанные с нехваткой микроэлементов?
Недостаток йода – эндемический зоб. Снижение синтеза тироксина и разрастание вследствие этого тканей щитовидной железы.
Недостаток железа – железодефицитная анемия.

8. Вспомните, по какому признаку химические элементы распределяют на макро-, микро- и ультрамикроэлементы. Предложите свою, альтернативную классификацию химических элементов (например, по функциям в живой клетке).
Микро-, макро- и ультрамикроэлементы делятся по признаку, основанному на процентному содержанию их в клетке. Кроме того, можно классифицировать элементы по функциям, регулирующие деятельность определенных систем органов: нервной, мышечной, кровеносной и сердечно-сосудистой, пищеварительной и т.д.

9. Выберите правильный ответ.
Тест 1.
Какими химическими элементами образовано большинство органических веществ?
2) С, О, Н, N;

Тест 2.
К макроэлементам не относится:
4) марганец.

Тест 3.
Живые организмы нуждаются в азоте, так как он служит:
1) составным компонентом белков и нуклеиновых кислот; 10. Определите признак, по которому все нижеперечисленные элементы, кроме одного, объединены в одну группу. Подчеркните этот «лишний» элемент.
Кислород, водород, сера, железо, углерод, фосфор, азот. Входит в состав только ДНК. А остальные все в белках.

11. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


12. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – органоген.
Соответствие: термин, в принципе, соответствует своему первоначальному значению, но сегодня существует более точное определение. Ранее значение было таким, что элементы принимает участие лишь в построении тканей и клеток органов. Теперь же выяснено, что биологически важные элементы не только образуют химические молекулы в клетках и т.д., но и регулируют все процессы в клетках, тканях и органах. Они входят в состав гормонов, витаминов, ферментов и других биомолекул.

13. Сформулируйте и запишите основные идеи § 2.2.
Элементный состав клетки - это процентное содержание химических элементов в клетке. Элементы клетки принято классифицировать, в зависимости от их процентного содержания, на микро-, макро- и ультрамикроэлементы. Те элементы, которые участвуют в жизнедеятельности клетки, составляет основу биомолекул, называются биоэлементы.
К макроэлементам относятся: C N H O. Они – главные компоненты всех органических соединений в клетке. Кроме того, P S K Ca Na Fe Cl Mg – входят в состав всех важнейших биомолекул. Без них невозможно функционирование организма. Недостаток их приводит к смерти.
К микроэлементам: Al Cu Mn Zn Mo Co Ni I Se Br F B и др. Они также необходимы для нормального функционирования организма, но не так критично. Недостаток их вызывает болезнь. Они входят в состав биологически активных соединений, влияют на обмен веществ.
Есть ультрамикроэлементы: Au Ag Be и др. Физиологическая роль окончательно не установлена. Но они важны для клетки.
Существует понятие «биохимические эндемии» – заболевания растений, животных и человека, вызванные резким недостатком либо избытком какого-либо элемента в определенной области. Например, эндемический зоб (недостаток йода).
При недостатке элемента из-за образа питания также может возникнуть заболевание или недомогания. Например, при недостатке железа – анемия. При недостатке кальция – частые переломы, выпадение волос, зубов, боли в мышцах.

Абубекерова Альфия, Токарева Виктория, Матвеева Римма, ученицы 8 класса МКОУ "СОШ №1" г. Николаевска

В проекте представлен ход работы и полученные результаты по выяснению роли химических элементов для живых организмов. В альбоме красочно представлена биологическая роль наиболее важных химических элементов.

Скачать:

Предварительный просмотр:

Муниципальное казенное образовательное учреждение

«Средняя общеобразовательная школа №1» города Николаевска Николаевского муниципального района Волгоградской области

Проект на тему:

Работу выполнили:

Токарева Виктория, 8 класс

Матвеева Римма, 8 класс

Абубекерова Альфия, 8 класс

Руководитель:

Евдокимова А.С., учитель химии и биологии

Николаевск, 2014 год

1.Введение ………………………………………………………………….. 3

2. Классификация химических элементов по функциональной роли и содержанию в организме…………………………………………………. 5

3. Поступление химических элементов в организм…………………….6

4. Биологическая роль химических элементов…………………………7

5. Взаимосвязь химических элементов………………………………… 7

6. Выводы…………………………………………………………………… 9

7. Результат работы…………………………………………………………9

9. Источники информации…………………………………………………9

Приложение. ………………………………………………………………..11

1. Введение.

Актуальность

В 8 классе мы начали изучать новый предмет – химию. Мы узнали, что на Земле существуют атомы различных химических элементов (их больше 100), у каждого есть свое название, есть свое место в Периодической системе химических элементов Д.И. Менделеева. Оказывается, что с названиями многих из них мы часто встречаемся в повседневной жизни. Например, реклама с экранов телевизоров постоянно призывает нас употреблять витамины, содержащие кальций и препараты, содержащие йод . А еще говорят, что зубная паста с фтором полезна для зубов, а железо необходимо для нормальной работы нашего организма. Почему же эти элементы так необходимы? А важны ли для живых организмов другие химические элементы? Сколько их требуется для нормальной работы организма? Где они содержатся, в каких продуктах? Что произойдет, если в организм попадет очень много или очень мало каких либо элементов? Мы считаем эти вопросы очень важными для сохранения здоровья человека.

