Относительной ошибки i го периода. Большая энциклопедия нефти и газа. Абсолютные и относительные ошибки

Как было сказано выше, результат измерения любой величины отличается от истинного значения. Это отличие, равное разности между показанием прибора и истинным значением, называется абсолютной погрешностью измерения, которая выражается в тех же единицах, что и сама измеряемая величина:

где х - абсолютная погрешность.

При проведении комплексного контроля, когда измеряются показатели разной размерности, целесообразнее пользоваться не абсолютной, а относительной погрешностью. Она определяется по следующей формуле:

Целесообразность применения х отн связана со следующими обстоятельствами. Предположим, что мы измеряем время с точностью до 0,1 с (абсолютная погрешность). При этом если речь идет о беге на 10 000 м, то точность вполне приемлема. Но измерять с такой точностью время реакции нельзя, так как величина ошибки почти равна измеряемой величине (время простой реакции равняется 0,12-0,20 с). В связи с этим нужно сопоставить величину ошибки и саму измеряемую величину и определить относительную погрешность.

Рассмотрим пример определения абсолютной и относительной погрешностей измерения. Предположим, что измерение частоты сердечных сокращений после бега с помощью высокоточного прибора дает нам величину, близкую к истинной и равную 150 уд/мин. Одновременное пальпаторное измерение дает величину, равную 162 уд/мин. Подставив эти значения в приведенные выше формулы, получим:

x =150-162=12 уд/мин - абсолютная погрешность;

х= (12: 150)Х100%=8% -относительная погрешность.

Задание №3 Индексы оценки физического развития

Индекс

Оценка

Индекс Брока-Бругша

Были разработаны и добавлены такие варианты:

    при росте до 165 см «идеальный вес» = рост (см) – 100;

    при росте от 166 до 175 см «идеальный вес» = рост (см) – 105;

    при росте выше 176 см «идеальный вес» = рост (см) – 110.

Жизненный индекс

Ж/М (по росту)

Средняя величина показателя для мужчин - 65-70 мл/кг, для женщин - 55-60 мл/кг, для спортсменов - 75-80 мл/кг, для спортсменок - 65-70 мл/кг.

Разностный индекс определяется путем вычитания из величины роста сидя длины ног. Средний показатель для мужчин - 9-10 см, для женщин - 11-12 см. Чем меньше индекс, тем, следовательно, больше длина ног, и наоборот.

Весо – ростовой индекс Kетле

BMI = m / h2 , где m - масса тела человека (в кг), h - рост человека (в м).

Выделяют следующие значения BMI:

меньше 15 - острый дефицит веса;

от 15 до 20 - дефицит веса;

от 20 до 25 - нормальный вес;

от 25 до 30 - избыточный вес;

свыше 30 - ожирение.

Индекс скелии по Мануврие характеризует длину ног.

ИС = (длина ног / рост сидя) х 100

Величина до 84,9 свидетельствует о коротких ногах;

85-89 - о средних;

90 и выше - о длинных.

Масса тела (вес) для взрослых рассчитывается по формуле Бернгарда.

Вес = (рост х объем груди) / 240

Формула дает возможность учитывать особенности телосложения. Если расчет производится по формуле Брока, то после расчетов из результата следует вычесть около 8%: рост - 100 - 8%

Жизненный показатель

ЖЕЛ (мл) / на массу тела (кг)

Чем выше показатель, тем лучше развита дыхательная функция грудной клетки.

W. Stern (1980) предложил метод определения жировой прослойки у спортсменов.

Процент жировой прослойки

Тощая масса тела

[(масса тела - тощая масса тела) / масса тела] х 100

98,42 +

Согласно формуле Лоренца, идеальная масса тела (М) составляет:

М = Р - (100 - [(Р - 150) / 4])

где: Р - рост человека.

Индекс пропорциональности развития грудной клетки (индекс Эрисмана): обхват грудной клетки в паузе (см) - (рост (см) / 2) = +5,8 см для мужчин и +3,3 см для женщин.

Показатель пропорциональности физического развития

(рост стоя - рост сидя / рост сидя) х 100

Величина показателя позволяет судить об относительной длине ног: меньше 87% - малая длина по отношению к длине туловища, 87-92% - пропорциональное физическое развитие, более 92% - относительно большая длина ног.

