Дифракционный метод исследования твердого тела. Дифракционные методы. Метод Дебая - Шерера

философские категории, посредством которых обозначаются формы бытия вещей и явлений, которые отражают, с одной стороны, их событие, сосуществование (в П.), с другой - процессы смены их друг другом (во В.), продолжительность их существования. В. и П. являют собой несущую конструкцию любой известной до сих пор объяснительной картины мира. Определение хотя бы в самом первом приближении масштабов в П. и ритмики смены во В. всех действительных и потенциально мыслимых природных и общественных систем как процедура представления фундаментальных параметров бытия являются необходимым условием не только процесса постижения мира человеком, но и осознание последним самого себя. Принципиально различными в трактовке П. и В. в истории философии выступали подходы, постулирующие их как: а) такие формы бытия, которые полностью автономны от тех явлений и вещных систем, которые в них "помещены" и в них существуют и являются; б) такие порядки, такие внутренние "меры" природно-социальных систем, которые задаются их взаимодействием и обусловлены их природой и характером. В модели мироустройства Ньютона П. и В. трактовались как однородные, универсальные и абсолютные формы бытия. Идеи "пустого" П. и абсолютного, автономного от человека В. были переосмыслены как философской традицией Декарта, постулировавшего их "заполненность" и обусловленность осуществляющимися взаимозависимостями и взаимодействием вещей и явлений, так и физикой 20 в., сформировавшей представление о едином "П.-В.", задающем многомерные метрики бытия и тем самым интерпретирующее В. всего лишь как одну из координат многомерного пространственно-временного континуума. В истории философии было принято различать "объективное" В., могущее фиксироваться соразмерно процессам в микромире либо ритмам движения небесных тел (и которому в таком смысле отказывает в праве на существование современная физика), и В. "субъективное", связанное с его осознанием людьми и распадающееся в зависимости от формы своей артикуляции на перцептуальное и концептуальное. В рамках концептуальных моделей возможно многомерное пространство, не апплицируемое на трехмерный мир, и нелинейные модели течения времени. В философии 20 в. доминирует понимание В. как условия возможности, как предпосылки субъективности и объективности в любом их модусе, а, следовательно, постулирование того, что В. отсутствует и в субъекте, и в объекте, и "вовне" и "внутри" (Хайдеггер). См. также: Социальное время.

Отличное определение

Неполное определение ↓

ПРОСТРАНСТВО И ВРЕМЯ

всеобщие формы бытия материи, ее важнейшие атрибуты. В мире нет материи, не обладающей пространственно-временными свойства­ми, как не существует П. и в. самих по себе, вне материи или независимо от нее. Пространство есть форма бытия материи, характеризующая ее протяженность, структурность, сосуществование и взаимодействие эле­ментов во всех материальных системах. Время - форма бытия материи, выражающая длительность ее существования, последовательность смены состояний в изменении и развитии всех материальных систем. П. и в. неразрывно связаны между собой, их единство проявляется в движении и развитии материи.

В домарксистской философии, а также в классич. фи­зике П. и в. нередко отрывались от материи, рассматривались как самостоят. сущности или внеш. условия существования и движения тел. В концеп­ции Ньютона абс. пространство понималось как беско­нечная протяженность, вмещающая в себя всю материю и не зависящая от к.-л. процессов, а абс. время - как те­кущая безотносительно к к.-л. изменениям равно­мерная длительность, в к-рой все возникает и исчезает. В ньютоновской концепции П. и в. приписывались нек-рые субстанциональные признаки - абс. самостоятельность и самодостаточность существования; вместе с тем П. и в. не рассматривались как порождающие субстанции, из к-рых возникают все тела. В материалистич. натурфилософии и основывавшихся на ее прин­ципах физич. теориях преобладало атомистич. пони­мание структуры материи: конечной, абсолютной и по­рождающей субстанцией признавалась лишь движу­щаяся материя, существующая и изменяющаяся в П. и в. как внеш. условиях бытия.

В религ. и объективно-идеалистич. учениях выдвига­лась сходная концепция П. и в. как всеобщих внеш. условий бытия тел, однако П. и в. трактовались как созданные вместе с материей богом или абс. духом. С т. зр. теологии к богу понятия П. и в. не приложимы: как высшая, бесконечная и творящая субстанция он внепространствен и существует не во времени, а в вечности, являющейся одним из его атрибутов. В субъективноидеалистич. концепциях выдвигались эклектич. и внутренне противоречивые толкования П. и в. как априорных форм чувств. созерцания (Кант) либо как форм упорядочения комплексов ощущений и опытных данных, установления между ними функциональных зависимостей (Беркли, Мах, позитивизм).

Впервые подлинно науч. понимание П. и в. как все­общих атрибутов и форм существования материи было выдвинуто и обосновано К. Марксом и Ф. Энгельсом. Учение диалектич. материализма о П. и в. получило глубокое подтверждение в естествознании 20 в. Значит. вклад в развитие совр. представлений о П. и в. внесла теория относительности А. Эйнштейна: она раскрыла неразрывную связь П. и в. как единой формы существо­вания материи (пространствовремя), установила един­ство пространственно-временной и причинно-следствен­ной структуры мира, обнаружила относительность пространственно-временных характеристик тел и явле­ний.

Предметом диалектико-материалистич. теории П. и в. являются методологич. интеграция важнейших до­стижений совр. науки в понимании П. и в. для разра­ботки целостного мировоззрения, исследование всеоб­щих свойств П. и в. в их связи с др. атрибутами ма­терии, теоретич. обоснование бесконечности П. и в. в количеств. и качеств. отношениях, изучение закономер­ностей науч. познания П. и в. и форм связи сменяющихся науч. теорий о П. и в.

