Таблица удельных вращений для различных веществ. Контрактное производство. Министерство здравоохранения российской федерации

Конфигурация этого вещества может быть скоррелирована с конфигурациями винной кислоты и далее с глицериновым альдегидом.

Вращение плоскости поляризации

Явление вращения плоскости поляризации световой волны на некоторый угол при прохождении света сквозь кристаллические тела и некоторые изотропные жидкости, называется вращением плоскости поляризации или оптической активностью.

Если вещество не находится во внешнем магнитном поле, то оптическая активность будет естественной.

Естественная оптическая активность была открыта в 1811 г. Д. Араго на пластинках кварца, которые вырезаны перпендикулярно оптическим осям.

Пусть взгляд наблюдателя направлен навстречу падающему лучу. Вращения называют правым (положительным), если плоскость поляризации поворачивается вправо (по часовой стрелке) для наблюдателя, и левым (отрицательным), если она поворачивается влево.

В природе существует два типа кристаллов кварца, которые являются зеркальным отражением друг друга. Первые обращают плоскость поляризации вправо, другие - влево и видповидно называются право- и левовращающий кварцем. Угол вращения плоскости поляризации пропорционален толщине слоя оптически активного вещества:

Рисунок 2.

где $l$ - длина пути луча в оптически активной среде; $α$ - коэффициент пропорциональности, который называют вращательной способностью, или удельным вращением. Он зависит от природы вещества, температуры и длины волны .

Удельное вращение равно величине угла, на который возвращается плоскость поляризации монохроматического света при прохождении слоя толщиной $l$.

Далеко от полос поглощения свет вещества зависимость от удовлетворяет закон Био:.

Рисунок 3.

Для оптически активных жидкостей и растворов Ж. Био установил, что угол поворота плоскости поляризации прямо пропорционален толщине слоя $l$ и концентрации $C$ оптически активного вещества, то есть,

Рисунок 4.

где $[α]$ - коэффициент пропорциональности, который называется удельным вращением раствора. Коэффициент зависит от природы оптически активного вещества и растворителя, температуры и длины волны света.

Свойства оптической активности растворов позволяют определить их концентрации. Приборы, с помощью которых проводят такие измерения, называются поляриметром. Поскольку для раствора сахара удельное вращение значительное, то поляриметры получили широкое применение в сахариметрии.

Теорию вращения плоскости поляризации оптически активными веществами разработал А. Френель. Он считал, что это явление обусловлено особым видом двойного преломления лучей, при котором скорость распространения света в активной среде различна для лучей, имеющих правую и левую круговые поляризации. Знак угла поворота плоскости поляризации определяется соотношением между скоростями распространения лучей правой циркуляционной поляризации и левой циркуляционной поляризации. Для оптически активную среду будет положительным, а для будет отрицательным.

На входе в оптически активное вещество линейно поляризованный монохроматический свет разлагается на две волны той же частоты, но поляризованные по кругу во взаимно противоположных направлениях:

Рисунок 5.

Векторы и этих волн симметричны относительно плоскости $p - p$ колебаний падающего света.

При выходе из оптически активной среды с толщиной слоя $l$ электрический вектор правоциркуляцийнои волны будет возвращен на больший угол, чем для ливоциркуляцийнои волны. В результате плоскость, относительно которой электрические векторы этих волн размещены симметрично, будет повернута вправо на угол относительно плоскости поляризации падающей волны.

Углы поворота электрического вектора правой и левой волн зависят от времени распространения волны $t$ и длины их пути в оптически активной среде.

В 1845 г. М. Фарадей обнаружил, что при распространении линейно поляризованного света в оптически неактивных веществах в направлении магнитного поля, то происходит поворот плоскости поляризации на некоторый угол. Если наблюдатель смотрит в направлении магнитного поля, то поворот направо считается положительным, слева - отрицательным.

Использование вращения плоскости поляризации

Величину удельного вращения определяют для подтверждения чистоты и тождества оптически активного вещества. Поскольку удельное вращение зависит от концентрации и природы растворителя, условия его определения приводятся в соответствующих монографиях на лекарственные средства.

В интервале концентраций, при которых удельное вращение - постоянная величина, с помощью угла вращения можно рассчитать концентрацию вещества в растворе:

Замечание 1

Таким образом, можно сделать вывод о том, что поляриметрия, как метод анализа используется в как в качественном, так и в количественном фармацевтическом анализе.