Индекс Руффье (Ir).

J r = 0,1 (ЧСС 1 + ЧСС 2 + ЧСС 3 – 200) ЧСС 1 – пульс в покое, ЧСС 2 – после нагрузки, ЧСС 3 – после 1 мин. Восстановления

Полученный индекс Руфье-Диксона расценивается как:

    хороший - 0,1 – 5;

    средний - 5,1 – 10;

    удовлетворительный - 10,1 – 15;

    плохой - 15,1 – 20.

Коэффициент выносливости (К).

Используется для оценки степени тренированности сердечнососудистой системы к выполнению физической нагрузки и определяется по формуле:

где ЧСС - частота сердечных сокращений, уд./мин; ПД - пульсовое давление, мм рт. ст. Увеличение KB, связанное с уменьшением ПД, является показателем детренированности сердечнососудистой системы.

Индекс Скибинскии

Этот тест отражает функциональные резервы дыхательной и сердечно-сосудистой систем:

После 5-минутного отдыха в положении стоя определите ЧСС (по пульсу), ЖЕЛ (в мл);

Через 5 мин после этого задержите дыхание после спокойного вдоха (ЗД);

Индекс рассчитайте по формуле:

Если результат более 60 - отлично;

30-60 - хорошо;

10-30-удовлетворительно;

5-10 - неудовлетворительно;

Менее 5 - очень плохо.


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

Cтраница 1


Абсолютная ошибка определения не превышает 0 01 мкг фосфора. Этот метод был применен нами для определения фосфора в азотной, уксусной, соляной и серной кислотах и ацетоне с предварительным выпариванием их.  

Абсолютная ошибка определения составляет 0 2 - 0 3 мг.  

Абсолютная ошибка определения цинка в цинк-марганцевых ферритах предложенным методом не превышает 0 2 % отн.  

Абсолютная ошибка определения углеводородов С2 - С4, при содержании их в газе 0 2 - 5 0 %, составляет 0 01 - 0 2 % соответственно.  

Здесь Ау - - абсолютная ошибка определения г /, которая получается в результате ошибки Да в определении а. Например, относительная ошибка квадрата числа в два раза больше ошибки определения самого числа, а относительная ошибка числа, стоящего под кубическим корнем, составляет просто одну треть от ошибки определения числа.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки MV - Ms / Мв, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / re, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки Mv - Ms / Ms, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / rs, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

При одной и той же абсолютной ошибке измерения ау абсолютная ошибка определения количества ах уменьшается с увеличением чувствительности метода.  

Поскольку в основе ошибок лежат не случайные, а систематические погрешности, итоговая абсолютная ошибка определения присосов может достигать 10 % теоретически необходимого количества воздуха. Только при недопустимо неплотных топках (А а0 25) общепринятый метод дает более или менее удовлетворительные результаты. Описанное хорошо известно наладчикам, которые при сведении воздушного баланса плотных топок нередко получают отрицательные значения присосов.  

Анализ погрешности определения величины пэт показал, что она складывается из 4 составляющих: абсолютной ошибки определения массы матрицы, емкости образца, взвешивания, относительной ошибки за счет флуктуации массы образца около равновесного значения.  

При соблюдении всех правил отбора, отсчета объемов и анализа газов при помощи газоанализатора ГХП-3 общая абсолютная ошибка определения содержания С02 и О2 не должна превышать 0 2 - 0 4 % истинной их величины.  

Из табл. 1 - 3 можно сделать заключение, что используемые нами данные для исходных веществ, взятые из разных источников, имеют сравнительно небольшие различия, которые лежат в пределах абсолютных ошибок определения этих величин.  

Случайные ошибки могут быть абсолютными и относительными. Случайную ошибку, имеющую размерность измеряемой величины, называют абсолютной ошибкой определения. Среднее арифметическое значение абсолютных ошибок всех отдельных измерений называют абсолютной ошибкой метода анализа.  

