Теория вероятности формулы и примеры университет. Основное понятие теории вероятности. Законы теории вероятности. Что изучает математическая статистика

но и всех дальнейших

наблюдённые частоты стабилизируются,

При

Какового практическое применение методов теории вероятностей?

Практическое применение методов теории вероятностей заключается в пересчёте вероятностей «сложных» событий через вероятности «простых событий».

Пример. Вероятность выпадения герба при однократном подбрасывании правильной монеты равна ½ (к этому числу стремится наблюдённая частота выпадения герба при большом количестве бросаний). Требуется найти вероятность того, что при трёх бросаниях правильной монеты выпадет 2 герба.

Ответ: на этот вопрос даёт формула Берулли:

0.375 (т.е такое событие бывает в 37,5 % случаев при 2 –ух бросаниях правильной монеты).

Характерной особенностью современной теории вероятностей является тот факт, что несмотря на свою практическую направленность, в ней используют новейшие разделы почти всех разделов математики.

Основные понятия: генеральная и выборочная совокупность.

Привем таблицу соотнесения основных понятий генеральной совокупности и выборки.

Генеральная совокупность Выборочная совокупность
Случайная величина (x, h, z) Признак (x, y, z)
Вероятность p, p ген Относительная частота p, p выб
Распределение вероятностей Частотное распределение
Параметр (характеристика вероятностного распределения) Статистика (функция от выборочных значений признаков), служит для оценки того или иного параметра генерального вероятностного распределения
Примеры параметров и отвечающих им статистик
Одномерные случайные величины (одномерные распределения)
Математическое ожидание (m, Мx) Среднее арифметическое (m, )
Мода (Мо) Мода (Мо)
Медиана (Ме) Медиана (Ме)
Среднее квадратическое отклонение (s)
Дисперсия (s 2 , Dx) Дисперсия (s 2 , Dx)
Двумерные случайные величины (двумерные распределения)
Коэффициент корреляции r(x, h) Коэффициент корреляции r (x, y)
Многомерные случайные величины (многомерные распределения)
Коэффициенты уравнения регрессии b 1 ,b 2 ,…,b n Коэффициенты уравнения регрессии b 1 , b 2 , … , b n

Дисперсионный анализ

План лекции.

1. Однофакторный дисперсионный анализ.

Вопросы лекции.

Коэффициент корреляции

Принимает значения в диапазоне от -1 до +1

Безразмерная величина

Показывает тесноту связи (связь как синхронность, согласованность ) между признаками

Коэффициент регрессии

Может принимать любые значения

Привязан к единицам измерения обоих признаков

Показывает структуру связи между признаками: характеризует связь как зависимость, влияние, устанавливает причинно-следственные связи.

Знак коэффициента говорит о направлении связи

Усложнение модели

Совокупное влияние всех независимых факторов на зависимую переменную не может быть представлено как простая сумма нескольких парных регрессий.

Это совокупное влияние находится более сложным методом - методом множественной регрессии.

Этапы проведения корреляционного и регрессионного анализа:

· Выявление наличия взаимосвязи между признаками;

· Определение формы связи;

· Определение силы, тесноты и направления связи.

Задачи,решаемые после прочтения данной лекции:

Можно выписывать уравнения прямой и обратной регрессий для данных величин. Строить соответствующие графики. Находить коэффициент корреляции рассматриваемых величин. По критерию Стьюдента проверять гипотезу о существенности корреляционной связи. Пользуемся командами: ЛИНЕЙН и Мастер диаграмм в Excel.

Литература.

1. Конспект лекций.

  1. Гмурман, В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2003. - 479 с.

1.8. Основные понятия планирования эксперимента и некоторые рекомендации

План лекции.

1. Планирование эксперимента: основные этапы и принципы.

2. Понятие эксперимента, отклика, поверхности отклика, факторного пространства.

3. Определение цели планирования эксперимента.

4. Основные этапы планирования:

Вопросы лекции:

1. Основные понятия. Постановка задачи.

