Формирование представлений об атомно молекулярной теории. Атомно молекулярное учение. Основные положения атомно-молекулярной теории

§ 1 М.В. Ломоносов, как основоположник атомно-молекулярного учения

Начиная с XVII века, в науке существовало молекулярное учение, которое использовалось для объяснения физических явлений. Практическое применение молекулярной теории в химии было ограничено тем, что ее положения не могли объяснить сущность протекания химических реакций, ответить на вопрос, как из одних веществ в ходе химического процесса образуются новые.

Решение этого вопроса оказалось возможным на основе атомно-молекулярного учения. В 1741 г. в книге «Элементы математической химии» Михаил Васильевич Ломоносов фактически сформулировал основы атомно-молекулярного учения. Русский учёный-энциклопедист рассматривал строение вещества не как определенную комбинацию атомов, но как сочетание более крупных частиц - корпускул, которые, в свою очередь, состоят из более мелких частиц - элементов.

Терминология Ломоносова со временем претерпела изменения: то, что он называл корпускулами, стали называть молекулами, а на смену термину элемент пришёл термин атом. Однако суть высказанных им идей и определений блестяще выдержала испытание временем.

§ 2 История развития атомно-молекулярного учения

История развития и утверждения в науке атомно-молекулярного учения оказалась очень непростой. Работа с объектами микромира вызывала огромные трудности: атомы и молекулы было невозможно увидеть и, таким образом, убедиться в их существовании, а попытки измерения атомных масс нередко заканчивались получением ошибочных результатов. Через 67 лет после открытия Ломоносова, в 1808 году, известный английский учёный Джон Дальтон выдвинул атомную гипотезу. Согласно ей, атомы представляют собой мельчайшие частицы вещества, которые невозможно разделить на составные части или превратить друг в друга. По Дальтону, все атомы одного элемента имеют совершенно одинаковый вес и отличаются от атомов других элементов. Соединив учение об атомах с учением о химических элементах, разработанным Робертом Бойлем и Михаилом Васильевичем Ломоносовым, Дальтон обеспечил прочный фундамент для дальнейших теоретических исследований в химии. К сожалению, Дальтон отрицал существование молекул у простых веществ. Он считал, что из молекул состоят только сложные вещества. Это не способствовало дальнейшему развитию и применению атомно-молекулярного учения.

Условия для распространения идей атомно-молекулярного учения в естествознании сложились лишь во второй половине XIX века. В 1860 году на Международном съезде естествоиспытателей в немецком городе Карлсруэ были приняты научные определения атома и молекулы. Учения о строении веществ тогда ещё не было, поэтому было принято положение о том, что все вещества состоят из молекул. Считалось, что простые вещества, например металлы, состоят из одноатомных молекул. Впоследствии такое сплошное распространение принципа молекулярного строения на все вещества оказалось ошибочным.

§ 3 Основные положения атомно-молекулярного учения

1.Молекула - наименьшая часть вещества, сохраняющая его состав и важнейшие свойства.

2.Молекулы состоят из атомов. Атомы одного элемента сходны друг с другом, но отличаются от атомов других химических элементов.

С момента первых догадок человека о существовании атомов и молекул (философское учение древнегреческого ученого Левкиппа; 500-400 г. до н. э.), дошедших до нас, до создания официальной теории атомно-молекулярного учения (I Международный съезд химиков в Германии; 1860 г.) прошло почти 2500 лет.

Основные положения атомно-молекулярной теории:

  • Все вещества состоят из атомов, молекул, ионов.
  • Каждый отдельный вид атомов называют химическим элементом.
  • Все атомы одного и того же элемента одинаковы, но отличаются от атомов любого другого химического элемента.
  • Молекулы состоят из атомов.
  • Состав молекул обозначается химической формулой.
  • Атомы, молекулы, ионы находятся в непрерывном движении.
  • При химических реакциях молекулы претерпевают изменения, в ходе которых из одних молекул образуются другие, при физических реакциях состав молекул вещества остается неизменным.

Атом является мельчайшей неделимой частицей вещества. Он электрически нейтрален (положительный заряд ядра атома компенсируется отрицательным зарядом электронов, вращающихся вокруг ядра). См. структура атома .

