Выборка хорошо представляющая генеральную совокупность называется. Генеральная совокупность и выборочный метод

Лекция 6. Элементы математической статистики

Вопросы для контроля знаний и подведения итога прочитанной лекции

1. Дайте определение случайной величины.

2.Напишите формулы для математического ожидания и дисперсии дискретной и непрерывной случайных величин.

3. Дайте определение локальной интегральной предельная теорем Лапласа

4. Напишите формулы, задающие биномиальное распределение, гипергеометрическое распределение, распределение Пуассона, равномерное распределение и нормальное распределение.

Цель: Изучить основные понятия математической статистики

1. Генеральная совокупность и выборка

2. Статистическое распределение выборки. Полигон. Гистограмма.

3. Оценки параметров генеральной совокупности по ее выборке

4. Генеральная и выборочная средние. Методы их расчета.

5. Генеральная и выборочная дисперсии.

6. Вопросы для контроля знаний и подведения итога прочитанной лекции

Мы приступаем к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.

1. Генеральная совокупность и выборка. Пусть требуется изучить множество однородных объектов (это множество называется статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным - контролируемый размер детали.

Лучше всего произвести сплошное обследование, т.е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, недоступность их. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, производя сплошное обследование, мы уничтожим всю партию.

Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.

Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называют выборкой.

Число объектов генеральной совокупности и выборки называют соответственно объемом генеральной совокупности и объемом выборки.

Пример 10.1. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 - объем генеральной совокупности, а 10 - объем выборки.

Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной.



На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна.

Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор производится случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет сделана с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.

2. Статистическое распределение выборки. Полигон. Гистограмма. Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось n 1 , раз, х 2 - п 2 раз, ..., х k - n k раз и n 1 +n 2 +…+ п k = п - объем выборки. Наблюдаемые значения x 1 , x 2 , …, x k называют вариантами, а последовательность вариант, записанная в возрастающем порядке, - вариационным рядом. Числа наблюдений n 1 , n 2 , …, n k называют частотами, а их отношения к объему выборки , , …, - относительными частотами. Отметим, что сумма относительных частот равна единице: .

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал. Для графического изображения статистического распределения используют полигоны и гистограммы.

Для построения полигона на оси Ох откладывают значения вариант х i , на оси Оу - значения частот п i (относительных частот ).

Пример 10.2. На рис. 10.1 показан полигон следующего распределения

Полигоном обычно пользуются в случае небольшого числа вариант. В случае большого числа вариант и в случае непрерывного распределения признака чаще строят гистограммы. Для этого интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала п i , - сумму частот вариант, попавших в i -интервал. Затем на этих интервалах, как на основаниях, строят прямоугольники с высотами (или , где п - объем выборки).

Площадь i частичного прямоугольника равна , (или ).

Следовательно, площадь гистограммы равна сумме всех частот (или относительных частот), т.е. объему выборки (или единице).

Пример 10.3. На рис. 10.2 показана гистограмма непрерывного распределения объема n = 100, приведенного в следующей таблице.

Это наука, которая, основываясь на методах теории вероятностей, занимается систематизацией и обработкой статистических данных для получения научных и практических выводов.

Статистическими данными называются сведения о числе объектов, обладающих теми или иными признаками.

Группа объектов, объединенных по некоторому качественному или количественному признаку, называется статистической совокупностью . Объекты, входящие в совокупность, называются её элементами, а их общее число - ее объемом.

Генеральной совокупностью называется множество всех мыслимо возможных наблюдений, которые могли бы быть сделаны при данном реальном комплексе условий или более строго: генеральной совокупностью называется случайная величина x и связанное с ней вероятностное пространство {W,Á,Р}.

Распределение случайной величины x называют распределением генеральной совокупности (говорят, например, о нормально распределенной или просто нормальной генеральной совокупности).

Например, если производится ряд независимых измерений случайной величины x, то генеральная совокупность теоретически бесконечна (т.е. генеральная совокупность - абстрактное, условно - математическое понятие); если же проверяется число дефектных изделий в партии из N изделий, то эту партию рассматривают как конечную генеральную совокупность объема N.

В случае социально-экономических исследований генеральной совокупностью объема N может быть население какого-то города, региона или страны, а измеряемыми признаками - доходы, расходы или объем сбережений отдельно взятого человека. Если какой-то признак имеет качественный характер (например, пол, национальность, социальное положение, род деятельности и т.п.), но принадлежит к конечному множеству вариантов, то он может быть также закодирован числом (как это часто делают в анкетах).

Если число объектов N достаточно велико, то провести сплошное обследование затруднительно, а иногда физически невозможно (например, проверить качество всех патронов). Тогда случайным образом отбирают из всей генеральной совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборкой объема n называется последовательность х 1 , х 2 , …, х n независимых одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением случайной величины x.