Проблема : слабая информированность учащихся о биологической роли химических элементов

Цель - Выяснить биологическую роль наиболее распространенных химических элементов и использовать эту информацию для формирования у учащихся ценностного отношения к своему здоровью.

Задачи:

1. Определить группу наиболее встречающихся на нашей планете химических элементов и выяснить их биологическое значение.

2. Выяснить важно ли сочетание и пропорциональное соотношение химических элементов при попадании в организм.

3. Оформить полученную информацию в виде брошюры, стенда в кабинете химии.

4. Выступить с данной информацией на уроке химии перед одноклассниками.

Тип проекта : информационный (биология, химия)

Направления проектной деятельности:

  1. Аналитическое (сбор информации)
  2. Творческое (создание брошюры и стенда)

3) Представительское (создание презентации, выступление на уроке)

Участники :

Учащиеся 8 класса

Ресурсное обеспечение проекта:

Координатор – учитель химии Евдокимова Анна Сергеевна.

Материальные ресурсы: ресурсы школьной мини-типографии, бумага формата А4, ватман, двусторонний скотч, компьютер, Интернет.

Сроки реализации, этапы работы над проектом :

  1. Постановка проблемы, распределение заданий, «ролей» (январь)2014 года)
  2. Сбор информации (январь – февраль 2014 года)
  3. Обобщение результатов, создание альбома, оформление стенда, (февраль 2014 года)

Результат : повышение информированности учащихся о биологической роли химических элементов

Отсроченный результат : формирование более ответственного отношения к своему здоровью

Практическая значимость (продукт): собранная в ходе выполнения проекта информация будет оформлена в виде брошюры, которой можно воспользоваться при подготовке к экзаменам, конкурсам, олимпиадам, а также будет оформлен стенд в кабинете химии, где ярко, красно и интересно будет представлена информация о биологической роли химических элементов. Возможно, данная информация позволит не только побудить учащихся ответственнее относится к своему здоровью, но и повысит интерес к предмету химия, поможет определиться с выбором профессии.

2. Классификация химических элементов по функциональной роли и содержанию в организме.

Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Содержание некоторых элементов в организме по сравнению с окружающей средой повышенное – это называют биологическим концентрированием элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых организмах занимает второе место (21%). Однако эта закономерность наблюдается не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало, алюминия – 7,45%, а в живых организмах -1·10 -5 %.

В составе живого вещества найдено более 70 элементов.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами .

Для 30 элементов биогенность установлена. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов.

Б) По концентрации элементов в организме биогенные элементы делят:

1) макроэлементы (содержание их превышает 0,01% от массы тела)

К ним относят 12 элементов: С, Н, О, N, Р, S, Na, К, Ca, Mg, Сl, Fe.

2) микроэлементы (0,01%, от массы тела): Цинк , Йод , Фтор , Кремний , Хром , Медь , Марганец , Кобальт , Молибден , Никель , Бор , Бром , Мышьяк , Свинец , Олово , Литий , Кадмий , Ванадий , Селен

3) ультрамикроэлементы (содержание их меньше чем 10 -5 % от массы тела).

3. Поступление химических элементов в организм.

Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента. Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (таблица № 1).

Таблица 1. Суточное поступление химических элементов в организм человека

Химический элемент

Суточное потребление, в мг

Взрослые

Дети

Калий

2000-5500

Натрий

1100-3300

Кальций

800-1200

Магний

300-400

Цинк

Железо

10-15

Марганец

Медь

1,5-3,0

Титан

0,85

0,06

Молибден

0,075-0,250

Хром

0,05-0,20

0,04

Кобальт

Около 0,2 витамин B 12

0,001

Хлор

3200

РО 4 3-

800-1200

SO 4 2-

Йод

0,15

0,07

Селен

0,05-0, 07

Фтор

1,5-4,0

0, 6

Столько же химических элементов должно выводиться, поскольку их содержание в организме находится в относительном постоянстве.

Современное состояние знаний о биологической роли элементов можно характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток.
При недостаточном поступлении элемента в организм наносится существенный ущерб росту и развитию организма. Это объясняется снижением активности ферментов, в состав которых входит элемент. При повышении дозы этого элемента ответная реакция организма возрастает, достигает нормы (биотическая концентрация элемента). Дальнейшее увеличение дозы приводит к снижению функционирования вследствие токсического действия избытка элемента вплоть до летального исхода. Дефицит и избыток биогенного элемента наносит вред организму. Все живые организмы реагируют на недостаток и избыток или неблагоприятное соотношение элементов.