Определенный вид атомов, характеризующихся одинаковым зарядом его ядра, называется химическим элементом .

Химические элементы обозначаются химическими знаками, которые являются начальными буквами латинского названия элемента: О (Oxygenium - кислород), H (Hydrogenium - водород) и пр.

Все химические элементы, известные на данный момент науке, сведены в периодическую систему элементов Д. И. Менделеева , в которой порядковый номер элемента равен заряду ядра его атома (числу протонов, содержащихся в ядре).

Самым распространенным на Земле химическим элементом является кислород, затем идут кремний, алюминий, железо, кальций, натрий, калий, магний, углерод. Доля всех остальных химических элементов составляет менее 1% от массы земной коры. Во Вселенной самыми распространенными элементами являются водород и гелий.

Как уже было сказано выше, соединения различных элементов образуют молекулы, которые, в свою очередь, могут образовывать простые или сложные вещества.

Простые вещества состоят из атомов только одного химического элемента (O 2 , H 2 , N 2).

Простые вещества в свою очередь подразделяются на металлы (86 элементов) и неметаллы . Металлы имеют свободные электроны, что обусловливает их хорошую электро- и теплопроводность, характерный металлический блеск.

Сложные вещества состоят из атомов нескольких химических элементов (H 2 O, H 2 SO 4 , HCl).

Некоторые химические элементы могут существовать в виде нескольких простых веществ (например, О 2 - кислород, О 3 - озон и проч.), это, так называемые, аллотропные модификации . При этом аллотропия может быть вызвана не только различным числом атомов элемента, но также и строением кристаллической решетки вещества (аллотропные модификации углерода - алмаз, графит, карбин).

Тема лекции: ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ.

План:

ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

ОСНОВНЫЕ ГАЗОВЫЕ ЗАКОНЫ

ХИМИЧЕСКИЙ ЭКВИВАЛЕНТ. ЗАКОН ЭКВИВАЛЕНТНЫХ ОТНОШЕНИЙ

ХИМИЧЕСКИЕ РЕАКЦИИ. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

МЕСТО ХИМИИ СРЕДИ ДРУГИХ НАУК

Химия относится к естественным наукам, изучающим окружающий нас материальный мир, его явления и за­коны.

Основным законом природы является закон вечности материи и ее движения. Отдельные формы движения материи изучаются отдельными науками. Место химии, имеющей дело главным образом с молекулярным (и атом­ным) уровнем организации материи, между физикой эле­ментарных частиц (субатомный уровень) и биологией (над­молекулярный уровень).

Химия - наука о веществах, их составе, строении, свойствах и превращениях, связанных с изменением состава, строения и свойств образующих их частиц.

Великий русский ученый М. В. Ломоносов сказал: «Широко простирает химия руки свои в дела человече­ские». Действительно, практически нет ни одной техни­ческой дисциплины, которая могла бы обойтись без зна­ний химии. Даже такие современные и далекие, казалось бы, от химии науки, как электроника, информатика, се­годня получили новый импульс в своем развитии, заклю­чив «союз» с химией (запись информации на молекуляр­ном уровне, разработка биокомпьютеров и др.). Что тогда говорить о фундаментальных дисциплинах: физике, био­логии и др., где давно существуют самостоятельные раз­делы, пограничные с химией (химическая физика, биохи­мия, геохимия и пр.).

ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ.

АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

Представление об атомах, как конструкционных эле­ментах вещественного мира, зародилось еще в древней Греции (Левкипп, Демокрит, 1У-Ш вв. до н. э.). Но только в конце XVIII - начале XIX в. было создано атомно-молекулярное учение. Важнейший вклад в обоб­щение накопленного материала был сделан М. В. Ломо­носовым.

Атомно-молекулярное учение включает в себя следую­щие основные положения:

1. Все вещества не являются сплошными, а состоят из частиц (молекул, атомов, ионов).

2. Молекулы состоят из атомов (элементов).

3. Различия между веществами определяются разли­чиями образующих их частиц, которые отличаются друг от друга составом, строением и свойствами.

4. Все частицы находятся в постоянном движении, скорость которого увеличивается при нагревании.