Определение степени чистоты глюкозы и аскорбиновой кислоты

Определение по величинам удельного оптического вращения основывается на измерении угла поворота $(α)$ растворов глюкозы и аскорбиновой кислоты и расчета удельного оптического вращения. Для 10% водного раствора глюкозы величина удельного оптического вращения составляет от + 51,3 ° до + 53,0 °; для 20% раствора аскорбинок кислоты от + 22 ° до + 24 °.

Полученные значения сравнивают с табличными данными и делают выводы о соответствии исследуемых веществ стандартам качества.

Идентификация право- и левовращающий камфоры

Данное определение основывается на измерении угла вращения плоскости поляризации спиртовых растворов камфоры. Камфора, полученная из камфорного дерева - право вращающаяся, с масла пихты - левовращающий изомер, синтетическая камфора - оптически неактивное вещество. Удельное оптическое вращение 10% раствора камфоры в 95% спирте для правой вращающейся камфоры составляет от + 41 ° до + 44 °, для лево вращающейся от -39 ° до -44 °.

Заполняют поляриметрические трубку жидкостью или раствором с известной концентрацией твердого вещества, повторяют вышеприведенные операции и определяют угол вращения по шкале прибора. Определение угла вращения повторяют не менее 5 раз и рассчитывают его среднее значение. Угол вращения является алгебраической разностью между полученным значением и нулевой точкой. Измеряют угол вращения приготовленных растворов с право- и лево вращающейся камфорой и делают выводы об идентификации исследуемого вещества.

Для оптически активных веществ определяют величину вращения плоскости поляризации. Оптическое вращение - способность вещества отклонять плоскость поляризации при прохождении через него плоскополяризованного света. В зависимости от природы вещества вращение плоскости поляризации может иметь различные направление и величину. Различают правовращающие вещества (условно обозначают d или +) и левовращающие вещества (условно обозначаются I или -). Величину отклонения плоскости поляризации от начального положения, выраженную в угловых градусах, называют углом вращения и обозначают а. Величина угла зависит от природы оптически активного вещества, толщины слоя вещества, температуры и длины волны света. Величина угла вращения прямо пропорциональна толщине слоя. Для сравнительной оценки способности различных веществ вращать плоскость поляризации вычисляют так называемое удельное вращение.

Удельным вращением называют вращение плоскости поляризации, вызванное слоем вещества толщиной 1 дм при пересчете на содержание 1 г вещества в 1 мл объема. Для жидких веществ удельное вращение определяют по формуле:

Для растворов веществ:

где аlpha - измеренный угол вращения в градусах; l - толщина слоя жидкости, дм; с - концентрация раствора, выраженная в граммах на 100 мл раствора; d - плотность жидкости.

Величина удельного вращения зависит также от природы растворителя и концентрации раствора. При замене растворителя может изменяться не только величина угла вращения, но и его направление. Во многих случаях удельное вращение постоянно лишь в определенном интервале концентраций. В интервале концентраций, при которых удельное вращение постоянно, можно по углу вращения рассчитать концентрацию вещества в растворе:

Ряд оптически активных веществ в растворе изменяет угол вращения до определяемой постоянной величины. Это объясняется наличием в растворе смеси стереоизомерных форм, имеющих различные значения угла вращения. Только через некоторое время устанавливается в растворе равновесие между различными оптическими изомерами. Особенно часто с этим явлением приходится встречаться при анализе сахаров. Свойство растворов в течение некоторого времени изменять величину угла вращения называется мутаротацией.

Определение угла вращения плоскости поляризации проводят в приборах, называемых поляриметрами. Правила пользования данной моделью поляриметра изложены в инструкции к прибору. Определение, как правило, проводят для D - линии натрия при 20 С.