Например, результаты n первых измерений случайной величины x принято рассматривать как выборку объема n из бесконечной генеральной совокупности. Полученные данные называют наблюдениями случайной величины x, а также говорят, что случайная величина x "принимает значения" х 1 , х 2 , …, х n .


Основная задача математической статистики - сделать научно обоснованные выводы о распределении одной или более неизвестных случайных величин или их взаимосвязи между собой. Метод, состоящий в том, что на основании свойств и характеристик выборки делаются заключения о числовых характеристиках и законе распределения случайной величины (генеральной совокупности) называется выборочным методом.

Для того, чтобы характеристики случайной величины, полученные выборочным методом, были объективны, необходимо, чтобы выборка была репрезентативной, т.е. достаточно хорошо представляла исследуемую величину. В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно, т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку. Для этого существуют различные виды отбора выборки.

1. Простым случайным отбором называется отбор, при котором объекты извлекаются по одному из всей генеральной совокупности.

2. Стратифицированный (расслоенный ) отбор заключается в том, что исходная генеральная совокупность объема N подразделяется на подмножества (страты) N 1 , N 2 ,…,N k , так что N 1 + N 2 +…+ N k = N. Когда страты определены, из каждого из них извлекается простая случайная выборка объема n 1 , n 2 , …, n k . Частным случаем стратифицированного отбора является типический отбор, при котором объекты отбирают не из всей генеральной совокупности, а из каждой типической ее части.

Комбинированный отбор сочетает в себе сразу несколько видов отбора, образующих различные фазы выборочного обследования. Существуют и другие методы организации выборки.

Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. Для конечной генеральной совокупности случайный отбор без возвращения приводит на каждом шаге к зависимости отдельных наблюдений, случайный равновозможный выбор с возвращением - к независимости наблюдений. На практике обычно имеют дело с бесповторными выборками. Тем не менее, когда объем генеральной совокупности N во много раз больше, чем объем выборки n (например, в сотни или тысячи раз), зависимостью наблюдений можно пренебречь.

Таким образом, случайная выборка х 1 , х 2 , …, х n - это результат последовательных и независимых наблюдений над случайной величиной ξ, представляющую генеральную совокупность, и все элементы выборки имеют тоже распределении, что исходная случайная величина x.

Функцию распределения F x (х) и другие числовые характеристики случайной величины x будем называть теоретическими, в отличие от выборочных характеристик , которые определяются по результатам наблюдений.

Пусть выборка х 1 , х 2 , …, х к есть результат независимых наблюдений случайной величины x, причем х 1 наблюдалось n 1 раз, х 2 - n 2 раза, …, х к - n к раз, так что n i = n - объем выборки. Число n i , показывающее, сколько раз появилось значение х i в n наблюдениях, называется частотой данного значения, а отношение n i /n = w i - относительной частотой . Очевидно, что числа w i рациональны и .

Статистическая совокупность, расположенная в порядке возрастания признака, называется вариационным рядом . Его члены обозначают x (1) , x (2), … x (n) и называют вариантами . Вариационный ряд называется дискретным , если его члены принимают конкретные изолированные значения. Статистическим распределением выборки дискретной случайной величины x называется перечень вариант и соответствующих им относительных частот w i . Полученная таблица называется статистическим рядом.

X (1) x (2) ... x k(k)
ω 1 ω 2 ... ω k

Наибольшее и наименьшее значения вариационного ряда обозначают x min и x max и называют крайними членами вариационного ряда.

Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюдаемых значений на k частичных интервалов равной длины h, и подсчете числа попаданий наблюдений в эти интервалы. Полученные числа принимают за частоты n i (для некоторой новой, уже дискретной случайной величины). В качестве новых значений вариант x i обычно берутся середины интервалов (либо в таблице указываются сами интервалы). Согласно формуле Стерждеса рекомендуемое число интервалов разбиения k » 1 + log 2 n , а длины частичных интервалов равны h = (x max - x min)/k. Предполагается, что весь интервал имеет вид .

Графически статистические ряды могут быть представлены в виде полигона, гистограммы или графика накопленных частот.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки (x 1 , n 1), (x 2 , n 2), …, (x k , n k). Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x 1 , w 1), (x 2 , w 2), …, (x k , w k). Полигоны обычно служат для изображения выборки в случае дискретных случайных величин (рис. 7.1.1).

Рис. 7.1

.1.

Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиною h , а высоты

равны w i /h.

Гистограмма обычно служит для изображения выборки в случае непрерывных случайных величин. Площадь гистограммы равна единице (рис. 7.1.2). Если на гистограмме относительных частот соединить середины верхних сторон прямоугольников, то полученная ломанная образует полигон относительных частот. Поэтому гистограмму можно рассматривать как график эмпирической (выборочной) плотности распределения f n (x). Если у теоретического распределения существует конечная плотность, то эмпирическая плотность является некоторым приближением теоретической.