Атом - наименьшая частица химического элемента, являющаяся носителем его свойств. Это электронейтраль­ная микросистема, поведение которой подчиняется зако­нам квантовой механики.


Химический элемент - вид атомов, имеющих одина­ковый положительный заряд ядра и характеризующих­ся определенной совокупностью свойств.

Изотопы - атомы одного элемента, различающиеся массой (количеством нейтронов в ядре).

Любой химический элемент в природе представлен определенным изотопным составом, поэтому его масса рассчитывается как некоторая средняя величина из масс изотопов с учетом их содержания в природе.

Молекула - наименьшая частица вещества, являю­щаяся носителем его свойств и способная к самостоя­тельному существованию.

Простое вещество - вещество, молекулы которого состоят только из атомов одного элемента.

Аллотропия - способность элемента образовать про­стые вещества, имеющие различный состав, строение и свойства.

Разновидности аллотропных модификаций определя­ются:

Различным числом атомов элемента в составе моле­кулы простого вещества, например, кислород (О 2) и озон (О 3).

Различиями в строении кристаллической решетки про­стого вещества, например, соединения углерода: гра­фит (плоская, или двумерная, решетка) и алмаз (объемная, или трехмерная решетка).

Сложное вещество - вещество, молекулы которого состоят из атомов разных элементов.

Сложные вещества, состоящие только из двух эле­ментов, называются бинарными, например:

Ø оксиды: CO, CO 2 , CaO, Na 2 O, FeO, Fe 2 O 3 ;

Ø сульфиды: ZnS, Na 2 S, CS 2 ;

Ø гидриды: CaH 2 , LiH, NaH;

Ø нитриды: Li 3 N, Ca 3 N 2 , AlN;

Ø фосфиды: Li 3 P, Mg 3 P 2 , AlP;

Ø карбиды: Be 2 C, Al 4 C 3 , Ag 2 C 2 ;

Ø силициды: Ca 2 Si, Na 4 Si.

Сложные соединения, состоящие более чем из двух эле­ментов, относятся к основным классам неорганических со­единений. Это гидроксиды (кислоты и основания) и соли, в том числе комплексные соединения.

Атомы и молекулы имеют абсолютную массу, напри­мер, масса атома С 12 равна 2·10 -26 кг.

Такими величинами пользоваться на практике неудоб­но, поэтому в химии принята относительная шкала масс.

Атомная единица массы (а. е. м.) равна 1/12 массы изотопа С 12 .

Относительная атомная масса (А r - безразмерная ве­личина) равна отношению средней массы атома к а. е. м.

Относительная молекулярная масса (М r - безразмер­ная величина) равна отношению средней массы молеку­лы к а. е. м.

Моль (ν - «ню» или n ) - количество вещества, содержащее столько же структурных единиц (атомов, молекул или ионов), сколько атомов содержится в 12 г изотопа С 12 .

Число Авогадро - число частиц (атомов, молекул, ионов и др.), содержащееся в 1 моле любого вещества.

N A = 6,02·10 23 .

Более точные значения некоторых фундаментальных констант приводятся в таблицах приложения.

Молярная масса вещества (М) - это масса 1 моля вещества. Она рассчитывается как отношение массы ве­щества к его количеству:

Молярная масса численно равна А r (для атомов) или М r (для молекул).

Из уравнения 1 можно определить количество веще­ства, если известны его масса и молярная масса:

(2)

Молярный объем (V m для газов) - объем одного моля вещества. Рассчитывается как отношение объема газа к его количеству:

(3)

Объем 1 моля любого газа при нормальных условиях (Р = 1 атм = 760 мм. рт. ст. = 101,3 кПа; T = 273ТС = 0°С) равен 22,4 л.

(4)

Плотность вещества равна отношению его массы к объему.

(5)

Закон сохранения массы веществ

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов

*Атомно-молекулярное учение этот закон объясняет следующим образом: в результатехимических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е.химическое превращение- это процесс разрыва одних связей между атомами и образование

других, в результате чего из молекул исходных веществ получаются молекулы продуктовреакции). Поскольку число атомов до и после реакции остается неизменным, то их общая массатакже изменяться не должна. Под массой понимали величину, характеризующую количество

Исходя из закона сохранения массы, можно составлять уравнения химических реакций ипо ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Все индивидуальные химические вещества имеют постоянный качественный и

количественный состав и определенное химическое строение, независимо от способаполучения.