К всеобщим свойствам П. и в. относятся: объективность и независимость от сознания человека; абсолютность как атрибутов материи; неразрывная связь друг с другом и с движением материи; зависимость от структурных отношений и процессов развития в материаль­ных системах; единство прерывного и непрерывного в их структуре; количеств. и качеств. бесконечность. Раз­личают метрич. (т. е. связанные с измерениями) и топологич. (напр., связность, симметрия пространства и не­прерывность, одномерность, необратимость времени) свойства П. и в. Познание всеобщих свойств П. и в. является результатом длит. историч. развития науки, выделения в процессе обобщения и абстрагирования таких инвариантных характеристик многообразных пространственно-временных отношений, к-рые прояв­ляются на всех структурных уровнях материи.

Наряду с едиными характеристиками, к-рые в рав­ной степени присущи как пространству, так и времени, им свойственны нек-рые особенности, характеризую­щие их как различные, хотя и тесно связанные между собой, атрибуты материи. К всеобщим свойствам пространства относятся прежде всего протяженность, означающая рядоположенность и сосуществование различных элементов (точек, отрезков, объемов и т. п.), возможность прибавления к каждому данному элементу нек-рого следующего элемента либо возможность умень­шения числа элементов. Протяженной можно считать любую систему, в?poя возможны изменения характера связей и взаимодействий составляющих ее элементов, их числа, взаимного расположения и качеств. особенностей. Это означает, что протяженность тесно связана со структурностью материальных систем, имеющей атрибутивный характер. Непротяженные объекты не обладали бы структурой, внутр. связями, способностью к изменениям. Пространству присуща также связность и непрерывность, проявляющаяся как в характере перемещения тел от точки к точке, так и в распространении физич. воздействий через различные поля (электромагнитное, гравитационное, ядерное) в виде близкодействия в передаче материи и энергии. Связность означает отсутствие к.-л. «разрывов» в пространстве и нарушения близкодействия в распространении материальных воздействий в полях. Вместе с тем прост­ранству свойственна относит. прерывность, проявляю­щаяся в раздельном существовании материальных объектов и систем, имеющих определ. размеры и гра­ницы, в существовании многообразия структурных уровней материи с различными пространств. отноше­ниями. Общим свойством пространства, обнаруживающимся на всех известных структурных уровнях, является трехмерность, к-рая органически связана со структурностью систем и их движением. Все материальные процессы и взаимодействия реализуются лишь в пространстве трех измерений. В одномерном или двумерном пространстве (линия, плоскость) не могли бы происходить взаимодействия вещества и поля. Абстракт­ные (концептуальные) многомерные пространства в совр. математике и физике образуются путем добавления к трем пространств. координатам времени и др. пара­метров, учет взаимной связи и изменения к-рых необхо­дим для более полного описания процессов. Однако не следует отождествлять эти концептуальные пространства, вводимые как способ описания систем, с реальным пространством, к-рое всегда трехмерно и характеризует протяженность и структурность материи, сосуществование и взаимодействие элементов в различных системах. С протяженностью пространства неразрыв­но связаны его метрич. свойства, выражающие особен­ности связи пространств. элементов, порядок и количеств. законы этих связей. В природе различие метрич. свойств пространства определяется неоднородностью структурных отношений в системах, в частности распреде­лением тяготеющих масс и величиной гравитац. потен­циалов, определяющих «искривление» пространства.

К специфич. (локальным) свойствам пространства материальных систем относятся симметрия и асим» метрия, конкретная форма и размеры, местоположе­ние, расстояние между телами, пространств. распре­деление вещества и поля, границы, отделяющие различ­ные системы. Все эти свойства зависят от структуры и внеш. связей тел, скорости их движения, характера взаимодействий с внеш. полями. Пространство каждой материальной системы принципиально незамкнуто, непрерывно переходит в пространство др. системы, к-рое может отличаться по метрич. и др. локальным свойствам. Отсюда проистекает многосвязность реаль­ного пространства, его неисчерпаемость в количеств. и качеств. отношениях.

К всеобщим свойствам времени (или временных отно­шений в материальных системах) относятся: объектив­ность; неразрывная связь с материей, а также с прост­ранством, движением и др. атрибутами материи; длительность, выражающая последовательность существования и смены состояний тел. Длительность образуется из возникающих один за другим моментов или интервалов времени, составляющих в совокупности весь период существования тела от его возникновения до перехода в качественно иные формы. Выступая как своеобразная «протяженность» времени, длительность обусловлена общим сохранением материи и движения при их превращениях из одних форм в другие. Время существования каждого конкретного объекта конечно и прерывно, т. к. любой объект имеет начало и конец существования. Однако составляющая тело материя при этом не возникает из ничего и не уничтожается, а только меняет формы своего бытия. Благодаря общей сохраняемости материи и движения время ее существования непрерывно, и эта непрерывность абсолютна, тогда как прерывность относительна. Непрерывности времени соответствует его связность, отсутствие «разрывов» между его моментами и интервалами.

Время одномерно, асимметрично, необратимо и направлено всегда от прошлого к будущему. Конкретными физич. факторами, характеризующими необратимость времени, выступают возрастание энтропии в различных системах, изменение с течением времени количеств. за­конов движения тел.

Специфич. свойствами времени являются конкретные периоды существования тел от возникновения до перехода в качественно иные формы, одновременность событий, к-рая всегда относительна, ритм процессов, скорость изменения состояний, темпы развития, вре­менные отношения между различными циклами в струк­туре систем.