Обычные микроэлементы, когда их концентрация в организме превышает биотическую концентрацию, проявляют токсическое действие на организм. Токсичные элементы при очень малых концентрациях не оказывают вредного воздействия на растения и животных. Например, мышьяк при микроконцентрациях оказывает биостимулирующее действие. Следовательно, нет токсичных элементов, а есть токсичные дозы. Таким образом, малые дозы элемента - лекарство, большие дозы - яд. «Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным» - Парацельс. Уместно вспомнить слова таджикского поэта Рудаки: «Что нынче снадобьем слывет, то завтра станет ядом».

4 . Биологическая роль химических элементов.

Информация о биологической роли химических элементов указана в брошюре «Биологическая роль химических элементов» (Приложение №1)

5. Взаимосвязь химических элементов,

Необходимо помнить об определенных предосторожностях при употреблении минеральных комплексов (как лекарственных препаратов, так и биологически активных добавок к пище).

Передозировка одного минерального вещества может привести к функциональным нарушениям и повышенному выделению другого минерального вещества. Возможно и развитие нежелательных побочных эффектов. Например, избыток цинка ведет к снижению уровня холестеринсодержащих липидов высокой плотности ("хорошего" холестерина).

Главная биологическая функция калия - формирование совместно с другими электролитами (натрий, хлор) разницы потенциалов на мембранах клеток и передача ее изменения по клеточной мембране, за счет обмена с ионами натрия, что особенно важно для нервных и мышечных клеток. Это обуславливает постоянное присутствие в клетках натрия, хлора и калия. В организме эти элементы содержатся в определенном соотношении, обеспечивая гомеостаз (постоянство внутренней среды). Нарушение равновесия между калием и натрием ведет к патологии водного обмена, обезвоживанию, мышечной слабости.

Избыток кальция может привести к недостатку фосфора, и наоборот. Обмен веществ так тонко устроен, что фосфор работает в тесной связке с кальцием (в норме эти вещества должны поступать в организм примерно в одинаковом количестве, в крайнем случае фосфора может быть в полтора раза больше). В реальности в современных продуктах его много больше, чем кальция. Учёные подсчитали, что, например, в питании среднего американца содержание фосфора в 2-4 раза выше, чем кальция. Избыточный фосфор стимулирует выработку гормона паращитовидными железами (это четыре горошины, расположенные рядом с щитовидкой). Тогда этот гормон начинает вымывать кальций из костей. Развивается остеопороз - кости становятся хрупкими и ломкими. Сегодня в мире эта болезнь приобрела характер эпидемии. Перелом шейки бедра у стариков и так называемый «вдовий горб» - типичные проявления остеопороза. Переломы из-за слабости кости возникают даже у подростков. В серьёзных исследованиях доказано, что у девочек, любящих пить колу и прочие газировки (в них добавляют фосфорную кислоту), в 3,14 раза чаще бывают такие переломы. А если они ещё и занимаются спортом, то риск переломов больше в 5 раз. Чем больше фосфатов в крови, тем выше риск инфарктов и смертность от сердечно-сосудистых заболеваний. Фосфор помогает развитию кальцификации. Это самое тяжёлое и необратимое поражение сосудов, при котором на их внутренней стенке откладывается кальций, образуя плотные, как кость, бляшки.

Избыток молибдена уменьшает содержание меди.

Избыток вольфрама уменьшает содержание молибдена.

На фоне дефицита железа, а также кальция, фосфора, магния и цинка способность организма усваивать свинец увеличивается и т.д.

При потреблении минеральных веществ, следует строго придерживаться медицинских рекомендаций!

6. Выводы:

Мы выяснили, что многие химические элементы (более 30) имеют определенное значение для живых организмов. Такие элементы как С, Н, О, N, Р, S, являясь макроэлементами играют большую роль, из них построены клетки живого организма. Другие, хоть и имеют малое содержание в организме (микроэлементы), так же необходимы. Но для большинства элементов как недостаток, так и избыток оказывает вредное воздействие на организм.

Мы разобрались так же, откуда поступают элементы в наш организм, как избежать избыточного и недостаточного их содержания.

Имеются элементы, малая доза которых является токсичной. Это такие элементы как мышьяк, свинец, ртуть, кадмий и др. Тяжелые металлы имеют способность накапливаться в организме.

Важно также взаимное влияние обмена одного элемента на обмен другого. Так, например фосфор и кальций должны попадать в организм в определенном соотношении. Если фосфора попадает больше, то это способствует вымыванию кальция из костей и др. последствиям.

7. Результат работы:

1) Нашли и обобщили информацию о биологической роли химических элементов.

2) Создали брошюру «Биологическая роль химических элементов» (приложение №1)

3) Создали презентацию о биологической роли химических элементов и выступили с ней на уроке химии в 8 и 9-ых классах (приложение №2).

4) Оформили стенд в кабинете химии (приложение №3).

8. Источники информации:

1) Конспект лекций по общей химии. Челябинская государственная медицинская академия. А. В. Жолнин.