Из закона постоянства состава следует, что при образовании сложного вещества элементы

соединяются друг с другом в определенных массовых соотношениях.

Закон Авогадро ди Кваренья (1811 г.)

В равных объемах различных газов при одинаковых условиях (температура, давление ит.д.) содержится одинаковое число молекул. (Закон справедлив только для газообразныхвеществ.)

Следствия.

1. Одно и то же число молекул различных газов при одинаковых условиях занимает

одинаковые объемы.

2. При нормальных условиях (0°C = 273°К, 1 атм = 101,3 кПа) 1 моль любого газа занимает

объем 22,4 л.__

Закон действующих масс

aA + bB + . . . = . . .

V = k [A]a [B]b . . .

Закон сохранения энергии : энергия изолированной системы (не обменивающейся с окружающей средой ни веществом, ни энергией) остается постоянной, возможны лишь переходы ее из одного вида в другой.

Закон сохранения электрического заряда : алгебраическая сумма электрических зарядов в изолированной системе сохраняется.

2. Основной закон химии как частный случай общего закона материального мира. Понятия: материя, вещество, поле, движение - и их количественные характеристики и взаимосвязь. Математические выражения законов сохранения массы и энергии.

Закон действующих масс

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . = . . .

V = k [A]a [B]b . . .

Материя существует в форме вещества и поля. Химия изучает окружающий нас мир объединяемым понятием материи существующей вне и независимо от сознания человека.


вещество - это любая совокупность атомов и молекул

Закон сохранения массы: масса веществ, вступивших в реакцию равна массе веществ, образовавшихся в результате реакции.

* Полностью эквивалентна этой и другая формулировка: в химической реакции число атомов химического элемента сохраняется.Последняя формулировка является основой для написания стехиометрических уравнений реакций.

Закон сохранения энергии: энергия изолированной системы (не обменивающейся с окружающей средой ни веществом, ни энергией) остается постоянной, возможны лишь переходы ее из одного вида в другой.

3. Атомно-молекулярное учение: современные положения, краткая история (основоположники).

АТОМНО-МОЛЕКУЛЯРНАЯ ТЕОРИЯ

Атомно-молекулярное учение - учение о строении веществ из атомов и молекул, создано трудами Ломоносова и Дальтона.

*В развитие атомно-молекулярного учения большой вклад внесли М. В. Ломоносов, Дж. Дальтон, А. Лавуазье, Ж. Пруст, А. Авогадро, Й. Берцелиус, Д. И. Менделеев, А. М. Бутлеров.

Состав и свойства химического соединения не зависит от способа и условий его получения.

Все молекулы состоят из атомов. Совокупность или набор атомов одного вида называют химическим элементом.

Атомно-молекулярная теория основные положения:

Все вещества состоят из атомов

Атомы одного химического вещества (химический элемент) обладают одинаковыми свойствами, но отличаются от атомов другого вещества

При взаимодействии атомов образуются молекулы (гомоядерные - простые вещества, гетероядерные - сложные вещества)

При физических явлениях молекулы не изменяются, при химических происходит изменение их состава

Химические реакции заключаются в образовании новых веществ из тех же самых атомов, из которых состояли исходные вещества

4. Основные понятияхимии : атом, молекула, химический элемент, вещество (простое и сложное). Количественные характеристики атома и молекулы: размеры, абсолютная и относительная атомная и молекулярная массы, атомная единица массы (а.е.м.).

Атом - электронейтральная частица, состоящая из положительно заряженного ядра и одного или нескольких электронов.

Молекула - наименьшая частица вещества, обладающая всеми химическими свойствами данного вещества. Для некоторых веществ понятия атома и молекулы совпадают.

Простым веществом называется вещество, молекулы которого состоят из атомов одного элемента,

Соединениями или сложными веществами называются вещества, молекулы которых состоят из атомов разных элементов

Молекулы различных веществ отличаются друг от друга массой, размерами и химическими свойствами. Все молекулы одного вещества одинаковы.