Планирование эксперимента – это оптимальное (наиболее эффективное) управление ходом эксперимента с целью получения максимально возможной информации на основании минимально допустимого количества данных. Под самим же экспериментом понимаем систему операций, действий или наблюдений, направленных на получение информации об объекте.

Теория планирования эксперимента предполагает наличие определенных знаний и условно можно выделить следующие этапы планирования:

1) сбор и первичная обработка статистических данных

2) определение точечных и интервальных оценок распределения

3)и последующая их обработка, что предполагает знание статистических методов измерений случайной величины, теории проверки статистических гипотез, методов планирования эксперимента, в частности, пассивного эксперимента, методов дисперсионного анализа, методов поиска экстремума функции отклика;

2) составление плана эксперимента, проведение самого эксперимента, проведение обработки результатов эксперимента, оценка точности эксперимента.

Итак, дадим понятие самого эксперимента.

Эксперимент. Эксперимент является основным и наиболее совершенным методом познания, который может быть активным или пассивным.

Активный – основной вид эксперимента, который проводится в контролируемых и управляемых условиях, имеющих следующие преимущества:

1) результаты наблюдений независимые нормально распределенные случайные величины;

2) дисперсии равны друг другу (вследствие того, что выборочные оценки являются однородными);

3) независимые переменные измеряются с малой погрешностью в сравнении с погрешностью значения y ;

4) активный эксперимент лучше организован: оптимальное использование факторного пространства позволяет при минимальных затратах получить максимум информации про изучаемые процессы или явления.

Пассивный эксперимент не зависит от экспериментатора, который в данном случае выступает сторонним наблюдателем.

При планировании эксперимента исследуемый объект представляется в виде «черного ящика», на который воздействуют управляемые и неуправляемые факторы:

тут - управляемые факторы; - неуправляемые факторы, - параметры оптимизации, которые могут охарактеризовать работу объекта.

Факторы. Каждый фактор может принимать определенное количество значений называемых уровнями факторов. Множество возможных уровней фактора называется областью определения фактора, которые могут быть непрерывными или дискретными, ограниченными и неограниченными. Факторы могут быть:

- совместимыми: предполагается допустимость любой комбинации факторов, которая не должна влиять на сохранение изучаемого процесса;

- независимыми: между факторами должна отсутствовать корреляционная связь, то есть имеется возможность изменять значение каждого из рассматриваемых в системе факторов независимо друг от друга. Нарушение хотя бы одно­го из этих требований приводит либо к невозможности применения планирования эксперимента, либо к весьма серьезным трудностям. Правильный выбор факторов позволяет четко задавать условия опыта.

Исследуемые параметры должны удовлетворять ряду требований:

- эффективность, способствующая скорейшему достижению цели;

- универсальность, характерная не только для исследуемого объекта;

- статистическая однородность, предполагающая соответствие с точностью до погрешности эксперимента определенному набору значений факторов определенного значения фактора ;

- количественное выражение одним числом;

- простота вычислений;

- существование при любом состоянии объекта.

Модель . Зависимость между выходным параметром (откликом) и входными параметрами (факторами) называется функцией откли­ка и имеет следующий вид:

(1)

Тут - отклик (результат эксперимента); - незави­симые переменные (факторы), которые можно варьировать при постановке экспериментов.

Отклик. Отклик – это результат опыта в соответствующих условиях, который также называют функцией цели, критерием эффективности, критерием оптимальности, параметром оптимизации и др.

В теории планирования эксперимента к параметру оптимизации предъявляются требования, выполнение которых необходимо для успешного решения задачи. Выбор параметра оптимизации должен базироваться на четко сформулированной задаче, на ясном понима­нии конечной цели исследования. Параметр оптими­зации должен быть эффективным в статистическом смысле, то есть определяться с достаточной точностью. При большой ошибке его определения необходимо увеличивать число параллельных опытов.

Желательно, чтобы параметров оптимизации было как можно меньше. Однако не следует добиваться уменьшения числа параметров оптимизации за счет полноты характеристики системы. Желатель­но также, чтобы система во всей полноте характеризовалась просты­ми параметрами оптимизации, имеющими ясный физический смысл. Естественно, что простой, с ясным физическим смыслом параметр оптимизации защищает экспериментатора от многих ошибок и избавляет его от многих трудностей, связанных с решением различных методических вопросов экспериментирования и технологиче­ской интерпретации полученных результатов.