2) Ливанов П.А.,Соболев М.Б., Ревич Б. А. Свинцовая опасность и здоровье населения. // Рос. Сем. Врач. 1999, No 2, с. 18–26.

3) Корбанова А.И., Сорокина Н.С., Молодкина Н.Н. Свинец и его действие на

Организм. // Мед. труда и пром. экология. 2001, No 5, с. 29–34.

4) Химия. Учебник для 9 кл. Габриелян О.С.

5) Ресурсы сети Интернет:

wikipedia.org и др.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

Клетки живых организмов по своему химическому составу значительно отличаются от окружающей их неживой среды и по структуре химических соединений, и по набору и содержанию химических элементов. Всего в живых организмах присутствует (обнаружено на сегодняшний день) около 90 химических элементов, которые, в зависимости от их содержания, разделяют на 3 основных группы: макроэлементы , микроэлементы и ультрамикроэлементы .

Макроэлементы.

Макроэлементы в значительных количествах представлены в живых организмах, начиная от сотых долей процента до десятков процентов. Если содержание какого-либо химического вещества в организме превышает 0.005% от массы тела, такое вещество относят к макроэлементам. Они входят в состав основных тканей: крови, костей и мышц. К ним относятся, например, следующие химические элементы: водород, кислород, углерод, азот, фосфор, сера, натрий, кальций, калий, хлор. Макроэлементы в сумме составляют около 99% от массы живых клеток, причем большая часть (98%) приходится именно на водород, кислород, углерод и азот.

В таблице ниже представлены основные макроэлементы в организме:

Для всех четырех самых распространенных в живых организмах элементов (это водород, кислород, углерод, азот, как было сказано ранее) характерно одно общее свойство. Этим элементам не хватает одного или нескольких электронов на внешней орбите для образования стабильных электронных связей. Так, атому водорода для образования стабильной электронной связи не хватает одного электрона на внешней орбите, атомам кислорода, азота и углерода — двух, трех и четырех электронов соответственно. В связи с этим, эти химические элементы легко образуют ковалентные связи за счет спаривания электронов, и могут легко взаимодействовать друг с другом, заполняя свои внешние электронные оболочки. Кроме этого, кислород, углерод и азот могут образовывать не только одинарные, но и двойные связи. В результате чего существенно увеличивается количество химических соединений, которые могут образовываться из этих элементов.

Кроме того, углерод, водород и кислород — наиболее легкие среди элементов, способных образовывать ковалентные связи. Поэтому они оказались наиболее подходящими для образования соединений, входящих в состав живой материи. Необходимо отметить отдельно еще одно важное свойство атомов углерода — способность образовывать ковалентные связи сразу с четырьмя другими атомами углерода. Благодаря этой способности создаются каркасы из огромного количества разнообразных органических молекул.

Микроэлементы.

Хотя содержание микроэлементов не превышает 0,005% для каждого отдельного элемента, а в сумме они составляют всего лишь около 1% массы клеток, микроэлементы необходимы для жизнедеятельности организмов. При их отсутствии или недостаточном содержании могут возникать различные заболевания. Многие микроэлементы входят в состав небелковых групп ферментов и необходимы для осуществления их каталитической функции.
Например, железо является составной частью гема, который входит в состав цитохромов, являющихся компонентами цепи переноса электронов, и гемоглобина — белка, который обеспечивает транспорт кислорода от легких к тканям. Дефицит железа в организме человека вызывает развитие анемии. А недостаток йода, входящего в состав гормона щитовидной железы — тироксина, приводит к возникновению заболеваний, связанных с недостаточностью этого гормона, таких как эндемический зоб или кретинизм.

Примеры микроэлементов представлены в таблице ниже:

Ультрамикроэлементы.

В состав группы ультрамикроэлементов входят элементы, содержание которых в организме крайне мало (менее 10 -12 %). К ним относятся бром, золото, селен, серебро, ванадий и многие другие элементы. Большинство из них также необходимы для нормального функционирования живых организмов. Например, нехватка селена может привести к возникновению раковых заболеваний, а недостаток бора — причина некоторых заболеваний у растений. Многие элементы этой группы также, как и микроэлементы, входят в состав ферментов.

Биологическая роль химических элементов в живых организмах

1. Макро и микроэлементы в среде и организме человека

Биологическая роль химических элементов в организме человека чрезвычайно разнообразна.

Главная функция макроэлементов состоит в построении тканей, поддержании постоянства осмотического давления, ионного и кислотно-основного состава.

Микроэлементы, входя в состав ферментов, гормонов, витаминов, биологически активных веществ в качестве комплексообразователей или активаторов, участвуют в обмене веществ, процессах размножения, тканевом дыхании, обезвреживании токсических веществ. Микроэлементы активно влияют на процессы кроветворения, окисления - восстановления, проницаемость сосудов и тканей. Макро- и микроэлементы - кальций, фосфор, фтор, йод, алюминий, кремний определяют формирование костной и зубной тканей.