Развитие науки в 20 в. раскрыло новые аспекты зависимости П. и в. от материальных процессов. Из теории относительности и экспериментальных фактов совр. физики следует, что с увеличением скорости движения тел и приближением ее к скорости света возрастает масса, относительно сокращаются линей­ные размеры в направлении движения, замедляются все процессы по сравнению с состоянием относит. покоя тел. Замедление временных ритмов происходит также под действием очень мощных гравитационных полей, создаваемых большими массами вещества (что проявляется, напр., в красном смещении спектральных линий излучения т. н. белых карликов и квазаров, обладающих очень высокой плотностью и мощны­ми полями тяготения). При количеств. возрастании плотности вещества (до значений порядка 1094 г/см3 и более) должны качественно меняться метрич., а воз­можно, и нек-рые топологич. свойства П.и в. Из наблю­дательных данных внегалактич. астрономии следует, что средней плотности вещества в Метагалактике порядка 10-31 г/см3 соответствует незамкнутое прост­ранство отрицат. кривизны. Однако эти данные нельзя распространять на весь мир в целом, поскольку мате­рия неоднородна и в мире существует бесчисленное мно­жество структурных уровней и типов материальных систем со свойственными им пространственно-времен­ными отношениями. См. также Материя, Время, Вечность, Симметрия, Космология. M

Отличное определение

Неполное определение ↓

November 16th, 2014

Многие исследователи считают, что физика не будет законченной, пока не сможет объяснить поведение пространства, времени и их происхождение.

«Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир — это всего лишь иллюзия, информация, закодированная на двумерной поверхности» - Марк Ван Раамсдонк - физик, Университет Британской Колумбии, Ванкувер, Канада.

Это сделало бы нашу Вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

Этот «голографический принцип» довольно необычен для теоретической физики. Но Ван Раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже , не может этого сделать.

Давайте рассмотрим эту теорию подробнее …

Ван Раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство-время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие.

«Все наши опыты свидетельствуют о том, что вместо двух полярных концепций реальности, должна быть найдена одна всеобъемлющая теория» - Абэй Аштекар - физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания

Гравитация как термодинамика
Но ради чего все эти попытки? И как найти то самое «сердце» теоретической физики?

Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.

За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн, который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).

В 1995 году Тед Джекобсон, физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном «горизонте черной дыры», который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).

«Возможно, это позволит нам узнать больше о происхождении гравитации», — говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация – явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).

В 2010 году эта идея шагнула еще дальше. Эрик Верлинде, специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.

Сверхновые - звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.
Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10±3Мsun. Тип I связан, по-видимому, с двойной системой, в которой одна из звезд белый карлик, на который идет аккреция со второй звезды.

Гамма-всплески – выбросы гамма-излучения, связанные с самыми высокоэнергетическими взрывами. Изначальное гамма-излучение испускается в течение времени от десятка миллисекунд до нескольких минут, за ним следует послесвечение на более длинных волнах. Большая часть гамма-всплесков связана с образованием нейтронных звезд и черных дыр после взрывов сверхновых, самые короткие всплески возникают при столкновении двух нейтронных звезд.

В другой работе Тану Падманабан, космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.

Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и γ-всплески.

В апреле Джованни Амелино-Камелия, исследователь квантовой гравитации из Римского Университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от γ-всплеска. Как говорит Амелино-Камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями.

«Если теория не может быть проверена, то наука для меня не существует. Она превращается в религиозные убеждения, которые не представляют для меня никакого интереса»
- Джованни Амелино-Камелия - исследователь квантовой гравитации, Римский Университет

Другие физики концентрируются на лабораторных испытаниях. В 2012 году, например, исследователи из Венского университета и Имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство-время в Планковском масштабе приведет к изменению света, отраженного от зеркала.

Петлевая квантовая гравитация

Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. Если пространство-время представляет собой ткань, то каковы ее нити?

Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х Аштекар и его коллеги, описывает ткань пространства-времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства-времени, тогда как нити и есть пространство-время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

Петли – это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем.
Они как бы выпадают из пространства-времени.

Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент Большого Взрыва или в центре черных дыр.

Воспользовавшись этим фактом, в 2006 году Аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до Большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

В этом году Родольфо Гамбини из Республиканского Университета Уругвая в Монтевидео и Хорхе Пуйин из Университета Луизианы в Батон-Руж представили аналогичные модели, но уже для черной дыры. Если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса.

Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как «получилось» обычное пространство-время из информационной сети. Но Даниэле Орити, физик из Института гравитационной физики Макса Планка в Гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как Вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству-времени.

Причинный ряд
Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем Соркиным, теория постулирует, что строительные блоки пространства-времени – это простые математические точки, связанные либо с прошлым, либо с будущим.

Это «скелетное» представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство-время.

«Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве»
- Рафаэль Соркинфизик, Институт Теоретической Физики «Периметр» в Ватерлоо, Канада

В конце 1980-х Соркин использовал эту структуру, чтобы представить число точек, которое должна включать Вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение Вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. «Люди часто думают, что квантовая гравитация не может сделать проверяемых предсказаний, но здесь именно тот случай», — говорит Джо Хенсон, исследователь квантовой гравитации из Имперского колледжа в Лондоне. » Если значение темной энергии было бы больше или его не было бы совсем, тогда теория причинного ряда была бы исключена».

Причинная динамическая триангуляция
Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

«Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени были неудачными. Строительные блоки пространства-времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных «вселенных», в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает. В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей»
- Рената Лолл физик, Университет Неймегена, Нидерланды

Интересно, что моделирование также намекает на то, что вскоре после Большого взрыва Вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей Вселенной появляется четвертое пространственное измерение.

Голография
Между тем, Ван Раамсдонк предложил совсем другое представление о появлении пространства-времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном Малдасеной, приверженцем теории струн из Института Передовых Исследований в Принстоне. Он опубликовал свою модель голографической Вселенной в 1998 году. В этой модели трехмерный «интерьер» Вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко. Но это никак не влияет на математику: все, что происходит в трехмерной Вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот.

В 2010 году Ван Раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

Времени не существует? А ведь мы с вами еще обсуждали что такое и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Новое представление о пространстве и времени в рамках целостной парадигмы

Отто ЭСТЕРЛЕ

Краткая история представлений о времени

Мы живем в переломное время, во время «переоценки всех ценностей», как предсказывал Фридрих Ницше. К фундаментальным понятиям, которыми философы занимались с древних времен, относятся пространство и время. Двадцатый век основательно пересмотрел представление об этих понятиях. Однако постепенно выясняется, что и современные представления несовершенны. В нижеследующем будет предложена новая модель пространства и новая формулировка сущности времени.