Общий заключается в следующем. Луч от источника света направляется через желтый светофильтр в призму-поляризатор. Проходя через призму Николя, луч света поляризуется, колебания его совершаются только в одной плоскости. Плоскополяризованный свет пропускают через кювету с раствором оптически активного вещества. При этом отклонение плоскости поляризации света определяют с помощью второй, вращающейся, призмы Николя (анализатора), которая жестко связана с градуированной шкалой. Наблюдаемое через окуляр значительное поле, разделенное на две или три части различной яркости, следует сделать равномерно освещенным, поворачивая анализатор. Величину поворота считывают со шкалы. Для проверки нулевой точки прибора проводят аналогичные измерения без исследуемого раствора. Направление плоскости поляризации, как правило, устанавливают направлением поворота анализатора. Конструкция отечественных поляриметров такова, что если для получения однородного освещенного поля зрения приходится повернуть анализатор вправо, т. е. по часовой стрелке, то исследуемое вещество было правовращающим, что обозначается знаком + (плюс) или d. При повороте анализатора против часовой стрелки получаем левое вращение, обозначаемое знаком - (минус) или I.

В других приборах точное направление вращения определяют при помощи повторного измерения, которое проводят либо с половинной толщиной слоя жидкости либо с половинной концентрацией. Если при этом получают угол вращения а/2 или а/2+900, то можно считать, что вещество является правовращающим. Если новый угол вращения равен 90 - а/2 или 180 -а/2, то вещество обладает левым вращением. Удельное вращение не очень сильно зависит от температуры, однако для точных измерений термостатирование кюветы необходимо. При данных по оптическому вращению необходимо указывать применяемый растворитель и концентрацию вещества в растворе, например [а]о = 27,3 в воде (С=0,15 г/мл).

Поляриметрические определения применяют как для установления количественного содержания оптически активных веществ в растворах, так и для проверки их чистоты.

Оптической активностью, способностью вращать плоскость поляризации поляризованного луча света, обладают оптически активные вещества. Оптическая активность соединений обусловлена хиральностью их молекул и отсутствием элементов симметрии.

В зависимости от природы оптически активного соединения вращение плоскости поляризации может быть различным по направлению и углу вращения. Если плоскость поляризации вращается по часовой стрелке, направление вращения обозначают знаком «+», если против часовой стрелки - знаком «-». В первом случае вещество называют правовращающим, а во втором - ле-вовращающим. Величину отклонения плоскости поляризации от начального положения, выраженную в угловых градусах, называют углом вращения и обозначают греческой буквой а.

Угол вращения зависит от природы и толщины оптически активного вещества, температуры, природы растворителя и длины волны света.

Для сравнительной оценки способности различных веществ вращать плоскость поляризации света вычисляют удельное вращение [a]D>. .УЭеяьное вращение - это константа оптически активного вещества, вращение плоскости поляризации монохроматического света, вызванное слоем оптически активного вещества толщиной 1 дм при пересчете на содержание 1 г вещества в 1 мл объема:

где а - измеряемый угол вращения, град; D - длина волны монохроматического света; t - температура, при которой проводилось измерение; / - толщина слоя, дм; С -концентрация раствора, выраженная в граммах вещества на 100 мл раствора.

Обычно определение удельного вращения проводят при 20 °С и длине волны, соответствующей D-линии натрия (À, = 589,3 нм).

Для жидких веществ удельное вращение

где d - плотность жидкого вещества, г/мл.

Часто вместо удельного вращения рассчитывают молярное ера-ù^Hèe (по следующей формуле:

к 100 " где M - молекулярная масса.

Измерение угла вращения производят с помощью иоляримеяг-рое (рис. 1.101), которые позволяют получать результаты с точностью ±0,02°.

Принцип работы поляриметра заключается в следующем: испускаемый от источника - натриевой лампы 1 - луч рассеянного света проходит через поляризатор 3 (призмы Николя) и превращается в плоскополяризованный. Этот луч отличается от естественного тем, что колебания векторов электромагнитного поля происходят в одной плоскости, называемой плоскостью поляри

Рис. 1.101. Поляриметр:

1 - источник света; 2 - дихроматический фильтр; 3 - поляризующие призмы Николя (поляризатор); 4 - кювета с раствором вещества; 5 - анализирующая призма Николя (анализатор); 6 - шкала; 7 - окуляр; 8 - рукоятка управления анализатором

зации. На пути поляризованного луча помещают кювету с оптически активным веществом 4, способным вращать плоскость поляризации влево или вправо на определенный угол. Для того чтобы измерить угол поворота а, вмонтирована еще одна призма Николя - анализатор 5. Путем вращения его вправо или влево добиваются полного гашения проходящего луча света. Угол, на который был при этом повернут анализатор, представляет собой наблюдаемое оптическое вращение. Значение угла фиксируют по шкале 6.