Величина допустимого отклонения, или доверительный интервал, устанавливается не произвольно, а вычисляется из конкретных данных измерений и характеристик используемых приборов. Отклонение результата отдельного измерения от истинного значения величины называется абсолютной ошибкой определения или просто ошибкой. Отношение абсолютной ошибки к измеряемой величине называется относительной ошибкой, которую обычно выражают в процентах. Знание ошибки отдельного измерения не имеет самостоятельного значения, и во всяком серьезно поставленном эксперименте должно проводиться несколько параллельных измерений, по которым и вычисляют ошибку эксперимента. Ошибки измерений в зависимости от причин их возникновения делятся на три вида.  

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.


Ошибки измерений классифицируют по следующим видам:

Абсолютные и относительные.

Положительные и отрицательные.

Постоянные и пропорциональные.

Грубые, случайные и систематические.

Абсолютная ошибка единичного результата измерения (А­ y ) определяется как разность следующих величин:

А­ y = y i - y ист. » y i -`y .

Относительная ошибка единичного результата измерения (В­ y ) рассчитывается как отношение следующих величин:

Из этой формулы следует, что величина относительной ошибки зависит не только от величины абсолютной ошибки, но и от значения измеряемой величины. При неизменности измеряемой величины (y ) относительную ошибку измерения можно уменьшить только за счет снижения величины абсолютной ошибки (А­ y ). При постоянстве абсолютной ошибки измерения для уменьшения относительной ошибки измерения можно использовать прием увеличения значения измеряемой величины.

Пример. Допустим, что в магазине торговые весы имеют постоянную абсолютную ошибку измерения массы: A m = 10 г. Если Вы взвесите на таких весах 100 г конфет (m 1), то относительная ошибка измерения массы конфет составит:

.

При взвешивании на этих же весах 500 г конфет (m 2) относительная ошибка будет в пять раз меньше:

.

Таким образом, если Вы будете пять раз взвешивать по 100 г конфет, то вы из-за ошибки измерения массы, из 500 г недополучите суммарно 50 г продукта. При однократном взвешивании большей массы (500 г) Вы потеряете только 10 г конфет, т.е. в пять раз меньше.

Учитывая вышесказанное, можно отметить, что в первую очередь необходимо стремиться к уменьшению относительных ошибок измерения. Абсолютные и относительные ошибки можно рассчитать только после определения среднего арифметического значения результата измерения.

Знак ошибки (положительный или отрицательный) определяется разницей между единичным и фактическим результатом измерения:

y i -`y > 0 (ошибка положительная );

y i -`y < 0 (ошибка отрицательная ).

Если абсолютная ошибка измерения не зависит от значения измеряемой величины, то такая ошибка называется постоянной . В противном случае ошибка будет пропорциональной . Характер ошибки измерения (постоянная или пропорциональная) определяется после проведения специальных исследований.

Грубая ошибка измерения (промах) - это значительно отличающийся от других результат измерения, который обычно возникает при нарушении методики измерения. Наличие грубых ошибок измерения в выборке устанавливается только методами математической статистики (при n>2). С методами обнаружения грубых ошибок познакомьтесь самостоятельно в .

Деление ошибок на случайные и систематические достаточно условно.


К случайным ошибкам относят ошибки, которые не имеют постоянной величины и знака. Такие ошибки возникают под действием следующих факторов: неизвестных исследователю; известных, но нерегулируемых; постоянно изменяющихся.

Случайные ошибки можно оценить только после проведения измерений.

Количественной оценкой модуля величины случайной ошибки измерения могут являться следующие параметры: и др.

Случайные ошибки измерения невозможно исключить, их можно только уменьшить. Один из основных способов уменьшения величины случайной ошибки измерения - это увеличение числа единичных измерений (увеличение величины n). Объясняется это тем, что величина случайных ошибок обратно пропорциональна величине n, например:

Систематические ошибки - это ошибки с неизменными величиной и знаком или изменяющиеся по известному закону. Эти ошибки вызываются постоянными факторами. Систематические ошибки можно количественно оценивать, уменьшать и даже исключать.

Систематические ошибки классифицируют на ошибки I, II и III типов.