Ни одно слово не применяется чаще, чем слово «время», без того однако, чтобы задуматься, а что же оно означает, в чем его сущность? Святой Августин говорил, что он «вроде бы знает, что означает время, пока его о нем не спрашивают, когда же его спросят, он тотчас попадает в затруднительное положение».

Что же такое время? В словаре Брокгауза объясняется, что время есть «последовательность событий, которая выявляется из прошлого, настоящего и будущего, из возникновения и исчезновения вещей.» Это, так сказать, общепринятое, повседневное представление, которое однако сущность и причины времени не объясняет. Что же говорят философия или другие науки о сущности времени?

Философы исследуют время в соединении с пространством и много спорят о том, объективны ли эти понятия, другими словами, существуют ли они вообще независимо от восприятия человека, или они являются продуктом его воображения? Для Демокрита пространство было пустотой, в которой движутся атомы, а это движение может происходить только во времени. Аристотель представлял себе время как «число движения», для него время не могло существовать без души, так как лишь душа может считать. Для Галилео Галилея и Исаака Ньютона пространство было бесконечно и эвклидово (т.е. не кривое), а время текло равномерно и тоже бесконечно. Все изменения в мире распространялись бесконечно быстро во всей Вселенной.

Для сегодняшних философов-материалистов проблема «пространство-время» решается очень просто. «В мире не существует ничего кроме движущейся материи, и эта движущаяся материя не может двигаться иначе как в пространстве и во времени» (Ленин). Но что такое материя, как она возникла и почему она движется? Ответ материалистов таков: материя существует вечно, а движение является ее неотъемлемым свойством. И это считается научным объяснением!? Аналогично можно представить торнадо как неотъемлемое свойство горячего влажного воздуха и далее это явление не изучать. Френсис Бекон сформулировал проблему познания очень точно: «Истинное знание есть знание причин».

Альберт Эйнштейн изобрел «четырехмерный пространственно-временной континуум» (лат. континуум – единство) и утверждал, что время и масса тел зависят от их скорости. Когда тело достигает скорости света, его время якобы останавливается, а масса становится бесконечно большой (этому утверждению противоречит, между прочим, ошибочно приписываемое Эйнштейну знаменитое уравнение E = mc2, т.е. масса движется со скоростью света, но конечна. Как и ее энергия). Но почему все меняется со временем? Почему не только люди, но даже элементарные частицы стареют? И даже в относительном покое. И почему время должно образовывать с пространством единство? Лишь потому, что оба находятся в фундаменте наших знаний? Такое единство не обосновано причинно.

А «подтверждения» этой теории с помощью очень точных часов на Земле и на спутниках имеют совсем другое, намного более простое объяснение: параметры пространства различны в разных местах, а вместе с ними изменяется и состояние материала часов. Ко времени это не имеет отношения! Если Вы, дорогой читатель, установите магнит вблизи маятниковых часов с железным маятником и таким путем ускорите его колебания и ход часов, Вы же не будете утверждать, что ускорили время во Вселенной!? Вы всего-навсего изменили параметры пространства вблизи маятника.

После Эйнштейна были предприняты новые попытки понять суть времени (А.П. Левич, Б.В. Гнеденко, Н.А. Козырев). Илья Пригожин сделал шаг в правильном направлении в своей неравновесной термодинамике. Он предсказал (1986), что необратимость не может возникать на химическом уровне материи, а должна существовать уже на самых глубинных уровнях микромира. К этому мы еще вернемся.

Наиболее глубокое представление о времени имеют геологи и палеонтологи, так как они имеют дело с огромными отрезками времени. И они знают, что все в этом мире изменяется – независимо от того, покоится нечто или движется – и что время не обязательно течет равномерно, существуют как медленные изменения, так и скачки, бывает и ускоренное развитие.

Ревизия основ естествознания

Сначала один эмпирический (т.е. базирующийся на действительности, а не постулированный) принцип. Современная научная картина мира состоит из двух противоречащих друг другу представлений: из абсолютной части (абсолютное по Брокгаузу: отделенное, в смысле изолированное, независимое, неограниченное, идеальное, безусловное, бесконечное, вечное) и из относительной части (лат. relativ – сравнимое, ограниченное, конечное, зависимое). Абсолютное никогда никем не наблюдалось и экспериментально не установлено, оно противоречит принципу причинности (оно рвет причинно-следственные связи, изолированное не может на что-то влиять или подвергаться влиянию) и целостности (все части целого, например, Вселенной или человеческого тела между собой причинно связаны). Абсолютное математически отображается величинами «нуль» и «бесконечность». Объекты с такими параметрами в природе не существуют.

Этот принцип был назван автором для краткости IRENA (In Reality Exists Nothing Absolute). Он обобщает факты действительности (является эмпирическим) и лежит соответственно в самом фундаменте естествознания. На него опираются принципы причинности и целостности, имеющие статус постулатов. Благодаря этой опоре принцип причинности распространяется и на микромир, а принцип целостности «отбраковывает» «параллельные миры» и «всемогущие существа». Исходя из этого принципа, следует тщательно отделять друг от друга математические и физические представления и модели (что не нужно понимать как призыв не использовать математику в качестве исследовательского инструмента!).

В отличие от абсолютных представлений модели с относительными, сравнимыми, конечными, связанными между собой параметрами соответствуют принципам целостности и причинности, а также и действительности, так как их легко проверить в эксперименте.