Геометрический аналог параметра (функции отклика), соответствующий уравнению (1), называется поверхностью отклика, а пространство, в котором строят указанную поверхность,- факторным пространством. В простейшем случае, когда исследу­ется зависимость отклика от одного фактора, поверхность откли­ка представляет собой линию на плоскости, то есть в двухмерном пространстве. В общем случае, когда рассматриваются факто­ров, уравнение (1) описывает поверхность отклика в - мерном пространстве. Так, например, при двух факторах факторное пространство представляет собой факторную плоскость.

Целью планирования эксперимента является получение математической модели исследуемого объекта или процесса. При весьма ограниченных знаниях о механизме процесса аналитическое выражение функции отклика неизвестно, поэтому обычно используют полиномиальные математические модели (алгебраические полиномы) называемые уравнениями регрессии, общий вид которых:

(2)

где – выборочные коэффициенты регрессии, которые можно получить, пользуясь результатами эксперимента.

4. К основным этапам планирования эксперимента можно отнести:

1.Сбор, изучение, анализ всех данных об объекте.

2. Кодирование факторов.

3. Составление матрицы планирования эксперимента.

4. Проверка воспроизводимости опытов.

5. Расчет оценок коэффициентов регрессионного уравнения.

6. Проверка значимости коэффициентов регрессии.

7. Проверка адекватности полученной модели.

8. Переход к физическим переменным.

Литература

1. Конспект лекций.

4.1 Цепи Маркова. Случайные функции. Метод Монте - Карло. Имитационное моделирование. Сетевое планирование. Динамическое и целочисленное программирование

План лекции.

1. Методы Монте-Карло.

2. Метод статистических испытаний (методы Монте-Карло)

Вопросы лекции.

Что изучает теория вероятностей?

Теория вероятностей изучает так называемые случайные события и устанавливает закономерности в проявлении таких событий, можно сказать, что теория вероятностей является разделом математики, в котором изучаются математические модели случайных экспериментов, т.е. экспериментов, исходы которых нельзя определить однозначно условиями проведения опыта.

Для введения понятия случайного события необходимо рассмотреть некоторые примеры реальных экспериментов.

2. Дать понятие случайного эксперимента и привести примеры случайных экспериментов.

Приведем примеры случайных экспериментов:

1. Однократное подбрасывание монеты.

2.Однократное подбрасывание игральной кости.

3. Случайный выбор шара из урны.

4. Измерение времени безотказной работы электрической лампочки.

5. Измерение числа вызовов, поступающих на АТС за единицу времени.

Эксперимент является случайным, если нельзя предсказать исход не только первого опыта, но и всех дальнейших . Например, проводится некоторая химическая реакция, исход которой неизвестен. Если её один раз провести и получить определённый результат, то при дальнейшем проведении опыта в одних и тех же условиях случайность исчезает.

Примеров такого рода можно привести сколь угодно много. В чём же состоит общность опытов со случайными исходами? Оказывается, несмотря на то, что результата каждого из перечисленных выше экспериментов предсказать невозможно, на практике для них уже давно была замечена закономерность определённого вида, а именно: при проведении большого количества испытаний наблюдённые частоты появления каждого случайного события стабилизируются, т.е. всё меньше отличаются от некоторого числа, называемого вероятностью события.

Наблюдённой частотой события А () называется отношение числа появлений события А () к общему числу испытаний (N):

Такое свойство устойчивости частоты позволяет, не имея возможности предсказать исход отдельного опыта достаточно точно прогнозировать свойства явлений, связанных с рассматриваемым опытом. Поэтому методы теории вероятностей в современной жизни проникли во все сферы деятельности человека, причём не только в естественнонаучные, экономические, но и гуманитарные, такие, как история, лингвистика и т.д. На этом подходе основано статистическое определение вероятности .

При (наблюденная частота события стремится к его вероятности при росте количества опытов, то есть при n ).