Имеются данные, что содержание некоторых элементов в организме человека меняется с возрастом. Так, содержание кадмия в почках и молибдена в печени к старости повышается. Максимальное содержание цинка наблюдается в период полового созревания, затем оно понижается и в старости доходит до минимума. Уменьшается с возрастом и содержание других микроэлементов, например ванадия и хрома.

Выявлено немало заболеваний, связанных с недостатком или избыточным накоплением различных микроэлементов. Дефицит фтора вызывает кариес зубов, дефицит йода - эндемический зоб, избыток молибдена - эндемическую подагру. Такого рода закономерности связаны с тем, что в организме человека поддерживается баланс оптимальных концентраций биогенных элементов - химический гомеостаз. Нарушение этого баланса вследствие недостатка или избытка элемента может приводить к различным заболеваниям.

Кроме шести основных макроэлементов -- органогенов - углерода, водорода, азота, кислорода, серы и фосфора, из которых состоят углеводы, жиры, белки и нуклеиновые кислоты, для нормального питания человека и животных необходимы «неорганические» макроэлементы - кальций, хлор, магний, калий, натрий - и микроэлементы - медь, фтор, йод, железо, молибден, цинк, а также, возможно (для животных доказано), селен, мышьяк, хром, никель, кремний, олово, ванадий.

Недостаток в пищевом рационе таких элементов, как железо, медь, фтор, цинк, йод, кальций, фосфор, магний и некоторых других, приводит к серьезным последствиям для здоровья человека.

Однако необходимо помнить, что для организма вреден не только недостаток, но и избыток биогенных элементов, так как при этом нарушается химический гомеостаз. Например, при поступлении избытка марганца с пищей в плазме повышается уровень меди (синергизм Мn и Сu), а в почках он снижается (антагонизм). Повышение содержания молибдена в продуктах питания приводит к увеличению количества меди в печени. Избыток цинка в пище вызывает угнетение активности железосодержащих ферментов (антагонизм Zn и Fe).

Минеральные компоненты, которые в ничтожно малых количествах являются жизненно необходимыми, при более высоких концентрациях становятся токсичными.

Ряд элементов (серебро, ртуть, свинец, кадмий и др.) считаются токсичными, так как попадание их в организм уже в микроколичествах приводит к тяжелым патологическим явлениям. Химический механизм токсического воздействия некоторых микроэлементов будет рассмотрен ниже.

Биогенные элементы нашли широкое применение в сельском хозяйстве. Добавление в почву незначительных количеств микро элементов - бора, меди, марганца, цинка, кобальта, молибдена - резко повышает урожайность многих культур. Оказывается, что микроэлементы, увеличив активность ферментов в растениях, способствуют синтезу белков, витаминов, нуклеиновых кислот, сахаров и крахмала. Некоторые из химических элементов положительно действуют на фотосинтез, ускоряют рост и развитие растений, созревание семян. Микроэлементы добавляют в корм животным, чтобы повысить их продуктивность.

Широко используют различные элементы и их соединения в качестве лекарственных средств.

Таким образом, изучение биологической роли химических элементов, выяснение взаимосвязи обмена этих элементов и других биологически активных веществ - ферментов, гормонов, витаминов способствует созданию новых лекарственных препаратов и разработке оптимальных режимов их дозирования как с лечебной, так и с профилактической целью.

Основой для изучения свойств элементов и, в частности, их биологической роли является периодический закон Д.И. Менделеева. Физико-химические свойства, а, следовательно, их физиологическая и патологическая роль, определяются положением этих элементов в периодической системе Д.И. Менделеева.

Как правило, с увеличением заряда ядра атомов увеличивается токсичность элементов данной группы и уменьшается их содержание в организме. Уменьшение содержания, очевидно, связано с тем, что многие элементы длинных периодов из-за больших атомных и ионных радиусов, высокого заряда ядра, сложности электронных конфигураций, малой растворимости соединений плохо усваиваются живыми организмами. В организме в значительных количествах содержатся легкие элементы.

К макроэлементам относятся s-элементы первого (водород), третьего (натрий, магний) и четвертого (калий, кальций) периодов, а также р-элементы второго (углерод, азот, кислород) и третьего (фосфор, сера, хлор) периодов. Все они жизненно необходимы. Большинство остальных s- и р-элементов первых трех периодов (Li, В, Al, F) физиологически активны, s- и р-элементы больших периодов (n>4) редко выступают в качестве незаменимых. Исключение составляют s-элементы - калий, кальций, йод. К физиологически активным относят некоторые s- и р-элементы четвертого и пятого периодов - стронций, мышьяк, селен, бром.

Среди d-элементов жизненно необходимы в основном элементы четвертого периода: марганец, железо, цинк, медь, кобальт. В последнее время установлено, что несомненна физиологическая роль и некоторых других d-элементов этого периода: титана, хрома, ванадия.

d-Элементы, пятого и шестого периодов, за исключением молибдена, не проявляют выраженной положительной физиологической активности. Молибден же входит в состав ряда окислительно-восстановительных ферментов (например, ксантиноксида-, альдегидоксидазы) и играет большую роль в протекании биохимических процессов.