Методика измерения. Сначала устанавливают нулевое положение призм. Для этого в прибор помещают пустую кювету 4, если исследуют чистое жидкое вещество, или трубку, наполненную растворителем. Перед прибором устанавливают электрическую лампочку 1, если прибор имеет вмонтированный желтый светофильтр. Затем приводят призмы анализатора в положение, при котором оба поля зрения имеют равное освещение. Повторяют это три раза и из полученных показаний берут среднее значение, которое и принимают за нулевое положение призм. После этого помещают трубку с исследуемым раствором или жидкостью и, как было указано выше, снимают показания поляриметра.

Приготовление раствора. Тщательно взвешенный образец массой 0,1-0,5 г растворяют в мерной колбе в 25 мл растворителя. Обычно в качестве растворителей используют воду, этанол, хлороформ. Раствор должен быть прозрачным, не содержать нерастворимых взвешенных частичек и, по возможности, бесцветным. Если получен непрозрачный раствор, его следует обязательно профильтровать через бумажный фильтр, первую порцию фильтрата отбросить, а второй заполнить поляриметрическую трубку и приступить к определению.

Заполнение поляриметрической трубки. Один конец поляриметрической кюветы 4 (рис. 1.101) завинчивают с помощью насадки. Трубку ставят вертикально и заполняют раствором до тех пор, пока над верхним концом трубки не образуется круглый мениск. На конец трубки надвигают стеклянную пластинку так, чтобы в трубке не оставалось пузырьков воздуха, а затем навинчивают латунную насадку.

внимание/ Между стеклянной иластинкой и латунной насадкой кладут резиновую ирокладку. & нельзя иомецать между концом стеклянной трубки и стеклянной ирокладкой, иоскольку будет нарушен контакт «стекло-стекло».

Заполненную раствором поляриметрическую трубку помещают в поляриметр и измеряют вращение, считывая показания шкалы. Проводят не менее трех измерений и полученные данные усредняют. Наблюдаемое вращение вычисляют как разность между полученным и нулевым значениями. Этот результат используют для расчета удельного вращения по одной из приведенных формул. Рассчитанные значения [а]^ сравнивают с литературными данными.

ПРАКТИКУМ

Задание. Определите удельное вращение в воде при 20 °С следующих веществ: глюкозы, Х)-рибозы, Х-аскорбиновой кислоты, арбутина, мальтозы, сахарозы, гликогена, ^-аскорбиновой кислоты.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ

И УДЕЛЬНОГО ВРАЩЕНИЯ РАСТВОРОВ САХАРОВ

ПРИ ПОМОЩИ УНИВЕРСАЛЬНОГО САХАРИМЕТРА

Одной из методик, применяемых в клинических лабораториях для определения концентрации сахара в прозрачных биологических средах (например, в моче), является сахариметрия. Она представляет собой разновидность метода поляриметрии, который основан на определении оптической активности веществ, то есть на измерении угла поворота плоскости колебаний поляризованного света при его прохождении через оптически активные среды (вещества). К оптически активным средам относятся кварц, различные масла и многие биологически важные соединения (сахара, аминокислоты, белки и т. д.)

Среди оптически активных веществ встречаются D - и L –изомеры. Первые из них вращают плоскость колебаний поляризованного света вправо, а вторые-влево. Направление этого вращения определяется по отношению к наблюдателю, который смотрит навстречу лучу: если поворот плоскости колебаний линейно поляризованного света происходит по часовой стрелке, то вызвавшее его оптически активное вещество является правовращающим; левовращающие вещества поворачивают эту плоскость в противоположном направлении. Следует отметить, что в метаболических процессах, протекающих в организме человека и животных, участвуют только D -сахара и L -аминокислоты.

При постоянной толщине слоя (l ) оптически активного вещества, находящегося на пути поляризованного света, угол поворота плоскости колебаний (φ) прямо пропорционален концентрации (С) этого вещества в растворе: j .gif" width="12" height="23">стократному углу поворота плоскости колебаний линейно поляризованного света 1% раствором оптически активного вещества толщиной 1 дм, Размерность удельного вращения: град ∙ см3 ∙ г-1 ∙ дм-1.