В результате десятилетнего критического обсуждения принципа IRENA выявлено, что ему часто приписывается та самая абсолютизация, против которой он направлен, ведь принцип IRENA «абсолютно не допускает абсолютного». Рассмотрим, насколько верно это замечание. Существует правило «золотой середины», выдвинутое Конфуцием еще в пятом, а Аристотелем в третьем веке до нашей эры. Это правило гласит, что истина чаще всего в середине. Это правило хорошо «работает», когда есть шкала интенсивности: мало – средне – много, маленький – средний – большой, слабый – средний – сильный, например, температура больного низкая – средняя (т.е. нормальная) – высокая. Но существуют еще и качественные явления, такие как сложность, разумность, красота, совершенство, стабильность, здоровье, честность, истинность, которые правилу «золотой середины» не подчиняются. Никто не станет утверждать, что самое лучшее – это середина между уродливостью и красотой, глупостью и разумностью, истиной и заблуждением (или ложью). Здесь действует принцип «чем больше, тем лучше» (надо отметить, что качественные параметры достигают максимума при средних значениях связанных с ними количественных параметров: нос средних размеров красивее длинного или короткого, здоровье максимально при средней температуре тела и т.д.).

Мы уже установили выше, что абсолютное всегда ложно. Однако между ложью и истиной не может быть компромиссов, а значит, принцип IRENA не является абсолютизацией. Но если принцип IRENA верен (автор призывает читателей назвать хотя бы один пример, противоречащий этому принципу), то тогда теория относительности Эйнштейна должна быть ложной, так как она содержит абсолютное (подробнее в статье «Стратегия золотой середины» и книге автора «Золотая середина...», 1997 г.). Тогда пространство не пусто, а заполнено средой (точнее: пространство является средой, так как абсолютно пустого пространства, т.е. без физической среды не может быть). Каковы же свойства этой среды?

Пространство – это сверхтекучая жидкость

Существуют важные основания для утверждения, что пространство представляет из себя сжимаемую жидкость с очень малой вязкостью, подобную жидкому гелию-II. В этой жидкости легко возникают определенные структуры (вихри, волны), которые затем длительное время существуют. Многие возникшие независимо друг от друга теории (Гельмгольца, Томсона, Ацюковского, Бауэра, Хильгенберга, Мейла, Зейлера, Герловина и др.) показывают, что элементарные частицы, атомные ядра, атомы, молекулы и т.д. до галактик и силовых полей являются вихревыми структурами этой среды. Плотность этой среды была теоретически рассчитана Сухоруковыми (1993) и равняется 1,08 г/см3 (т.е. близка к плотности воды!).

Сама причина квантования объектов микромира следует из свойств этой среды: вихревые структуры не могут иметь произвольные параметры, а только такие, чтобы в них могло существовать целое число стоячих волн (бегущие волны связаны с большими энергетическими потерями, они излучают энергию и приводят к разрушению или изменению структуры). Поэтому есть смысл называть эту среду квантовым эфиром. Маделунг еще в 1926 году показал, что квантовая теория микромира следует просто из законов гидродинамики и не нуждается в невообразимых и бессмысленных корпускулярно-волновых дуализмах, плотностях вероятности и отношениях неопределенности.

Вихревые кольца имеют одну особенность: при больших скоростях движения они становятся меньше, а при малых – больше (это описывает и эмпирически найденное уравнение де Бройля λ = h/mV). Газ из таких частиц будет в отличие от "нормального" газа при охлаждении расширяться (как вода при замерзании). Поэтому все "просветы" между этими частицами всегда заполнены. Они образуют сплошную среду и не требуют бесконечного ряда все более мелких частиц для достижения сплошности. Материя при этом не бесконечно делима, что было бы абсолютностью. Эта модель не требует и виртуальных (в переводе: воображаемых, кажущихся!), колеблющихся около нуля пространственной энергии частиц.

Многие исследователи (Я. Ярковкий, Хильгенберг, Краффт, Кэри и др.) предположили, что небесные тела поглощают эфир и превращают (завихряют) его внутри себя в весомую материю, что сопровождается производством тепловой энергии. Сегодня известны десятки фактов геологии, подтверждающих рост земного шара. Вот некоторые из них. Все внешние границы континентов соответствуют друг другу, поэтому континенты можно (мысленно или в экспериментах с глобусом) свести друг с другом без просветов и получить шар меньших размеров (примерно 250 миллионов лет назад Атлантический океан еще не существовал, а диаметр Земли был в два раза меньше).

Согласно лазерных измерений со спутников континенты преимущественно удаляются друг от друга; количество продуцируемого в недрах Земли тепла растет (что ведет к потеплению климата!). Сила тяжести тоже медленно увеличивается, что подтверждают исследования древних песчаных откосов и сегодняшний рост веса эталонов. Вымирание гигантских и 80 миллионов лет назад в два раза более легких на меньшей Земле динозавров тоже является подтверждением, и т.д. (подробнее в упомянутой книге автора). Но ортодоксальные геологи не решаются возражать ортодоксальным физикам: «из ничего не может возникать материя!» и поэтому придерживаются тупиковой модели тектоники плит, которая утверждает, что древняя Пангея развалилась на осколки по неизвестным причинам и что эти осколки с тех пор хаотически плавают по поверхности Земли неизменных размеров.

Если эфир постоянно превращается в недрах Земли в «нормальное» вещество, что сопровождается его уплотнением, то земной шар должен со всех сторон постоянно «всасывать» новые порции эфира. Тогда мы находимся в «водопаде» эфира, который «увлекает» все тела в недра Земли и создает таким образом тяготение, вес. И чем больше небесное тело и меньше расстояние до него, тем сильнее всасывающая, увлекающая сила (как в постепенно сужающейся водопроводной трубе). И это вероятнее всего и есть причина ускорения свободно падающих тел, т.е. гравитации.

А так как во Вселенной становится все больше вихревых структур, т.е. частиц (что подтверждает и знаменитый физик Поль Дирак, открывший теоретически антиматерию) и все меньше «свободного» эфира, то постепенно изменяется и его плотность, а вместе с ней и величины мировых «констант» (их постоянство тоже не может быть абсолютным), что и может являться сущностью времени.

