Генетическое кодирование. Биосинтез белка и нуклеиновых кислот. Гены, генетический код. Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Свойства генетического кода.

Генетический код имеет несколько свойств.

    Триплетность.

    Вырожденность или избыточность.

    Однозначность.

    Полярность.

    Неперекрываемость.

    Компактность.

    Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 4 3 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую либо аминокислоту, их называют смысловые кодоны . Три триплета не кодируют

аминокислот а являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три – УАА, УАГ, УГА , их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называютнонсенс-мутация . Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться – синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» — Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции .

б. Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон — это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами - УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин - двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках.

И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент - гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части – глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит гем, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона , который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид – первый, второй или третий. Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка - глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные -цепи и две -цепи. Молекула -цепи содержит 141 аминокислотных остатков, -цепочка - 146, — и -цепи различаются по многим аминокислотным остаткам. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. Ген, кодирующий -цепь располагается в коротком плече 16 хромосомы, -ген - в коротком плече 11 хромосомы. Замена в гене, кодирующем -цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” - приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту - тирозин Фенотипически это проявится в тяжёлом заболевании.. Аналогичная замена в 63 положении -цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении -цепи является причиной тяжелейшего заболевания - серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в -цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам - они обе гидрофильны. Валин - гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина - у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту – гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

в. Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

Кодон аминокислота

Вырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

г. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

д. Неперекрываемость.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33,А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов (см. рис.34) третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Однако многочисленные опыты показали, что при нарушении одного нуклеотида в ДНК, нарушения в белке всегда касаются только одной аминокислоты, что характерно для неперекрывающегося кода.

ГЦУГЦУГ ГЦУГЦУГ ГЦУГЦУГ

ГЦУ ГЦУ ГЦУ УГЦ ЦУГ ГЦУ ЦУГ УГЦ ГЦУ ЦУГ

*** *** *** *** *** ***

Аланин – Аланин Ала – Цис – Лей Ала – Лей – Лей – Ала – Лей

А Б В

Не перекрывающийся код Перекрывающийся код

Рис. 34. Схема, объясняющая наличие в геноме не перекрывающегося кода (объяснение в тексте).

Неперекрываемость генетического кода связана с ещё одним свойством – считывание информации начинается с определённой точки – сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ.

Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

е. Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

ж. Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Кодовая система ДНК.

Генетический код днк состоит из 64 триплетов нуклеотидов. Эти триплеты называют кодонами. Каждый кодон кодирует одну из 20 аминокислот, используемых в синтезе белков. Это дает некоторую избыточность в коде: большинство аминокислот кодируется более чем одним кодоном.
Один кодон выполняет две взаимосвязанные функции: сигнализирует о начале перевода и кодирует включения аминокислоты метионина (Met) в растущую полипептидную цепь. Кодовая система днк устроена так, что генетический код может быть выражен либо как РНК-кодонами, либо кодонамиДНК. РНК-кодоны встречаются в РНК (мРНК) и эти кодоны способны читать информацию в процессе синтеза полипептидов (процесс, называемый переводом). Но каждая молекула мРНК приобретает последовательность нуклеотидов в транскрипции с соответствующего гена.

Все, кроме двух аминокислот (Met и Trp) могут быть закодированы посредством от 2 до 6 различных кодонов. Тем не менее, геном большинства организмов показывает, что определенные кодоны предпочтительны по сравнению с другими. У человека, например, аланин кодируется GCC четыре раза чаще, чем в GCG. Это, вероятно, свидетельствует о большей эффективности перевода аппарата трансляции (например, рибосомы) для некоторых кодонов.

Генетический код является почти универсальным. Те же кодоны назначены на тот же участок аминокислот и тем же сигналы пуска и остановки в подавляющем большинстве совпадают у животных, растений и микроорганизмов. Тем не менее, некоторые исключения были найдены. Большинство из них включают назначение одного или двух из трех стоп-кодонов к аминокислоте.