2. Общие аспекты токсичности тяжелых металлов для живых организмов

Всестороннее изучение проблем, связанных с оценкой состояния природной среды показывает, что весьма трудно провести четкую границу между природными и антропогенными факторами изменения экологических систем. Последние десятилетия убедили нас в том. что воздействие человека на природу наносит ей не только непосредственный, легко определяемый ущерб, но и вызывает ряд новых, часто скрытых процессов, трансформирующих иди разрушающих окружающую среду. Естественные и антропогенные процессы в биосфере находятся в сложной взаимосвязи и взаимозависимости. Так, на ход химических превращений, приводящих к образованию токсических веществ, оказывают влияние климат, состояние почвенного покрова, вода, воздух, уровень радиоактивности и т.д. В сложившихся условиях при изучении процессов химического загрязнения экосистем возникает проблема нахождения естественных, обусловленных в основном природными факторами, уровней содержания тех или иных химических элементов или соединений. Решение данной проблемы возможно только на основе проведения длительных систематических наблюдений за состоянием компонентов биосферы, за содержанием в них различных веществ, то есть па основе проведения экологического мониторинга.

Загрязнение окружающей среды тяжелыми металлами имеет прямое отношение к эколого-аналитическому мониторингу супертоксикантов, поскольку многие из них проявляют высокую токсичность уже в следовых количествах и способны концентрироваться в живых организмах.

Основные источники загрязнения природной среды тяжелыми металлами можно разделить на естественные (природные) и искусственные (антропогенные). К естественным относят извержение вулканов, пыльные бури, лесные и степные пожары, морские соли, поднятые ветром, растительность и др. Естественные источники загрязнения носят либо систематический равномерный, либо кратковременный стихийный характер и, как правило, мало влияют на общий уровень загрязнения. Главными и наиболее опасными источниками загрязнения природы тяжелыми металлами являются антропогенные.

В процессе изучения химии металлов и их биохимических циклов в биосфере обнаруживается двойственная роль, которую они играют в физиологии: с одной стороны, большинство металлов являются необходимыми для нормального течения жизни; с другой, при повышенных концентрациях они проявляют высокую токсичность, то есть оказывают вредное влияние на состояние и активность живых организмов. Граница между необходимыми и токсичными концентрациями элементов весьма расплывчата, что осложняет проведение достоверной оценки их воздействия на окружающую среду. Количество, при котором некоторые металлы становятся действительно опасными, зависит не только от степени загрязнения ими экосистем, но также от химических особенностей их биохимического цикла. В табл. 1 представлены ряды молярной токсичности металлов для разных видов живых организмов.

Таблица 1. Представительная последовательность молярной токсичности металлов

ОрганизмыРяды токсичностиВодорослиНg>Сu>Сd>Fе>Сr>Zn>Со>МnГрибкиАg>Нg>Сu>Сd>Сr>Ni>Рb>Со>Zn>FеЦветущие растенияHg>Рb>Сu>Сd>Сr>Ni>ZnКольчатые червиHg>Сu>Zn > Рb> СdРыбыАg>Нg>Сu> Рb>Сd>Al> Zn> Ni> Сr >Со >Mn>>SrМлекопитающиеАg, Нg, Сd> Сu, Рb, Sn, Be>> Mn, Zn, Ni, Fe, Сr >> Sr >Сs, Li, Al

Для каждого вида организма порядок расположения металлов в рядах таблицы слева направо отражает увеличение молярного количества металла, необходимого для проявления эффекта токсичности. Минимальная молярная величина относится к металлу с наибольшей токсичностью.

В.В. Ковальский, исходя из значимости для жизнедеятельности, подразделил химические элементы на три группы:

Жизненно необходимые (незаменимые) элементы, постоянно содержащиеся в организме (входят в состав ферментов, гормонов и витаминов): Н, О, Са, N, К, Р, Nа, S, Mg, Cl, С, I, Мn, Сu, Со, Fe, Мо, V. Их дефицит приводит к нарушению нормальной жизнедеятельности человека и животных.