Удельное вращение зависит, прежде всего, от природы вещества (от особенностей его молекулярной структуры), а также от температуры раствора и длины волны поляризованного света. Так, при пропускании через раствор D -глюкозы, имеющий температуру 20˚C , желтого света (λ=589,4 нм) стократный угол поворота плоскости колебаний этим веществом (при толщине его слоя 1 дм) составляет 52,8 град. В тех же условиях у L − глюкозы [αо]=–51,4 градּсм3ּг-1ּдм-1. Следовательно, стереоизомеры глюкозы различаются не только противоположным направлением вращения плоскости колебаний, но и различной величиной удельного вращения: [αо]D ≠ [αо]L .

Оптическая схема простейшего сахариметра (поляриметра) представлена на рис.1. Она включает кварцевую пластинку, благодаря чему сахариметр относится к группе полутеневых поляриметров. В таких приборах измерение сводится к визуальному уравниванию яркостей различных частей поля зрения и последующему считыванию показаний по шкале вращений, снабженной нониусом (вспомогательной шкалой, при помощи которой отсчитываются доли делений основной шкалы поляриметра). Такая визуальная регистрация, основанная на способности человека хорошо различать световой контраст, обладает довольно высокой чувствительностью, вполне достаточной для медицинских целей.

Согласно оптической схемы поляриметра световой поток, идущий от (Л ) через светофильтр (СФ ) и объектив (Об ) проходит через поляризатор (П ), который преобразует его в поляризованный поток света. Затем поток света проходит через полутеневую пластинку (К ), разделяющую его на две половины линией раздела. Анализатор пропускает равные по яркости обе половины светового потока и в поле зрения зрительной трубы, состоящей из объектива (О ") и окуляра (Ок ), установленные после анализатора, наблюдаются две одинаковые половины поля, разделенные тонкой линией и называемые полями сравнения. При установки кюветы (трубки) с раствором сахара ( Т ) между поляризатором и анализатором нарушается равенство яркостей полей сравнения, так как исследуемый раствор поворачивает плоскость поляризации на угол, пропорциональный концентрации раствора.

В современных сахариметрах (например в СУ-4) для уравнивания яркостей полей сравнения применяется клиновый кварцевый компенсатор, состоящий из подвижного кварцевого клина левого вращения и неподвижного контрклина правого вращения. Перемещением подвижного клина относительно контрклина устанавливают такую суммарную толщину клинов по оптической оси, при которой компенсируется угол поворота плоскости поляризации раствора. При этом происходит уравнивание яркостей полей сравнения. Одновременно, так как подвижный клин связан с измерительной шкалой, перемещается и измерительная шкала. По нулевому делению нониуса фиксируют значение шкалы, соответствующее состоянию одинаковой (минимальной) яркости полей сравнения. На рис.2а) показано расположение измерительной шкалы (внизу) и нониуса (наверху), которое соответствует установке прибора на “нуль”, т. е. значение так называемого нулевого угла (φ0 ) равно 0. Деление нониуса совмещено с нулевым делением шкалы, а последнее “сотое” деление нониуса точно совпадает с определенным делением нижней шкалы.

В сахариметре СУ-4 для измерения угла поворота плоскости поляризации света применена международная сахарная шкала (0 S ). Одно деление сахарной шкале (10 S ) равно 0,3460 угловым (в градусах) т. е.: 1000S=34,60. Одно деление нониуса соответсвует 0,050S. На рис.2.б) показано положение нониуса и шкалы, соответствующее отсчету “+ 11,850S ” (нуль нониуса расположен правее нуля шкалы на 11 полных делений и в правой части с одним из делений шкалы совмещается его семнадцатое деление, соответствующее значению 0,850S по нониусу). Следовательно угол поворота плоскости поляризации света в угловых единицах (в градусах) равен: φ=11,85· 0,346=4,100.

Лабораторная работа состоит из двух частей. В первой из них измеряется концентрация раствора D-глюкозы, а во второй - определяется удельное вращение D-сахарозы.

Порядок выполнения лабораторной работы

Перед выполнением лабораторной работы прибор настраивается и регулируется лаборантом или преподавателем с целью установки его на ноль. Для установки прибора на ноль (нулевой угол φ0=0) используется специальный механизм установки нониуса с помощью юстировочного ключа. Если нулевой угол φ0 не равен 0 необходимо это учитывать при измерении угла поворота плоскости поляризации света.