Графиком накопленных частот называется фигура, строящаяся аналогично гистограмме с той разницей, что для расчета высот прямоугольников берутся не простые, а накопленные относительные частоты , т.е. величины . Эти величины не убывают, и график накопленных частот имеет вид ступенчатой "лестницы" (от 0 до 1).

График накопленных частот на практике используются для приближения теоретической функции распределения.

Задача. Анализируется выборка из 100 малых предприятий региона. Цель обследования - измерение коэффициента соотношения заемных и собственных средств (х i) на каждом i-ом предприятии. Результаты представлены в таблице 7.1.1.

Таблица Коэффициенты соотношений заемных и собственных средств предприятий.

5,56 5,45 5,48 5,45 5,39 5,37 5,46 5,59 5,61 5,31
5,46 5,61 5,11 5,41 5.31 5,57 5,33 5,11 5,54 5,43
5,34 5,53 5,46 5,41 5,48 5,39 5,11 5,42 5,48 5,49
5,36 5,40 5,45 5,49 5,68 5,51 5,50 5,68 5,21 5,38
5,58 5,47 5,46 5,19 5,60 5,63 5,48 5,27 5,22 5,37
5,33 5,49 5,50 5,54 5,40 5.58 5,42 5,29 5,05 5,79
5,79 5,65 5,70 5,71 5,85 5,44 5,47 5,48 5,47 5,55
5,67 5,71 5,73 5,05 5,35 5,72 5,49 5,61 5,57 5,69
5,54 5,39 5,32 5,21 5,73 5,59 5,38 5,25 5,26 5,81
5,27 5,64 5,20 5,23 5,33 5,37 5,24 5,55 5,60 5,51

Построить гистограмму и график накопленных частот.

Решение . Построим группированный ряд наблюдений:

1. Определим в выборке х min = 5,05 и x max = 5,85;

2. Разобьем весь диапазон на k равных интервалов: k » 1 + log 2 100 = 7,62; k = 8, отсюда длина интервала

Таблица 7.1.2. Сгруппированный ряд наблюдений

Номер Интервала Интервалы Середины интервалов х i w i f n (x)
5,05-5,15 5,1 0,05 0,05 0,5
5,15-5,25 5,2 0,08 0,13 0,8
5,25-5,35 5,3 0,12 0,25 1,2
5,35-5,45 5,4 0,20 0,45 2,0
5,45-5,55 5,5 0,26 0,71 2,6
5,55-5,65 5,6 0,15 0,86 1,5
5,65-5,75 5,7 0,10 0,96 1,0
5,75-5,85 5,8 0,04 1,00 0,4

На рис. 7.1.3 и 7.1.4, построенных по данным таблицы 7.1.2, представлены гистограмма и график накопленных частот. Кривые соответствуют плотности и функции нормального распределения, "подобранного" к данным.

Таким образом, распределение выборки является некоторым приближением распределения генеральной совокупности.

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.

В математической статистике выделяют два фундаментальных понятия: генеральная совокупность и выборка.
Совокупностью - называется практически счетное множество некоторых объектов или элементов, интересующих исследователя;
Свойством совокупности называется реальное или воображаемое качество, присущее некоторым всем ее элементам. Свойство может быть случайным или неслучайным.
Параметром совокупности называется свойство, которое можно квантифицировать в виде константы или переменной величины.
Простая совокупность характеризуется:
отдельным свойством (например: все студенты России);
отдельным параметром в виде константы или переменной (Все студенты женского пола);
системой непересекающихся (несовместных) свойств, к примеру: Все учителя и ученики школ г. Владивостока.
Сложная совокупность характеризуется:
системой, хотя бы частично пересекающихся свойств (Студенты психологического и математических факультетов ДВГУ, окончивших школу с золотой медалью);
системой параметров независимых и зависимых в совокупности; при комплексном исследовании личности.
Гомогенной или однородной называется совокупность, все характеристики которой присущи каждому ее элементу;
Гетерогенной или неоднородной называется совокупность, характеристики которой сосредоточены в отдельных подмножествах элементов.
Важным параметром является объем совокупности - количество образующих ее элементов. Величина объема зависит от того, как определена сама совокупность, и какие вопросы нас конкретно интересуют. Допустим нас интересует эмоциональное состояние студента 1-го курса в период сдачи конкретного экзамена в сессию. Тогда генеральная совокупность исчерпывается в течении получаса. Если нас интересует эмоциональное состояние всех студентов 1-го курса, то совокупность будет гораздо больше, и еще больше, если взять эмоциональное состояние всех студентов 1-го курса данного вуза и т.д. Понятно, что совокупности большого объема можно исследовать только выборочным путем.
Выборкой называется некоторая часть генеральной совокупности, то, что непосредственно изучается.
Выборки классифицируются по репрезентативности, объему, способу отбора и схеме испытаний.
Репрезентативная - выборка адекватно отображающая генеральную совокупность в качественном и количественном отношениях. Выборка должна адекватно отображать генеральную совокупность, иначе результаты не совпадут с целями исследования.
Репрезентативность зависит от объема, чем больше объем, тем выборка репрезентативней. По способу отбора.
Случайная - если элементы отбираются случайным образом. Так как большинство методов математической статистики основывается на понятии случайной выборки, то естественно выборка должна быть случайной.
Неслучайная выборка:
механический отбор, когда вся совокупность делится на столько частей, сколько единиц планируется в выборке и затем из каждой части отбирается один элемент;
типический отбор - совокупность делится на гомогенные части, и из каждой осуществляется случайная выборка;
серийный отбор - совокупность делят на большое число разновеликих серий, затем делают выборку одной какой-либо серии;
комбинированный отбор - сочетаются рассматриваемые виды отбора, на разных этапах.
По схеме испытаний - выборки могут быть независимые и зависимые. По объему выборки делят на малые и большие. К малым относят выборки, в которых число элементов n 200 и средняя выборка удовлетворяет условию 30Малые выборки используются при статистическом контроле известных свойств уже изученных совокупностей.
Большие выборки используются для установки неизвестных свойств и параметров совокупности.