Истинная причина времени

Итак, мировые константы должны со временем изменяться. Причиной этого является необратимое превращение «свободного» эфира в «завихренное» вещество, физической среды пространства в материю. Поэтому плотность эфира, или другими словами, гравитационная «постоянная» должна со временем постепенно уменьшаться, а вместе с ней и другие «константы».

Одной из таких «констант» является «постоянная» Ридберга, которая в значительной мере определяет длину волны излучаемых атомами света, в том числе и атомами звезд и галактик. Эти волны становятся со временем все короче, а свет, соответственно, все «синее». От далеких галактик приходит к нам сегодня «красно смещенный» свет, который был излучен миллиарды лет назад в пространство с другими свойствами (с большей плотностью), поэтому его «красное смещение» объясняется вовсе не допплеровским эффектом, а «возрастом» света (О. Эстерле, 1992).

Существуют ли доказательства для такого объяснения красного смещения? Астрофизики из Пулковской обсерватории тщательно изучили спектр излучения галактики А2058+16 (К.П. Бутусов, 1998) и нашли, что красное смещение соседних линий, принадлежащих атомам щелочных металлов и железа, показывают разные величины смещения! Эти величины зависят от потенциалов ионизации атомов. В соответствии с допплеровским эффектом атомы железа должны были бы быстрее удалятся от нас, чем атомы щелочных металлов, хотя они и принадлежат одной галактике. Специалисты по Большому взрыву пришли в недоумение и назвали это явление «парадокс красного смещения» (как будто присвоение наименования решает проблему!). Если принять, что красное смещение не имеет ничего общего с допплеровским эффектом и что астрофизики анализируют «старый» свет, который был излучен миллиарды лет назад при других условиях, все становится на свои места. Тогда становится ясным, почему степень красного смещения зависит от потенциалов ионизации атомов: в более плотном эфире параметры атомов были другие!

Так что «стандартная модель Большого взрыва» ложна, что и подтверждается все новыми фактами, наблюдениями и теоретическими исследованиями (например, найдены галактики, которые старше самой Вселенной!). А также принципом IRENA: абсолютное начало Вселенной со временем ноль и бесконечными другими параметрами есть просто фикция.

Эти исследования Пулковских астрофизиков доказывают также, что распространенная гипотеза о «старении» света, о замедлении его скорости при распространении на далекие расстояния тоже неверна: не изменение длины волны или частоты света в процессе его распространения, а изменения условий излучения света атомами определяют красное смещение. Кроме того, свет не пуля, которая тормозится средой, а волна, являющаяся свойством среды. Звук тоже не меняет свою частоту при удалении от своего источника.

Уменьшение со временем плотности эфира приводит и к постепенному снижению скорости света в «пространственно-временном континууме». Время определяется не вторичной скоростью света, а скоростью изменения первичной плотности эфира, что влияет и на микромир (мы уже упоминали о «сквозной» необратимости процессов в микромире по Пригожину).

Скорость изменения мировых констант тоже не абсолютно постоянна, другими словами, время течет не с постоянной скоростью. При среднем возрасте Вселенной эта скорость должна быть максимальной, потому что к этому времени половина свободного эфира уже превратилась в «материю» и превращается максимальное количество эфира за единицу времени.

Можно ли эту скорость изменения как-то выразить через наши обычные единицы измерения? Для этого есть некоторые факты. «Молодые» звезды с массами, равными массе нашего Солнца, имеют мощность излучения, которая на 40% (т.е. в 1,4 раза) ниже, чем была у «молодого» Солнца 4,6 миллиардов лет назад (Ingersoll, 1987). Известно, сто мощность излучения звезд зависит от гравитационной постоянной (т.е. от плотности эфира) как корень из седьмой степени. Корень седьмой степени из 1,4 равен 1,04924144, или округленно 1,05. Таким образом плотность эфира была 4,6 миллиардов лет назад примерно на 5% выше, чем сегодня. Если взять в качестве первого приближения линейное снижение плотности эфира, то можно полное время существования нашей Вселенной оценить в 90 миллиардов лет.

Все это относится к среднему времени во Вселенной. Но можно представить себе и местное, локальное время. Вблизи Земного шара плотность эфира не снижается, как в среднем во Вселенной, а растет из-за ускоренного роста массы Земли и ее гравитационного «поля». Этот рост относительно невелик, но для жизни на Земле он может иметь решающее значение. Мы знаем, что каждая следующая ступень развития биосферы и ноосферы занимает все более короткие временные интервалы по сравнению с предыдущими. Это ускорение развития может быть причинно связано с ростом земного шара.

Развитие, эволюция есть накопление и самоорганизация стабильных долгоживущих систем со средними параметрами на всех уровнях организации вещества. На химическом уровне, например, открытые системы стабилизируются близ 310°К или 37°С и при химическом составе, близком к составу человеческого организма (О. Эстерле, «Почему жизнь концентрируется при 37°С?», 1997 г.).

Является ли время источником энергии?

Известный русский астрофизик Н.А.Козырев разработал в 1957 году концепцию «физического времени». Он утверждал, что время есть «вращение причины вокруг следствия» (?) и что оно содержит энергию, которую можно извлекать с помощью определенных технических средств. Эта концепция «разрешает» существование бесконечно больших скоростей, что противоречит принципу IRENA. Поразительно, но некоторые предсказания его теории были подтверждены его личными астрономическими наблюдениями, а также наблюдениями других астрономов. Он утверждал, например, что звезда или галактика может наблюдаться одновременно в трех позициях: в прошлом (там, где объект виден сейчас), в настоящем (где он сейчас действительно находится) и в будущем (где он будет находиться, когда его догонит посланный с Земли в данный момент световой сигнал). С помощью телескопа, оборудованного в фокусе светочувствительным электрическим сопротивлением, эти три позиции были действительно зарегистрированы (аналогия: две позиции летящего самолета, установленные визуально и по звуку).