Таблица 2. Характеристика некоторых металлоферментов - бионеорганических комплексов

МеталлоферментЦентральный атомЛигандное окружениеОбъект концентрацииДействие ферментаКарбоангидразаZn (II)Аминокислотные остаткиЭритроцитыКатализирует обратимую гидратацию углекислого газа: СО22О↔Н2СО3↔Н++НСО3КарбоскипептидазаZn (II)Аминокислотные остаткиПоджелудочная железа, печень, кишечникКатализирует переваривание белков, участвует в гидролизе пептидной связи: R1CO-NH-R2+H2O↔R1-COOH+R2NH2КаталазаFe (III)Аминокислотные остатки, гистидин, тирозинКровьКатализирует реакцию разложения пероксида водорода: 2Н2О2 = 2Н2О + О2ПероксидазаFe (III)БелкиТкань, кровьОкисление субстратов (RH2) пероксида водорода: RH2 + H2O2 = R + 2H2OОксиредуктазаCu (II)Аминокислотные остаткиСердце, печень, почкиКатализирует окисление с помощью молекулярного кислорода: 2H2R + O2 = 2R + 2H2OПируваткарбоксилазаMn (II)Белки тканейПечень, щитовидная железа Усиливает действия гормонов. Катализирует процесс карбоксилирования пировиноградной кислотойАльдегидоксидазаMo (VI)Белки тканейПеченьУчаствует в окислении альдегидовРибонуклеотидредуктазаCo (II)Белки тканейПеченьУчаствует в биосинтезе рибонуклеиновых кислот

  • примесные элементы, постоянно содержащиеся в организме: Ga, Sb, Sr, Br, F, B, Be, Li, Si, An, Cs, Al, Ba, Ge, As, Rb, Pb, Ra, Bi, Cd, Cr, Ni, Ti, Ag, Th, Hg, U, Se. Биологическая роль их мало выяснена или неизвестна.
  • примесные элементы, обнаруженные в организме Sc, Tl, In, La, Pr, Sm, W, Re, Tb и др. Данные о количестве и биологическая роль не выяснены.
  • В таблице приведена характеристика ряда металлоферментов, в состав которых входят такие жизненно необходимые металлы, как Zn, Fe, Cu, Mn, Mo.
  • В зависимости от поведения в живых системах металлы можно разделить на 5 типов:
  • - необходимые элементы, при недостатке которых в организме возникают функциональные нарушения;
  • - стимуляторы (в качестве стимуляторов могут выступать как необходимые, так и не необходимые для организма металлы);
  • инертные элементы, при определенных концентрациях являющиеся безвредными, не оказывающими какого-либо действия на организм (например, инертные металлы, используемые в качестве хирургических имплантатов):
  • терапевтические агенты, используемые в медицине;
  • токсичные элементы, при высоких концентрациях приводящие к необратимым функциональным нарушениям, гибели организма.
  • В зависимости от концентрации и времени контакта металл может действовать по одному из указанных типов.
  • На рисунке 1 представлена диаграмма зависимости состояния организма от концентрации ионов металла. Сплошная кривая на диаграмме описывает немедленный положительный ответ, оптимальный уровень и переход положительного эффекта к негативному после прохождения значений концентрации необходимого элемента через максимум. При высоких концентрациях необходимый металл переходит в разряд токсичных.
  • Пунктирная кривая демонстрирует биологический ответ на токсичный для организма металл, не обладающий эффектом необходимого или стимулирующего элемента. Эта кривая идет с некоторым запаздыванием, которое свидетельствует о способности живого организма «не реагировать» на небольшие количества токсичного вещества (пороговая концентрация).
  • Из диаграммы следует, что необходимые элементы становятся токсичными в избыточных количествах. Организм животных и человека поддерживает концентрацию элементов в оптимальном интервале посредством комплекса физиологических процессов, называемого гомеостазом. Концентрация всех без исключения необходимых металлов находится под строгим контролем гомеостаза.
  • Рис.1 Биологический ответ в зависимости от концентрации металла. (Взаимное расположение двух кривых относительно шкалы концентраций условно)
  • металл токсичность ион отравление
  • Особый интерес представляет содержание химических элементов в организме человека. Органы человека по-разному концентрируют в себе различные химические элементы, то есть макро- и микроэлементы неравномерно распределяются между разными органами и тканями. Большинство микроэлементов (содержание в организме находится в пределах 10-3-10-5%) накапливается в печени, костной и мышечных тканях. Эти ткани являются основным депо для многих металлов.
  • Элементы могут проявлять специфическое сродство по отношению к некоторым органам и содержаться в них в высоких концентрациях. Известно, что цинк концентрируется в поджелудочной железе, йод в щитовидной железе, ванадий наряду с алюминием и мышьяком накапливается в волосах и ногтях, кадмий, ртуть, молибден - в почках, олово в тканях кишечника, стронций - в предстательной железе, костной ткани, марганец в гипофизе и т.д. В организме микроэлементы могут находиться как в связанном состоянии, так и в виде свободных ионных форм. Установлено, что алюминий, медь и титан в тканях головного мозга находятся в виде комплексов с белками, тогда как марганец - ионном виде.
  • В ответ па поступление в организм избыточных концентраций элементов живой организм способен ограничивать или даже устраняй, возникающий при этом токсический эффект благодаря наличию определенных механизмов детоксикации. Специфические механизмы детоксикации в отношении ионов металлов в настоящее время изучены недостаточно. Многие металлы в организме могут переходить в менее вредные формы следующими путями:
  • образование нерастворимых комплексов в кишечном тракте;
  • транспорт металла с кровью в другие ткани, где он может быть, иммобилизован (как, например. Pb+2 в костях);
- превращение печенью и почками в менее токсичную форму.