І часть. Измерение концентрации раствора D- глюкозы.

1. Включить прибор (осветительное устройство). Получить отчетливое изображение (путем регулирования окуляра зрительной трубы) вертикальной линии раздела полей cравнения. Установить лупу на максимальную резкость изображения штрихов и цифр измерительной шкалы и нониуса. Проверить установку прибора на ноль: кюветное отделение закрыто и в нем отсутствует трубка с раствором сахара; измерительная шкала и нониус с помощью рукоятки клинового компенсатора установлены как на рис.2а; поля сравнения имеют одинаковую (минимальную) яркость.

2. Определить угол поворота плоскости колебаний поляризованного света раствором D - глюкозы- φгл. Измерения произвести в такой последовательности:

а) поместить в сахариметр трубку с раствором D - глюкозы (как можно ближе к окуляру) в кюветное отделение и закрыть ее;

б) уравнять минимальную яркость полей сравнения вращением рукоятки клинового компенcатора;

в) произвести отсчет показаний по измерительной шкале и нониусу с точностью до 0,050S;

г) “сбить” положение рукоятки клинового компенсатора и снова уравнять яркости полей сравнения и произвести новый отсчет угла по шкале и нониусу. Операцию измерения повторить не менее 3-5 раз и результаты занести в таблицу 1;

д) извлечь из сахариметра трубку с раствором глюкозы.

Таблица 1.

Таблица для записи результатов измерений концентрации D- глюкозы.

II часть. Определение удельного вращения D- сахарозы.

1. Поместить в кюветное отделение прибора трубку с раствором D - сахарозы. Концентрация раствора указана на рабочем месте.

2. Измерить угол поворота плоскости поляризации света-φсах так, как это описано в первой части для глюкозы. Измеренные значения угла (3-5 раз) занести в таблицу 2.

Таблица 2.

Таблица для записи результатов определения удельного вращения D - сахарозы.

φсах.(сах. ед.)

φсах.(град.)

значение

φсах. ср.=

φсах. ср.=

[αo]сах. ср.=

На рабочем месте заданы длина трубки (в дм) и концентрация D- сахарозы

Обработка результатов измерений.

1. По результатам измерений угла φгл (град.) вычислить 3-5 значений концентраций D- глюкозы по формуле:

Сгл..gif" alt="*" width="12" height="23 src="> Определить среднее значение концентрации глюкозы:

Сгл= (%), где: n- число измерений.

2. Вычислить абсолютную ошибку опыта по формуле:

∆Сгл. ср.= (%).

В формуле каждая разность Сгл i-Сгл ср берется по абсолютной величине (со знаком “+”).

2. Расчеты искомых величин и погрешностей;

3. Заключение, в котором следует привести окончательные результаты измерений и расчетов Сгл. и [αo]сах., записанные согласно принятым правилам, а также сделать вывод о различии удельных вращений для глюкозы и сахарозы.

Оптическое вращение

Оптическим вращением называется способность вещества вращать (поворачивать) плоскость поляризации при прохождении через него поляризованного света. Этим свойством обладают некоторые вещества, которые называются оптически активными. В настоящее время известно много таких веществ: кристаллические вещества (кварц), чистые жидкости (скипидар), растворы некоторых оптически активных веществ (соединений) в неактивных растворителях (водные растворы глюкозы, сахара, молочной кислоты и другие). Все они делятся на 2 типа:

  • первый тип: вещества, которые в любом агрегатном состоянии оптически активны (камфора, сахара, винная кислота);
  • второй тип: вещества, которые активны в кристаллической фазе (кварц).

Эти вещества существуют в правой и левой формах. Оптическая активность разных форм веществ, относящихся ко второму типу, имеет равные по абсолютной величине значения и разные знаки (оптические антиподы); они идентичны и неразличимы. Молекулы левой и правой форм веществ первого типа по своему строению представляют зеркальные отражения, они отличаются одна от другой (оптические изомеры). При этом чистые оптические изомеры друг от друга не отличаются по своим химическим и физическим свойствам, но отличаются от свойств рацемата – смеси оптических изомеров в равных количествах. Так, например, для рацемата значение температуры плавления ниже, чем у чистого изомера.