Молекулы состоят из более мелких частиц - атомов. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ состоят из разных атомов.

Атомы одного элемента отличаются от атомов других элементов зарядом атомного ядра, размером и химическими свойствами. При химических реакциях изменяется состав молекулы. Атомы при химических реакциях не разрушаются.

Международная единица атомных масс равна 1/12 массы изотопа 12C - основного изотопаприродного углерода.

Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколькораз масса молекулы данного вещества больше 1/12 массы атома углерода 12C.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м.

5. Расчет количества, молярной массы и молярного объема вещества. Число Авогадро.

Молярная масса вещества М равна отношению массы вещества к его количеству

и имеет принятую в химии размерность г/моль. Молярная масса вещества, выраженная в г/моль численно равна его относительной молекулярной массе. Численное равенство означает совпадение числовых значений величин, но не их размерностей.

Аналогично определяется и молярный объем как отношение объема вещества к его количеству:

Молярный объем может иметь размерность м3/моль, л/моль, см3/моль. Молярный объем определен для любого агрегатного состояния вещества и связан с его молярной массой через плотность:

Закон Авогардо: в равных объемах различных газов при одинаковых условиях (температура и давление) содержится одинаковое число молекул.

NA = 6,022 141 29(27)·10 23 моль−1

6. Химический элемент, символы элементов. Химическая формула вещества, вид формулы: эмпирическая, молекулярная, графическая. Понятия: валентность (стехиометрическая, связевая, координационная) и степень окисления химического элемента. Примеры.

Химический элемент - вид атомов, характеризующихся определенным зарядом ядра.

Молекулярная (брутто-) формула, показывающая число атомов в молекуле - C6H14,

Графическая

Эмпирическая формуладающая только соотношение элементов C:H = 3:7 - C3H7

Валентность - свойство атомов данного элемента присоединить или замещать в молекуле определенное число атомов других элементов. За единицу валентности принята валентность водорода.

Степенью окисления атома называется величина электростатического заряда атома в простом веществе, в молекуле химического соединения, в ионе

7. Понятия и количественное определение массовой, мольной и объемной долей элемента в молекуле вещества и вещества в смеси. Алгоритм установления эмпирической и молекулярной формул.

Массовая доля - отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах:

m - общая масса раствора, г.

Объёмная доля - отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

V1 - объём растворённого вещества, л;

V - общий объём раствора, л.

Мольная доля - отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

νi - количество i-го компонента, моль;

n - число компонентов;

Титр раствора - масса растворённого вещества в 1 мл раствора.

m1 - масса растворённого вещества, г;

V - общий объём раствора, мл;

Эмпирическая формула химического соединения - запись простейшего выражения относительного числа каждого типа атомов в нём; представляет собой линейную запись из символов химических элементов, сопровождающуюся подстрочными индексами, указывающими отношение элементов в соединении

Молярная масса эквивалентов обычно обозначается как или. Отношение эквивалентной молярной массы вещества к его собственно молярной массе называется фактором эквивалентности (обозначается обычно как).

Молярная масса эквивалентов вещества - масса одного моля эквивалентов, равная произведению фактора эквивалентности на молярную массу этого вещества.

Mэкв = fэкв×M

Фактор эквивалентности [править]

Отношение эквивалентной молярной массы к его собственной молярной массе называется фактором эквивалентности (обозначается обычно как).

Число эквивалентности [править]

Число эквивалентности z представляет собой небольшое положительное целое число, равное числу эквивалентов некоторого вещества, содержащихся в 1 моль этого вещества. Фактор эквивалентности связан с числом эквивалентности z следующим соотношением: =1/z.

Например, в реакции:

Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

Эквивалентом является частица ½Zn(OH)2. Число ½ есть фактор эквивалентности, z в данном случае равно 2

9. Химическая реакция: определение, признаки, отличие от физических явлений, классификации.

Хими́ческая реа́кция - превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.

Классификация

По изменению степеней окисления реагентов[править]

В данном случае различают

Окислительно-восстановительные реакции, в которых атомы одного элемента (окислителя) восстанавливаются, то есть понижают свою степень окисления, а атомы другого элемента (восстановителя) окисляются, то есть повышают свою степень окисления. Частным случаем окислительно-восстановительных реакций являются реакции диспропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления.