Еще по теме 1.3. Генеральная совокупность и выборка:

  1. 7.2 Характеристики выборочной и генеральной совокупности
  2. 1.6. Точечная и интервальная оценки коэффициентов корреляции нормально распределенной генеральной совокупности

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей:
- Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
- Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)
- Юридические лица России (2,2 млн. на начало 2005 года)
- Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Корректное определение Г.С. и ее характеристик чрезвычайно важно для выбора дизайна исследования - стратегии построения репрезентативной выборки (см. ). Важнейшими характеристиками Г.С. являются ее объем и доступность элементов для определения.

С точки зрения объема, принято выделять конечные и бесконечные Г.С. Это деление является чисто техническим, оно обусловлено особенностями процедур оценивания объема и ошибок репрезентативной вероятностной (случайной) выборки. Конечными считаются Г.С., численность которых сопоставима с объемом выборки. Если объем выборки превышает несколько процентов от численности Г.С., ошибку выборки необходимо оценивать с поправкой на объем Г.С.

Бесконечными называются Г.С., объем которых, по сравнению с объемом репрезентативной случайной выборки, несоизмеримо велик. Строго говоря, все Г.С. в социальных науках конечны (даже если их численность составляет несколько миллиардов), однако на практике Г.С. можно считать бесконечной, если объем выборки, обеспечивающий приемлемый уровень ошибки, не превышает 1-2 % от ее численности. Иногда понятие бесконечности связывают непосредственно с объемом Г.С., например, более ста тысяч объектов.

Г.С., принадлежность к которым очевидна или легко устанавливается, называются конкретными. Для конкретных Г.С. несложно определить объем и получить относительно полный список их элементов - основу выборки (см. Выборки основа ). Например, список совершеннолетних жителей города можно получить в адресном столе, а списки студентов крупного города - в университетах. Если конкретная Г.С. очень велика (например, население страны), списки могут быть получены для всех ее структурных частей. Построение репрезентативной выборки случайной (см. ) для конкретных Г.С. технически всегда возможно; проблемы могут возникнуть в связи с недостатком времени, квалифицированного персонала или материальных ресурсов.

Г.С., принадлежность к которой можно установить только в результате целенаправленных процедур или специальных исследований, называются гипотетическими. К таким Г.С. относятся, например, аудитории СМК (нельзя узнать, видел ли человек конкретный рекламный ролик, если не спросить его об этом), любители определенных видов аквариумных рыбок, эксперты по узкой проблеме и т.п. Для определения объема некоторых гипотетических Г.С. также необходимы специальные исследования. Возможность построения репрезентативной выборки случайной (см. ) для гипотетичных Г.С. большого объема во многих случаях представляется проблематичной.

ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ ПАРАМЕТР - статистический термин, применяемый для обозначений любой количественной характеристики генеральной совокупности (см. ). Математическое ожидание (см. ), дисперсия (см. ), вероятность (см. ) положительного ответа, коэффициент корреляции между двумя случайными величинами (см. ) являются Г.С.П. Аналогичные характеристики выборки (см. ) называются статистиками выборочными (см. ).

Выборка (Выборочная совокупность) - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Характеристики выборки:

Качественная характеристика выборки - кого именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки - сколько случаев выбираем, другими словами объём выборки.

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.