Применительно к веществам первого типа деление на «правый» (d) и «левый» (l) условно и это не указывает направление вращения плоскости поляризации, а для веществ второго типа это означает непосредственно направление вращения: «правовращающие» (вращающиеся по часовой стрелке и имеющие значения угла α со знаком «+») и «левовращающие» (вращающиеся против часовой стрелки и имеющие значения угла α со знаком «-»). Рацемат, содержащий левовращающие и правовращающие оптические изомеры, оптически не активен и обозначается знаком «±».

Поляриметрия

Поляриметрия – оптический метод исследований, который основан на свойстве веществ (соединений) поворачивать плоскость поляризации после прохождения через них плоскополяризованного света, то есть световых волн, в которых электромагнитные колебания распространяются только в одном направлении одной плоскости. При этом плоскостью поляризации является плоскость, которая проходит через поляризованный луч перпендикулярно направлению его колебаний. Сам термин «поляризация» (греч. polos, ось) означает возникновение направленности световых колебаний.

Когда поляризованный луч света пропускают через оптически активное вещество, тогда плоскость поляризации изменяется и поворачивается на некоторый определенный угол α – угол вращения плоскости поляризации. Величина этого угла, выраженная в угловых градусах, определяется с помощью специальных оптических приборов – поляриметров. Для измерений используют поляриметры различных систем, но все они основаны на одном принципе работы.

Основные части поляриметра: поляризатор – это источник поляризованных лучей и анализатор – это прибор для их исследования. Эти части представляют собой специальные призмы или пластинки, которые изготавливают из различных минералов. Для измерения оптического вращения луч света от лампы внутри поляриметра сначала проходит через поляризатор для получения определенной ориентации плоскости поляризации, и затем уже поляризованный луч света проходит через исследуемый образец, который размещают между поляризатором и анализатором. Если образец является оптически активным, то его плоскость поляризации поворачивается. Далее поляризованный луч света с измененной плоскостью поляризации попадает в анализатор и не может полностью пройти через него, происходит затемнение. А чтобы луч света прошел через анализатор полностью, его необходимо повернуть на такую величину угла, которая будет равна величине угла вращения плоскости поляризации исследуемым образцом.

Значение угла вращения конкретного оптически активного вещества зависит от его природы, от его толщины слоя, от длины волны света. Значение угла α для растворов также зависит от концентрации содержащегося вещества (оптически активного) и от природы растворителя. Если заменить растворитель, то может измениться угол вращения как по величине, так и по знаку. Угол вращения зависит и от температуры исследуемого образца, поэтому для точных измерений, при необходимости, образцы термостатируют. При повышении температуры с 20°С до 40°С увеличивается оптическая активность. При этом в большинстве случаев влияние температуры, при которой производят измерение, незначительно. Условия, при которых проводят определения (при отсутствии дополнительных указаний): 20°С, длина волны света 589,3 нм (длина волны линии D спектра натрия).

Поляриметрическим методом проводят испытания по оценке чистоты веществ, являющихся оптически активными, и устанавливают их концентрацию в растворе. Чистоту вещества оценивают по величине удельного вращения [α], которая является константой. Значение [α] – это угол вращения плоскости поляризации в конкретной оптически активной среде толщиной слоя 1 дм при концентрации этого вещества 1 г/ мл, при 20°С и длине волны 589,3 нм.

Расчет [а] для веществ, которые находятся в растворе:

Для жидких веществ (например, для некоторых масел):

Теперь, измерив угол вращения, зная величину [α] конкретного вещества и длину ℓ, можно вычислить в исследуемом растворе концентрацию вещества (оптически активного):

Надо отметить, что величина [α] является постоянной, но только в определенном интервале концентраций, которым и ограничивается возможность использования данной формулы.

Применение поляриметрии в контроле качества

Поляриметрический метод исследований применяется для идентификации веществ, проверки их чистоты и количественного анализа.

В фармакопейных целях метод используется для определения количественного содержания и подлинности веществ в лекарственных средствах, а также применяется как испытание на чистоту, подтверждение отсутствия оптически неактивных посторонних веществ. Метод поляриметрии регламентирован в ОФС 42-0041-07 «Поляриметрия» (Государственная Фармакопея РФ XII издание, часть 1).