Пример окислительно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды:

Пример реакции диспропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония:

NH4NO3 = N2O + 2H2O (до 250 °C)

Не окислительно-восстановительные реакции - соответственно, реакции, в которых не происходит изменения степеней окисления атомов, например, указанная выше реакция нейтрализации.

По тепловому эффекту реакции[править]

Все реакции сопровождаются тепловыми эффектами. При разрыве химических связей в реагентах выделяется энергия, которая, в основном, идет на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить:

экзотермические реакции, которые идут с выделением тепла, (положительный тепловой эффект) например, указанное выше горение водорода

эндотермические реакции в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды.

Тепловой эффект реакции (энтальпию реакции, ΔrH), часто имеющий очень важное значение, можно вычислить по закону Гесса, если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (ΔrH < 0) наблюдается выделение тепла, в противном случае (ΔrH > 0) - поглощение.

По типу превращений реагирующих частиц[править]

соединения:

разложения:

замещения:

обмена (тип реакции-нейтрализация):

обмена (тип реакции-обмена):

Химические реакции всегда сопровождаются физическими эффектами: поглощением и выделением энергии, например в виде теплопередачи, изменением агрегатного состояния реагентов, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций.

Химические процессы, протекающие в веществе, отличаются и от физических процессов, и от ядерных превращений. В физических процессах каждое из участвующих веществ сохраняет неизменным свой состав (хотя вещества могут образовывать смеси), но могут изменять внешнюю форму или агрегатное состояние.

В химических процессах (химических реакциях) получаются новые вещества с отличными от реагентов свойствами, но никогда не образуются атомы новых элементов. В атомах же участвующих в реакции элементов обязательно происходят видоизменения электронной оболочки.

10.Схема и уравнение химической реакции (алгоритм записи уравнения). Физический смысл стехиометрических коэффициентов. Типы уравнения: полное, неполное, молекулярное, ионное, термохимическое. Привести примеры.

При химических реакциях одни вещества превращаются в другие. Вспомним известную нам реакцию серы с кислородом. И в ней из одних веществ (исходных веществ или реагентов) образуются другие (конечные вещества или продукты реакции).

Для записи и передачи информации о химических реакциях используются схемы и уравнения реакций.

Схема химической реакции – условная запись,дающая качественнуюинформацию о химической реакции.

Схема реакции показывает, какие вещества вступают в реакцию и какие образуются в результате реакции. И в схемах, и в уравнениях реакций вещества обозначаются их формулами.

Схема горения серы записывается так: S8 + O2 SO2.

Это означает, что при взаимодействии серы с кислородом протекает химическая реакция, в результате которой образуется диоксид серы (сернистый газ). Все вещества здесь молекулярные, поэтому при записи схемы использованы молекулярные формулы этих веществ. То же относится и к схеме другой реакции – реакции горения белого фосфора:

При нагревании до 900 oС карбоната кальция (мела, известняка) протекает химическая реакция: карбонат кальция превращается в оксид кальция (негашеную известь) и диоксид углерода (углекислый газ) по схеме:

CaCO3 CaO + CO2.

Для указания на то, что процесс происходит при нагревании, схему (и уравнение) обычно дополняют знаком " t" , а то, что углекислый газ при этом улетучивается, обозначают стрелкой, направленной вверх:

CaCO3 CaO + CO2.

Карбонат кальция и оксид кальция – вещества немолекулярные, поэтому в схеме использованы их простейшие формулы, отражающие состав их формульных единиц. Для молекулярного веществауглекислого газа – использована молекулярная формула.

Рассмотрим схему реакции, протекающей при взаимодействия пентахлорида фосфора с водой: PCl5 +H2O H3PO4 + HCl.

Из схемы видно, что при этом образуется фосфорная кислота и хлороводород.

Иногда для передачи информации о химической реакции бывает достаточно и краткой схемы этой реакции, например:

S8 SO2; P4 P4O10; CaCO3 CaO.