Однако определение вероятности через частоту не является удовлетворительным для теории вероятностей как математической науки. Это связано с тем, что практически нельзя провести бесконечное число испытаний и наблюдённая частота меняется от опыта к опыту. Поэтому А.Н. Колмогоров предложил аксиоматическое определение вероятности, которое принято в настоящее время.

Курс математики готовит школьникам массу сюрпризов, один из которых - это задача по теории вероятности. С решением подобных заданий у учащихся возникает проблема практически в ста процентах случаев. Чтобы понимать и разбираться в данном вопросе, необходимо знать основные правила, аксиомы, определения. Для понимания текста в книге, нужно знать все сокращения. Всему этому мы и предлагаем обучиться.

Наука и ее применение

Так как мы предлагаем ускоренный курс «теория вероятности для чайников», то сначала необходимо ввести основные понятия и буквенные сокращения. Для начала определимся с самим понятием «теория вероятности». Что же это за наука и для чего она нужна? Теория вероятности - это один из разделов математики, который изучает случайные явления и величины. Так же она рассматривает закономерности, свойства и операции, совершаемые с этими случайными величинами. Для чего она нужна? Широкое распространение наука получила в изучении природных явлений. Любые природные и физические процессы не обходятся без присутствия случайности. Даже если во время опыта были максимально точно зарегистрированы результаты, при повторе того же испытания, результат с большой вероятностью не будет таким же.

Примеры задач по мы обязательно рассмотрим, вы сами сможете в этом убедиться. Исход зависит от множества различных факторов, которые практически невозможно учесть или зарегистрировать, но тем не менее они оказывают огромнейшее влияние на исход опыта. Яркими примерами могут служить задачи определения траектории движения планет или определение прогноза погоды, вероятность встретить знакомого человека во время пути на работу и определение высоты прыжка спортсмена. Так же теория вероятности оказывает большую помощь брокерам на фондовых биржах. Задача по теории вероятности, с решением которой раньше возникало много проблем, станет для вас сущим пустяком после трех-четырех примеров, приведенных ниже.

События

Как уже говорилось ранее, наука изучает события. Теория вероятностей, примеры решения задач мы рассмотрим немного позже, изучает только один вид - случайные. Но тем не менее необходимо знать, что события могут быть трех видов:

  • Невозможные.
  • Достоверные.
  • Случайные.

Предлагаем немного оговорить каждый из них. Невозможное событие никогда не произойдет, ни при каких условиях. Примерами могут служить: замерзание воды при плюсовой температуре, вытягивание кубика из мешка с шарами.

Достоверное событие происходит всегда со стопроцентной гарантией, если выполнены все условия. Например: вы получили заработную плату за проделанную работу, получили диплом о высшем профессиональном образовании, если добросовестно учились, сдали экзамены и защитили диплом и так далее.

Со все немного сложнее: в ходе опыта оно может произойти или нет, например, вытащить туз из карточной колоды, сделав не более трех попыток. Результат можно получить как с первой попытки, так и, вообще, не получить. Именно вероятность происхождения события и изучает наука.

Вероятность

Это в общем смысле оценка возможности удачного исхода опыта, при котором наступает событие. Вероятность оценивается на качественном уровне, особенно если количественная оценка невозможна или затруднительна. Задача по теории вероятности с решением, точнее с оценкой подразумевает нахождение той самой возможной доли благополучного исхода. Вероятность в математике - это числовая характеристики события. Она принимает значения от нуля до единицы, обозначается буквой Р. Если Р равняется нулю, то событие произойти не может, если единице, то событие произойдет со стопроцентной вероятностью. Чем больше Р приближается к единице, тем сильнее вероятность благополучного исхода, и наоборот, если близко к нулю, то и событие произойдет с малой вероятностью.