К систематическим ошибкам I типа относят ошибки известного происхождения, которые могут быть до проведения измерения оценены путем расчета. Эти ошибки можно исключить, вводя их в результат измерения в виде поправок. Примером ошибки такого типа является ошибка при титрометрическом определении объемной концентрации раствора, если титрант был приготовлен при одной температуре, а измерение концентрации проводилось при другой. Зная зависимость плотности титранта от температуры, можно до проведения измерения рассчитать изменение объемной концентрации титранта, связанное с изменением его температуры, и эту разницу учесть в виде поправки в результате измерения.

Систематические ошибки II типа - это ошибки известного происхождения, которые можно оценить только в ходе эксперимента или в результате проведения специальных исследований. К этому типу ошибок относят инструментальные (приборные), реактивные, эталонные и др. ошибки. Познакомьтесь с особенностями таких ошибок самостоятельно в .

Любой прибор при его применении в процедуре измерения вносит в результат измерения свои приборные ошибки. При этом часть этих ошибок случайная, а другая часть - систематическая. Случайные ошибки приборов отдельно не оценивают, их оценивают в общей совокупности со всеми другими случайными ошибками измерения.

Каждый экземпляр любого прибора имеет свою персональную систематическую ошибку. Для того чтобы оценить эту ошибку, необходимо проводить специальные исследования.

Наиболее надежный способ оценки приборной систематической ошибки II типа - это сверка работы приборов по эталонам. Для мерной посуды (пипеток, бюреток, цилиндров и др.) проводят специальную процедуру - калибровку.

На практике наиболее часто требуется не оценить, а уменьшить или исключить систематическую ошибку II типа. Самыми распространенными методами уменьшения систематических ошибок являются методы релятивизации и рандомизации .Познакомьтесь с этими методами самостоятельно в .

К ошибкам III типа относят ошибки неизвестного происхождения. Эти ошибки можно обнаружить только после устранения всех систематических ошибок I и II типов.

К прочим ошибкам отнесем все другие виды ошибок, не рассмотренные выше (допустимые, возможные предельные ошибки и др.). Понятие возможных предельных ошибок применяется в случаях использования средств измерения и предполагает максимально возможную по величине инструментальную ошибку измерения (реальное же значение ошибки может быть меньше величины возможной предельной ошибки).

При использовании средств измерения можно рассчитать возможные предельные абсолютную (П`y ,пр.) или относительную (Е`y ,пр.) погрешности измерения. Так, например, возможная предельная абсолютная погрешность измерения находится как сумма возможных предельных случайных (x ` y , случ., пр.) и неисключенных систематических (d`y , пр.) ошибок:

П`y ,пр.= x ` y , случ., пр. + d`y , пр.

При выборках малого объема (n £ 20) неизвестной генеральной совокупности, подчиняющейся нормальному закону распределения, случайные возможные предельные ошибки измерений можно оценить следующим образом:

x ` y , случ., пр. = D`y = S `y ½t P, n ½,
где t P,n - квантиль распределения (критерий) Стьюдента для вероятности Р и выборки объемом n. Абсолютная возможная предельная погрешность измерения в этом случае будет равна:

П`y ,пр.= S ` y ½t P, n ½+ d ` y , пр.

Если результаты измерений не подчиняются нормальному закону распределения, то оценка погрешностей проводится по другим формулам.

Определение величины d ` y ,пр. зависит от наличия у средства измерения класса точности. Если средство измерения не имеет класса точности, то за величину d ` y ,пр. можно принять минимальную цену деления шкалы средства измерения . Для средства измерения с известным классом точности за величину d ` y ,пр.можно принять абсолютную допустимую систематическую ошибку средства измерения (d y , доп.):

d ` y ,пр.» .

Величина d y , доп. рассчитывается исходя из формул, приведенных в табл.5.

Для многих средств измерения класс точности указывается в виде чисел а×10 n , где а равно 1; 1,5; 2; 2,5; 4; 5; 6 и n равно 1; 0; -1; -2 и т.д., которые показывают величину возможной предельной допускаемой систематической ошибки (Е y , доп.) и специальных знаков, свидетельствующих о ее типе (относительная, приведенная, постоянная, пропорциональная).

Таблица 5

Примеры обозначения классов точности средств измерения