Естественно, что краткой схеме может соответствовать и несколько разных реакций.

Уравнение химической реакции – условная запись, дающая качественную и количественную информацию о химической реакции.

Для любой химической реакции справедлив один из важнейших законов химии:

При протекании химических реакций атомы не появляются, не исчезают и не превращаются друг в друга.

При записи уравнений химических реакций, кроме формул веществ, используются коэффициенты. Как и в алгебре, коэффициент "1" в уравнении химической реакции не ставится, но подразумевается. Рассмотренные нами реакции описываются следующими уравнениями:

1S8 + 8O2 = 8SO2, или S8 + 8O2 = 8SO2;

1P4 + 5O2 = 1P4O10, или P4 + 5O2 = P4O10;

1CaCO3 = 1CaO + 1CO2, или CaCO3 = CaO + CO2;

1PCl5 + 4H2O = 1H3PO4 + 5HCl, или PCI5 + 4H2O = H3PO4 + 5HCI.

1.Химия как предмет естествознания Химия изучает ту форму движения материи, в которой происходит взаимодействие атомов с образованием новых определенных веществ.Химия -наука о оставе,строении и свойствах веществ, их превращении или явлениях, кот.эти превращения сопровождают.Современная химия включает :общую, органическую,коллоидную,аналитическую,физическую,геологическую,биохимию,химию строительных материалов.Предмет химии - химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. соединяет физико-математические и биолого-социальные науки.

2.Класс неорганических соединений. Основные химические свойства кислот, оснований, солей. По свойствам неорганических соединений разделяеют на след. Классы : оксиды, основания, кислоты, соли.Оксиды -соединение элементов с кислородом, в которых последний является более электроотрицательным элементом, а именно проявляет степень окисления -2. и имеет место связь только элемент О2.Общ.формула СхОу. Бывают :кислотны е-способны к солеобразованию с основными оксидами и основаниями (SO3+Na2O=Na2SO4; So3+2NaOH=Na2SO4=H2O),основные- способны к солеобразовнию с кислотными оксидами и кислотами(СаО+СО2=СаСО3; СаО+2НСl=CaCl2+H2O ),амфотерные (к-ты и основ.)и с тем и с тем(ZnO,BeO,Cr2O3,SnO,PbO,MnO2).и несолеобразующие (CO,NO,N2O)Основания - вещества, при электролтической диссоциации которых анион м.б. только гидроксильная группа ОН. Кислотность основания-число ионов ОН образующихся при диссоциации гидроксида. Гидроксиды-вещества, содержащие группу ОН, получаются соединением оксидов с водой.Бывают 3видов : основные (основания) , кислотные (кислородсодержащие кислоты) и амфотерные (амфолиты-проявляют основные и кислотные свойства Cr(OH)3,Zn(OH)2,Be(OH)2,Al(OH)3) Кислоты -вещества, при электролитической диссоциации кот. Катионом м.б. только + заряженный ион Н. Бывают: бескислородные,кислородсодержащие .Число Н-основность кислоты. мета и орто формы-молекулы воды. Соли -вещества, при электоролитической диссоциации которых катионом может быть ион аммония(NH4) или ион металла, а анионом любой кислотный остаток Бывают:средние (полное замещение.состоят из кисотного остатка и иона метала), кислы е(неполное замещение.наличие в составе незамещенных Н), основные (неполное замещение.наличие незамещенных ОН) По составу неорганические вещества делятся на бинарные – состоящие только из двух элементов, и многоэлементные – состоящие из нескольких элементов.

3.Основные положения атомно-молекулярного учения

1.Все вещества состоят из молекул(корпускулы), при физических явлениях, молекулы сохраняются, при химических разрушаются.

2.Молекулы состоят из атомов(элементы), при химических реакциях атомы сохраняются.

3.Атомы каждого вида (элемента) одинаковы между собой, но отличаются от атомов любого другого вида.

4. При взаимодействии атомов образуются молекулы: гомоядерные (при взаимодействии атомов одного элемента) или гетероядерные (при взаимодействии атомов разных элементов).