Так, в ответ на действие токсичных ионов свинца, ртути, кадмия и др. печень и почки человека увеличивают синтез металлотионинов - белков невысокой молекулярной массы, в составе которых примерно 1/3 аминокислотных остатков является цистеином. Высокое содержание и определенное расположение сульфгидрильных SH- групп обеспечивают возможность прочного связывания ионов металлов.

Механизмы токсичности металлов в целом хорошо известны, однако весьма сложно найти их для какого-то конкретного металла. Один из таких механизмов - концентрация между необходимыми и токсичными металлами за обладание местами связывания в белках, так как ионы металлов стабилизируют и активируют многие белки, входя в состав многих ферментных систем. Кроме того, многие белковые макромолекулы имеют свободные сульфгидрильные группы, способные вступать во взаимодействие с ионами токсичных металлов, таких как кадмий, свинец и ртуть, что приводит к возникновению токсичных эффектов. Тем не менее, точно не установлено, какие именно макромолекулы при этом наносят вред живому организму. Проявление токсичности ионов металлов в разных органах и тканях не всегда связано с уровнем их накопления - нет гарантии в том, что наибольший урон имеет место в той части организма, где концентрация данного металла выше. Так ионы свинца (II), будучи более чем на 90% от общего количества в организме иммобилизованными в костях, проявляют токсичность за счет 10%, распределенных в иных тканях организма. Иммобилизацию ионов свинца в костях можно рассматривать как процесс детоксикации.

Токсичность иона металла обычно не связана с его необходимостью для организма. Однако для токсичности и необходимости имеется одна общая черта: как правило, существует взаимосвязь ионов металлов друг от друга, ровно, как и между ионами металлов и неметаллов, в общем вкладе в эффективность их действия. Так, например, токсичность кадмия проявляется ярче в системе с недостаточностью по цинку, а токсичность свинца усугубляется недостаточностью по кальцию. Сходным образом адсорбцию железа из овощной пищи подавляют присутствующие в ней комплексообразующие лиганды, а избыток ионов цинка может ингибировать адсорбцию меди и т.д.

Определение механизмов токсичности ионов металлов часто осложняется существованием различных путей их проникновения в живой организм. Металлы могут попадать с пищей, водой, впитываться через кожу, проникать путем ингаляции и др. Поглощение с пылью - вот главный путь проникновения при промышленном загрязнении. В результате вдыхания большинство металлов оседает в легких и только потом распространяется в другие органы. Но наиболее распространенный путь поступления токсичных металлов в организм - прием с пищей и водой.

Библиографический список

1. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. - М.: Химия, 1993. - 590 с.

Ахметов Н.С. Общая и неорганическая химия. Учебник для вузов. - М.: Высш. шк., 2001. - 679 с.

Дроздов Д.А, Зломанов В.П., Мазо Г.Н., Спиридонов Ф.М. Неорганическая химия. В 3-х томах. Т. Химия непереходных элементов. / Под ред. Ю.Д. Третьякова - М.: Изд. «Академия», 2004, 368с.

5. Тамм И.Е., Третьяков Ю.Д. Неорганическая химия: В 3-х томах, Т.1. Физико-химические основы неорганической химии. Учебник для студентов ВУЗв / Под ред. Ю.Д. Третьякова. - М.: Изд. «Академия», 2004, 240с.

Коржуков Н.Г. Общая и неорганическая химия. Учеб. Пособие. /Под ред В.И. Деляна-М.: Изд. МИСИС: ИНФРА-М, 2004, 512с.

Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.З. Общая химия. Биофизическая химия. Химия биогенных элементов. Учебник для ВУЗов. /Под ред. Ю.А. Ершова. 3-е изд., - М.: Интеграл-Прес, 2007. - 728 с.

Глинка Н.Л. Общая химия. Учебное пособие для ВУЗов. Изд. 30-е исправленное./ Под ред. А.И. Ермакова. - М.: Интеграл-Пресс, 2007, - 728 с.

Черных, М.М. Овчаренко. Тяжелые металлы и радионуклиды в биогеоцинозах. - М.: Агроконсалт, 2004.

Н.В. Гусакова. Химия окружающей среды. - Ростов-на-Дону, Феникс, 2004.

Балецкая Л.Г. Неорганическая химия. - Ростов-на-Дону, Феникс, 2005.

М. Хенце, П. Армоэс, Й. Лякурянсен, Э. Арван. Очистка сточных вод. - М.: Мир, 2006.

Коровин Н.В. Общая химия. - М.: Высш. шк., 1998. - 558 с.

Петрова В.В. и др. Обзор свойств химических элементов и их соединений. Учебное пособие по курсу Химия в микроэлектронике. - М.: Изд-во МИЭТ, 1993. - 108 с.

Харин А.Н., Катаева Н.А., Харина Л.Т. Курс химии. - М.: Высш. шк., 1983. - 511 с.