Важность определения оптической активности для лекарственных средств связано с особенностью оптических изомеров оказывать на организм человека различное физиологическое действие: биологическая активность левовращающих часто сильнее правовращающих изомеров. Например, некоторые лекарственные средства, которые получают синтетически, существуют в виде оптических изомеров, но при этом биологической активностью обладают только в виде левовращающего изомера. Например, лекарственное средство левометицин биологически активен только в левовращающей форме.

В производстве косметической продукции поляриметрия применяется в контроле качества для анализа и определения в сырье и продукции концентрации веществ, являющихся оптически активными, а также их идентификации и чистоты. Этот метод имеет значение, например, при анализе эфирных масел, т.к. биохимическое и физиологическое действие их оптических изомеров различно, есть различия в запахе, вкусе и фармакологических свойствах. Так, (-)-α-бисаболол в ромашке лекарственной оказывает хорошее противовоспалительное действие. Но выделенный из тополя бальзамического (+)-α-бисаболол и полученный синтетически (±)-бисаболол (рацемат) оказывают аналогичное действие, но в значительно меньшей степени.

Что касается запаха, то у одного вещества оптические изомеры отличаются как качеством, так и силой запаха: левовращающие изомеры чаще обладают более сильным ароматом и качество запаха воспринимается как более приемлемое, в то время как правовращающие иногда вообще не имеют аромата. Это имеет важное значение при производстве парфюмерно-косметической продукции. Так, (+)-карвон в эфирном масле тмина и (-)-карвон в эфирном масле мяты обладают совершенно разным запахом.

В состав эфирных масел входят многие компоненты, обладающие свойством оптической активности с разным углом вращением, которые в результате смешения компенсируют друг друга, и тогда эфирное масло имеет результирующее оптическое вращение (оптическое вращение конкретного эфирного масла). Например, угол вращения (по справочным данным) для эфирного масла эвкалипта находится в пределах от 0° до +10°, для эфирного масла лаванды – в пределах от -3° до -12°, для эфирного масла пихты – в пределах от -24° до -46°, для эфирного масла укропа – в пределах от +60° до +90°, для эфирного масла грейпфрута – в пределах от +91° до +92°. При идентификации важно знать, что синтетические эфирные масла не обладают свойством оптической активности, что отличает их от натуральных.

Измерения проводят по ГОСТ 14618.9-78 «Масла эфирные, вещества душистые и полупродукты их синтеза. Метод определения угла вращения и величины удельного вращения плоскости поляризации».

В качестве примера применения поляриметрии в пищевой промышленности можно привести контроль качества меда. Как известно, этот продукт в своем составе содержит моносахариды, редуцирующие олигосахариды, некоторые гидроксикислоты и другие, имеющие различное строение молекул и пространственное расположение групп атомов в них. Эти составляющие компоненты являются оптически активными и их наличие как раз и обуславливает способность изменять плоскость поляризации. Содержащиеся в составе меда различные углеводы (фруктоза, глюкоза, сахароза и другие) вращают плоскость поляризации по-разному, и их различная оптическая активность дает представление о качестве меда. При этом выявляется фальсифицированный мед, например, сахарный мед, имеющий удельное вращение в пределах от +0,00° до -1,49° в отличие от цветочного меда, имеющего удельное вращение в среднем -8,4°. Также можно установить зрелость меда: в меде хорошего качества высокое содержание фруктозы или глюкозы и низкое содержание сахарозы. Измерения проводят по ГОСТ 31773-2012 «Мед. Метод определения оптической активности».

Поляриметрический метод испытаний ценен своей высокой точностью, он прост и занимает мало времени.

На контрактном производстве ООО «КоролёвФарм» в процессе контроля качества сырьевых компонентов и готовой продукции косметической, пищевой продукции и БАД к пище испытания по определению концентрации и чистоты некоторых веществ, обладающих свойством оптической активности, проводятся на поляриметре круговом СМ-3. Данный прибор позволяет измерять угол вращения плоскости поляризации прозрачных и однородных растворов и жидкостей. Например, определение концентрации сахара при производстве сиропов . Также прибор применяется в процессе исследовательских работ при разработке новых видов продукции. Данный поляриметр позволяет измерять угол вращения в пределах 0°-360° с погрешностью не более 0,04°. Поверка прибора в органах государственной метрологической службы с установленной периодичностью обеспечивает точность измерений, что имеет ключевое значение в процессе контроля качества при производстве и выпуске качественной и безопасной продукции.