5.Химичские реакции заключаются в образовании новых веществ, из тех же самых атомов, из которых состоят первоначальные вещества.+6.молек. и атомы находятся в непрерывном движении, а теплота состоит во внутреннем движении этих частиц

. Атом - наименьшая частица элемента, сохраняющая его химические свойства. Атомы различаются зарядами ядер, массой и размерами

Химический элемент - вид атомов с одинаково полож. Зарядом ядра. Физических свойств, характерных для простого вещества, химическому элементу приписать нельзя. Простые вещества - это вещества, состоящие из атомов одного и того же химического элемента. 4.Основные законы химии(закон сохранения, постоянства состава,кратных отношений, закон Авагадро) Закон сохранения: Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции. Закон постоянства состава : (любое хим. Соединение имеет один и тот же количественный состав независимо от способа его получения)Соотношения между массами элементов, входящих в сотав данного соединения,постоянны и не зависят от способа получения этого соединения.

Закон кратных отношений : Если два элемента образут друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся в этих соединениях на одну и ту же массу другого, относятся между собой как небольшие целые числа.

Закон Авогадро. В равных объемах любых газов, взятых при одной и той же температуре при одинаковом давлении, содержится одно и то же число молекул.

5. Закон Эквивалентов . Эквивалент вещества - это такое количество вещества,какое взаимодействует с 1 молем атома водорода или вытесняет такое же количество атомов Н в хим. Реакций. Vэ(Л/Моль)- эквивалентный объем вещества, тоесть то объем одного эквивалента вещества в газообразном состояние.ЗАКОН.Все вещества реагируют в химических реакциях и образуются в эквивалентных количествах. Отношение эквивалентных масс, объемов, реагирующих или образующих вещества,прямо пропорционально отнощению их масс(объемов)илиилиЭ(простые)=А(атомная масса)/В(валентность элемента) Э(кислоты)=М(молярная масса)/осн(основание кислоты) Э(Гидроксида)=М/Кисл)Кислотность гидроксида) Э(аксиды соли)=M/а(количество атомов элемента образ. Оксид(соли)*в (валентность этого элемента или металла)

6. Строение атомов. Ядро. Ядерные реакции. Виды излучения. Модель по резерфорду:1.практически вся масса сосредоточена в ядре 2.+ компенисруются – 3.заряд равен номеру группы. Простейшим –Н водород Современное понятие хим. Элемента-вид атомов с одинаково полож. Зарядом ядря атом состоит из положительно заряженного ядра и электронной оболочки. Электронная оболочка образована электронами. Число электронов равно числу протонов, поэтому заряд атома в целом равен 0 Число протонов, заряд ядра и число электронов численно равны порядковому номеру химического элемента. практически вся масса атома сосредоточена в ядре. Электроны двигаются вокруг ядра атома, не беспорядочно, а в зависимости от энергии, которой они обладают, образуя так называемый электронный слой. На каждом электронном слое может располагаться определенное число электронов: на первом - не больше 2, на втором - не больше 8, на третьем - не больше 18. Число электронных слоев определяется по номеру периода Число электронов на последнем (внешнем) слое определяется по номеру группы в периоде происходит постепенное ослабление металлических свойств и возрастание свойств неметаллов Я́дерная реа́кция - процесс образования новых ядер или частиц при столкновениях ядер или частиц. Радиоактивностью называют самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопроваждающееся испусканием элементарных частиц или ядер.Виды излучений:альфа,бета(отриц и полож) и гамма. Алфа частица – ядро атома гелия 4/2He. При испускании альфа-частиц ядро теряет два протона и два нейтрона,следовательно заряд уменьшается на 2, а массовое число на 4.отрицательная бэта частица – электрон. при испускании электрона заряд ядра увеличивается на единицу, а массовое число не изменяется. нестабильный изотоп оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения, тогда он выбрасывает порцию чистой энергии, называемой гамма-излучением. Атомы обладающие одинаковы зарядом ядра, но разными массовыми числами, называются изотопами(например 35/17 Cl и 37/17Cl) Атомы имеющие одинаковые массовые числа,но разное число протонов в ядре,называются изобарами(например 40/19K и 40/20Ca) Периодом полураспада (Т ½)называется время,за которое распадается половина исходного количества радиоактивного изотопа.