Эти наблюдения могут быть объяснены с помощью нашей гидродинамической модели эфира. Если «части» пространства «плывут» в виде вихревых структур с разной скоростью и плотностью и в разных направлениях, то в них могут быть и разные скорости распространения сигналов. И если знать параметры этих течений, можно находить и пути быстрейшего достижения определенного места. С этой точки зрения можно наглядно представить себе и «червячные дыры» в пространстве, постулируемые некоторыми современными астрофизиками (это вихревые трубки эфира!). Принципиальная возможность машины времени также не исключается: если время действительно «течет», то существуют несколько возможностей движения: пассивное движение вместе с потоком, а также активное движение против, по и поперек потока.

Технически создаваемые вихри. Стационарные эфирные вихревые кольца можно «конструировать» с помощью различных эфирных структур, сильно взаимодействующих с эфиром: массивные вращающиеся тела (Würth), вращающиеся магнитные системы с супермагнитами (R.R.Searl, W. Müller), вращающиеся электрически заряженные изоляционные диски (P.Baumann "Testatika"), вращающиеся среды с высокой диэлектрической проницаемостью (напр. водяные вихри, V.Schauberger), режимы схлопывания (Implosion) газов (даже не горючих) в двигателях внутреннего сгорания) и т.д. Параллельные осям вихревых колец составляющие потоков эфира создают при этом антигравитационные эффекты, зарегистрированные на различных эфирных двигателях. Вихри – это машины, превращающие тепловую энергию непосредственно в кинетическую (О. Эстерле, 1998 г.), это делают и эфирные вихри (отсюда понижение температуры деталей эфирных двигателей). Таким образом эфир можно «завихрять» с помощью технических средств и получать таким путем так называемую свободную или пространственную энергию (подробнее в 6-й главе упомянутой книги автора), что приведет однако к дополнительному искусственному изменению плотности эфира (очень незначительному), а значит, и скорости течения времени, поэтому Козырев не совсем неправ, когда заявляет, что из времени можно извлекать энергию.

Похоже, что мы уже широко пользуемся энергией, извлекаемой из времени в... атомных электростанциях. В чем причина распада атомных ядер радиоактивных элементов? Ведь если нет ничего абсолютного, то нет и чисто случайного распада ядер атомов!? При постепенном уменьшении плотности эфира со временем, о котором говорилось выше, снижается и величина активационного барьера, удерживающего протоны и нейтроны в ядре. И там, где она достигает критического минимума, ядро распадается.

Резюме. Итак, мы видим, что определения пространства и времени сегодня еще несовершенны и противоречивы, но получают в рамках целостного естествознания ясную и логичную интерпретацию.

Что такое пространство и время?

Пространство есть форма бытия материи, характеризующая порядок сосуществования и рядоположенность материальных образований, их структурность и протяженность. Время - форма бытия материи, характеризующая взаимодействие объектов и смену их состояний, последовательность процессов и их длительность.

Пространство и время как объективные формы материи отличаются от тех естественнонаучных представлений о них, которые с прогрессом естествознания и науки в целом изменяются. В связи с этим, кроме реальных пространства и времени, различают перцептуальное (психологическое) и концептуальное пространство и время.

Под перцептуальным пространством и временем понимают формы

чувственного созерцания, отражение реальных пространства и времени в чувственном восприятии субъекта, концептуальное пространство и время - это наши знания, представления, которые в итоге оказываются более или менее адекватным отображением пространства и времени путем логического мышления. Перцептуальное и концептуальное пространство, и время являются формами отражения материальной действительности и вместе с тем формами дальнейшего познания внешнего мира.

Происхождение понятий пространство и время

Истоки и конкретное содержание понятий пространство и время связаны с тем, насколько адекватна ведущая идея той или иной культурной эпохи, "фоновое культурное знание" способно выразить (или, напротив, исказить) первоначальный смысл, выраженный в соответствующих словах. К этому первоначальному "звучанию" по мере развития человеческой практики добавляются новые смыслы, они уточняются в рефлексивных изысканиях философов, концепциях естествознания, "мирах сознания" художников. Но тем не менее первоначальное значение присутствует в неявной форме в любой концепции, поэтому я и начну именно с него.

С древнейших времен люди, пытаясь упорядочить свою жизнь, сообразовать ее с ходом природных процессов, измеряли окружающий мир. При этом время и пространство не противопоставлялись, а взаимодополняли друг друга. Так, длина пути измерялась часами и днями; размер пахотного участка и в доколумбовой Америке, и в средневековой Европе определялся тем временем. Которое надо было потратить на его обработку. И, напротив, пространственные соотношения элементов древних календарей (зарубки, ямки и т, п.) обозначали отрезки времени. И сегодня соотношение делений циферблата и стрелок позволяет счислять отрезки времени. Таким образом, практически (но, возможно, не вполне осознанно) люди мыслили организацию времени и пространства в единстве как хронотоп (единство хроноса и топоса), не называя его так.

Во всех культурах человек боялся или обожествлял время, придавая ему самые разные формы: луча, пронизывающего тьму; стрелы, летящей из прошлого в будущее; спирали. Чаще всего время передавалось числом, но иногда, как у орфиков и кельтов, оно представлялось звуком или музыкой. Так, кельтский бог Дагда своей игрой на живой арфе - дубе вызывал различные времена года.