ГЕНЕТИЧЕСКИЙ КОД, система записи наследственной информации в виде последовательности оснований нуклеотидов в молекулах ДНК (у некоторых вирусов - РНК), определяющая первичную структуру (расположение аминокислотных остатков) в молекулах белков (полипептидов). Проблема генетического кода была сформулирована после доказательства генетической роли ДНК (американские микробиологи О. Эйвери, К. Мак-Леод, М. Маккарти, 1944) и расшифровки её структуры (Дж. Уотсон, Ф. Крик, 1953), после установления того, что гены определяют структуру и функции ферментов (принцип «один ген - один фермент» Дж. Бидла и Э. Тейтема, 1941) и что существует зависимость пространственной структуры и активности белка от его первичной структуры (Ф. Сенгер, 1955). Вопрос о том, как комбинации из 4 оснований нуклеиновых кислот определяют чередование 20 обычных аминокислотных остатков в полипептидах, впервые поставил Г. Гамов в 1954 году.

На основании эксперимента, в котором исследовали взаимодействия вставок и выпадений пары нуклеотидов, в одном из генов бактериофага Т4 Ф. Крик и другие учёные в 1961 году определили общие свойства генетического кода: триплетность, т. е. каждому аминокислотному остатку в полипептидной цепи соответствует набор из трёх оснований (триплет, или кодон) в ДНК гена; считывание кодонов в пределах гена идёт с фиксированной точки, в одном направлении и «без запятых», то есть кодоны не отделены какими-либо знаками друг от друга; вырожденность, или избыточность, - один и тот же аминокислотный остаток могут кодировать несколько кодонов (кодоны-синонимы). Авторы предположили, что кодоны не перекрываются (каждое основание принадлежит только одному кодону). Прямое изучение кодирующей способности триплетов было продолжено с использованием бесклеточной системы синтеза белка под контролем синтетической матричной РНК (мРНК). К 1965 году генетический код был полностью расшифрован в работах С. Очоа, М. Ниренберга и Х. Г. Кораны. Раскрытие тайны генетического кода явилось одним из выдающихся достижений биологии в 20 веке.

Реализация генетического кода в клетке происходит в ходе двух матричных процессов - транскрипции и трансляции. Посредником между геном и белком является мРНК, образующаяся в процессе транскрипции на одной из нитей ДНК. При этом последовательность оснований ДНК, несущая информацию о первичной структуре белка, «переписывается» в виде последовательности оснований мРНК. Затем в ходе трансляции на рибосомах последовательность нуклеотидов мРНК считывается транспортными РНК (тРНК). Последние имеют акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, или антикодон-триплет, который узнаёт соответствующий кодон мРНК. Взаимодействие кодона и анти-кодона происходит на основании комплементарного спаривания оснований: Аденин (А) - Урацил (U), Гуанин (G) - Цитозин (С); при этом последовательность оснований мРНК переводится в аминокислотную последовательность синтезирующегося белка. Различные организмы используют для одной и той же аминокислоты разные кодоны-синонимы с разной частотой. Считывание мРНК, кодирующей полипептидную цепь, начинается (инициируется) с кодона AUG, соответствующего аминокислоте метионину. Реже у прокариот инициирующими кодонами служат GUG (валин), UUG (лейцин), AUU (изолейцин), у эукариот - UUG (лейцин), AUA (изолейцин), ACG (треонин), CUG (лейцин). Это задаёт так называемую рамку, или фазу, считывания при трансляции, то есть далее всю нуклеотидную последовательность мРНК считывают триплет за триплетом тРНК до тех пор, пока на мРНК не встретится любой из трёх кодонов-терминаторов, часто называемых стоп-кодонами: UAA, UAG, UGA (таблица). Считывание этих триплетов приводит к завершению синтеза полипептидной цепи.

Кодоны AUG и стоп-кодоны стоят соответственно в начале и в конце участков мРНК, кодирующих полипептиды.

Генетический кода квазиуниверсален. Это значит, что существуют небольшие вариации в значении некоторых кодонов у разных объектов, и это касается, прежде всего, кодонов-терминаторов, которые могут быть значащими; например, в митохондриях некоторых эукариот и у микоплазм UGA кодирует триптофан. Кроме того, в некоторых мРНК бактерий и эукариот UGA кодирует необычную аминокислоту - селеноцистеин, а UAG у одной из архебактерий - пирролизин.