Сокращения

Задача по теории вероятности, с решением которой вы вскоре столкнетесь, может содержать следующие сокращения:

  • Р и Р(Х);
  • А, В, С и т. д;

Возможны и некоторые другие: по мере необходимости будут вноситься добавочные объяснения. Предлагаем, для начала, пояснить представленные выше сокращения. Первым в нашем списке встречается факториал. Для того чтобы было понятно, приведем примеры: 5!=1*2*3*4*5 или 3!=1*2*3. Далее, в фигурных скобках пишут заданные множества, например: {1;2;3;4;..;n} или {10;140;400;562}. Следующее обозначение - это множество натуральных чисел, довольно часто встречается в заданиях по теории вероятности. Как уже говорилось ранее, Р - это вероятность, а Р(Х) - это вероятность происхождения события Х. Большими буквами латинского алфавита обозначаются события, например: А - попался белый шар, В - синий, С - красный или соответственно, . Маленькая буква n - это количество всех возможных исходов, а m - количество благополучных. Отсюда и получаем правило нахождения классической вероятности в элементарных задачах: Р=m/n. Теория вероятности «для чайников», наверное, и ограничивается данными знаниями. Теперь для закрепления переходим к решению.

Задача 1. Комбинаторика

Студенческая группа насчитывает тридцать человек, из которых необходимо выбрать старосту, его заместителя и профорга. Необходимо найти количество способов сделать данное действие. Подобное задание может встретиться на ЕГЭ. Теория вероятности, решение задач которой мы сейчас рассматриваем, может включать задачи из курса комбинаторики, нахождение классической вероятности, геометрической и задачи на основные формулы. В данном примере мы решаем задание из курса комбинаторики. Переходим к решению. Это задание простейшее:

  1. n1=30 - возможных старост студенческой группы;
  2. n2=29 - те, кто могут занять пост заместителя;
  3. n3=28 человек претендует на должность профорга.

Все, что нам остается сделать, это найти возможное количество вариантов, то есть перемножить все показатели. В результате мы получаем: 30*29*28=24360.

Это и будет ответом на поставленный вопрос.

Задача 2. Перестановка

На конференции выступают 6 участников, порядок определяется жеребьевкой. Нам нужно найти количество возможных вариантов жеребьевки. В данном примере, мы рассматриваем перестановку из шести элементов, то есть нам нужно найти 6!

В пункте сокращений мы уже упоминали, что это такое и как вычисляется. Итого получается, что существует 720 вариантов жеребьевки. На первый взгляд тяжелое задание имеет вполне короткое и простое решение. Это и есть задания, которые рассматривает теория вероятности. Как решать задачи более высокого уровня, мы рассмотрим в следующих примерах.

Задача 3

Группу студентов из двадцати пяти человек необходимо разбить на три подгруппы по шесть, девять и десять человек. Мы имеем: n=25, k=3, n1=6, n2=9, n3=10. Осталось подставить значения в нужную формулу, мы получаем: N25(6,9,10). После несложных вычислений мы получаем ответ - 16 360 143 800. Если в задании не говорится о том, что необходимо получить числовое решение, то можно дать его в виде факториалов.

Задача 4

Три человека загадали числа от одного до десяти. Найдите вероятность того, что у кого-то числа совпадут. Сначала мы должны узнать число всех исходов - в нашем случае это тысяча, то есть десять в третей степени. Теперь найдем количество вариантов, когда все загадали разные числа, для этого перемножаем десять, девять и восемь. Откуда взялись эти числа? Первый загадывает число, у него есть десять вариантов, второй имеет уже девять, а третьему надо выбирать из восьми оставшихся, таким образом получаем 720 возможных вариантов. Как уже мы посчитали ранее, всего вариантов 1000, а без повторений 720, следовательно, нас интересуют оставшиеся 280. Теперь нам нужна формула нахождения классической вероятности: Р= . Мы получили ответ: 0,28.

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие . Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие - монета станет на ребро, случайное событие - выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием . В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий .

Основные понятия теории

Вероятность - степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным.

Случайная величина - это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство - понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками: , где

Это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- сигма-алгебра подмножеств , называемых (случайными) событиями;
- вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и - число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей - функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х - произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание - среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской - . В статистике часто используют обозначение .

Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, - измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины - мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть - случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми , если значение одной из них влияет на вероятность значений другой.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел - совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие теории вероятности, научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы теории вероятности, особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.