Все культуры мира ставили в первоочередную заслугу своим богам, культурным героям именно организацию жизни, превращение хаоса в космос, упорядоченность. Идея времени и идея пространства были единой идеей, выражающей меру этой упорядоченности. В дальнейшем эти идеи становились все более самостоятельными. И все же образ времени представлялся более важным, что подтверждается наличием особого бога-Хроноса, олицетворяющего изменчивое время. Миф о том, что этот бог, пытаясь избежать предсказанной ему судьбы, пожирает своих детей, дает нам первое выражение рефлексии по поводу порождения и уничтожения объектов, процессуальности мира. Но еще более важным в рождающихся образах времени является различение бренности чувственного мира и вечности, надвременности "истинного", совершенного бытия.

Переход к Новому времени знаменовался замещением религиозной картины мира естественнонаучными представлениями. Образы времени конкретизируются в рождающихся моделях и концепциях времени. Под моделью времени мы понимаем такую систему абстракций о свойствах времени, изменение которой ведет к новому миропредставлению.

Анализ времени в физике породил как минимум три модели. Первая модель рассматривает время одновременно и как меру, и как измеряемое количество. Такой взгляд на время лежит в основе законов ньютоновской механики. Во второй модели анализируются направленные процессы и события, отраженные в законах термодинамики или в теории диссипативных структур. Квантовая теория предлагает третью модель физического времени, считая последнюю реальность фундаментально временной. Особую группу составляют модели биологического и геологического времени. Наибольшую роль в современных представлениях о времени играет модель, построенная в связи с переходом к изучению необратимых процессов (рождение и смерть микрочастиц, радиоактивный распад, теплоотдача, трение, диффузия и т.д.) Этот переход вызвал крушение линейно-причинной парадигмы и становление новой парадигмы (нелинейной, цикло-причинной, синергетической). В книге "От существующего к возникающему: время и сложность в физических науках" И. Пригожин последовательно развил концепцию внутреннего времени для классических динамических систем с сильной неустойчивостью (это может быть Вселенная, в которой распространяются диспергирующие световые волны, либо химический реактор, либо какая-то другая система).

Во всех основных моделях мы видим одно общее: время одного процесса соотносится с событиями другого процесса и измеряется через них. Но если мы действительно хотим понять время процесса самого по себе, его необходимо определить через события его же самого. А событие - это то, что ограничено двумя перерывами (с начала и конца). Время с этой точки зрения есть рисунок перерывов непрерывной линии длящихся процессов. Подобно тому, как на чистом листе бумаги проведенная линия разделяет его на правую и левую половины. Разве возможен рисунок без линий, разделяющих (отсекающих) одну часть изображения от другой? Разве возможно время без четко определенных моментов, мгновений, отделяющих одну часть события от другой, не относящихся ни к одной из них и в этом смысле "пустых"? Разве возможна музыка (самый яркий пример процесса, разворачивающегося во времени) без длящихся звучаний и пауз, создающих музыкальный рисунок наряду со звуками? В теории музыки это было понято достаточно давно, когда в 3 в. был введен в музыковедении термин "атом времени": Аристид Квинтилиан, например, определяет единицу времени в ритмике атомов, поскольку он является наименьшей различимой в восприятии длиной времени. В 5 в. эту идею развивает Марциан Капелла; в 7 в. Исидор Севильский говорит об атомах времени уже без ссылок на музыку. Бэда Достопочтенный в 8 в. и Гонорий Августодунский в 12 в. рассматривают атомы времени в качестве абсолютной меры длительности, в часе они насчитывают 22560 атомов времени.

Следует отметить, что понимание времени как рисунка интервалов не отменяет так называемого событийного определения времени. Сравнение событийного (время есть совокупность моментов) и процессуального (время есть совокупность интервалов) проведено еще в статье З. Аугустынека "Два определения времени". Эти два определения времени, однако, выполняют разные функции: событийное определение времени фиксирует время как континуум, который представляет собой математическое описание реального времени, обеспечивающего в физике гносеологическую функцию идеализации, а процессуальное определение времени относится к миру реальных явлений. Думается, что такие определения не совсем удачны: процесс можно представить как событие, а событие может развертываться как процесс. Поэтому точнее выделять атомистическую и континуальную концепции времени.

Как известно, Аристотель формулирует парадокс времени: "Одна часть его была, и ее уже нет, другая - будет, и ее еще нет; из этих частей слагается и бесконечное время, и каждый раз выделяемый промежуток времени. А то, что слагается из несуществующего, не может, как кажется, быть причастным существованию". Именно в этом месте Аристотель и формулирует "двойственность" времени: каждая "часть" времени "слагается" и из непрерывной длительности, и из тех промежутков, "пустот", которые образуются на границе с уже и еще не существующими "частями времени". Но Аристотель оценивает пустоту как "несуществующее" и поэтому задает вопрос: как "теперь" может быть частью несуществующего времени? Если "теперь" - точки во временном континууме, то невозможно существование двух соседних точек, так как между ними можно вводить еще другие точки - "теперь".

Сам Аристотель нашел выход в том, чтобы мыслить время непрерывным потоком, связанным с движением в чувственном мире.

Такой ответ соответствовал очевидностям обыденного опыта. Но эта позиция была уязвимой для критики: например, идея о бесконечной делимости континуума времени ввела к тому, что оно лишалось реальности. Критика со стороны стоицизма основывалась на том, что сам Аристотель игнорировал: на понимании "неточечного" характера "теперь". Так, согласно Хрисиппу, "настоящее", "теперь" - не фиксированная точка, а предел, к которому стремится угасающее в настоящем прошлое и грань, за которой зарождается будущее: настоящее находится частично в прошлом и частично в будущем. Другими словами, "теперь" рассматривается у ранних стоиков как предел, к которому приближаются уменьшающиеся временные интервалы. С.Я. Лурье отмечает, что концепция первых отношений зарождающихся и последних отношений исчезающих величин, развитая Ньютоном в "Методе флюксий" и нашедшая отражение в "Началах", основывается на концепции ранних стоиков.

Представить время как рисунок интервалов - не значит свести время к форме деления, но представить форму связи одного качественного состояния с другим, одного этапа процесса со следующим и предыдущим.