Существует точка зрения, согласно которой генетический кода возник случайно (гипотеза «замороженного случая»). Более вероятно, что он эволюционировал. В пользу такого предположения говорит существование более простого и, по-видимому, более древнего варианта кода, который считывается в митохондриях согласно правилу «два из трёх», когда аминокислоту определяют только два из трёх оснований в триплете.

Лит.: Crick F. Н. а. о. General nature of the genetic code for proteins // Nature. 1961. Vol. 192; The genetic code. N. Y., 1966; Ичас М. Биологический код. М., 1971; Инге-Вечтомов С. Г. Как читается генетический код: правила и исключения // Современное естествознание. М., 2000. Т. 8; Ратнер В. А. Генетический код как система // Соросовский образовательный журнал. 2000. Т. 6. № 3.

С. Г. Инге-Вечтомов.

ГЕНЕТИЧЕСКИЙ КОД , способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U). Каждую кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.

В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам.

Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК (транскрипция). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка (трансляция). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.

Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода – его специфичность (однозначность): один кодон кодирует только одну аминокислоту.

Кроме того, код не перекрывается – информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода – его универсальность: он одинаков у всех живых существ – от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.

Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается информация, осуществлена в 1961–1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку: ДНК - и-РНК - белок. Генетическая информация, содержащаяся в ДНК и в и-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом происходит перевод информации с "языка" нуклеотидов на "язык" аминокислот? Такой перевод осуществляется с помощью генетического кода. Код, или шифр,- это система символов для перевода одной формы информации в другую. Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в информационной РНК. Насколько важна именно последовательность расположения одних и тех же элементов (четырех нуклеотидов в РНК) для понимания и сохранения смысла информации, можно убедиться на простом примере: переставив буквы в слове код, мы получим слово с иным значением - док. Какими же свойствами обладает генетический код?

1. Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из четырех нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется два нуклеотида). Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Из 4 нуклеотидов можно создать 64 различные комбинации по 3 нуклеотида в каждой (4*4*4=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 кодона являются лишними. Однако это не так.

2. Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним триплетом. (Это видно из таблицы генетического кода .) Тот факт, что метионин кодируется одним триплетом АУТ, имеет особый смысл, который вам станет понятен позже ( 16).

3. Код однозначен. Каждый кодон шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию о бета-цепи гемоглобина , триплет ГАА или ГАГ, I стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин. К чему приводит такая замена, вы уже знаете из раздела о ДНК .

4. Между генами имеются "знаки препинания". В печатном тексте в конце каждой фразы стоит точка. Несколько связанных по смыслу фраз составляют абзац. На языке генетической информации таким абзацем являются оперон и комплементарная ему и-РНК. Каждый ген в опероне кодирует одну полипептидную цепочку - фразу. Так как в ряде случаев по матрице и-РНК последовательно создается несколько разных полипептидных цепей, они должны быть отделены друг от друга. Для этого в генетическом коде существуют три специальные триплета - УАА, УАГ, УГА, каждый из которых обозначает прекрдщение синтеза одной полипептидной цепи. Таким образом, эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена. Внутри гена нет "знаков препинания". Поскольку генетический код подобен языку, разберем это свойство на примере такой составленной из триплетов фразы: жил был кот тих был сер мил мне тот кот. Смысл написанного понятен, несмотря на отсутствие "знаков препинания. Если же мы уберем в первом слове одну букву (один нуклеотид в гене), но читать будем также тройками букв, то получится бессмыслица: илб ылк отт ихб ылс ерм илм нет отк от Нарушение смысла возникает и при выпадении одного или двух нуклеотидов из гена. Белок, который будет считываться с такого испорченного гена, не будет иметь ничего общего с тем белком, который кодировался нормальным геном.

6. Код универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушки и человека одни и те же триплеты кодируют одни и те же аминокислоты.