Геометрическое приложение определенного интеграла вычисление. Геометрические приложения определенного интеграла. Вычисление площадей плоских фигур

Лекция 10

Оптимизациясетевого графа представляет процесс улучшения организации выполнения комплекса работ с учетом срока его выполнения. Она проводится с целью сокращения длины критического пути, выравнивания коэффициентов напряженности работ, рационального использования ресурсов.

Оптимизация сетевого графа в зависимости от полноты решаемых задач может быть условно разделена на частную или однокритериальную и комплексную или мноргокритериальную.

Частная оптимизация-оптимизация по одному критерию, комплексная или многокритериальная-оптимизация по нескольким критериям.

Видами частной оптимизации сетевого графа являются:

– минимизация времени выполнения разработки при заданной ее стоимости;

– минимизация стоимости всего комплекса работ при заданном времени выполнения проекта;

– минимизация используемого ресурса.

Комплексная оптимизация сетевого графа – это например, нахождение оптимума в соотношениях величин затрат и сроков выполнения проекта в зависимости от конкретных целей, ставящихся при его реализации.Решение задачи полной оптимизации всецело зависит от значимости и степени срочности выполняемого комплекса работ. В одних случаях целесообразно значительное превышение затрат по сравнению с нормальными затратами в целях сокращения сроков, в других превалирующей будет экономия затрат, а с некоторым увеличением сроков разработки можно мириться.

Оптимизация сводного сетевого графа в соответствие с заданными критериями производится в два этапа. На первом этапе составленный сетевой граф рассматривается и согласовывается со всеми подразделениями - исполнителями и поставщиками. При этом еще раз проверяются технологические и организационные связи, правильность сшивания частных графов и сводного сетевого графа, который включает в себя весь комплекс работ по данной разработке, выполняемых всеми подразделениями. После расчета всех временных параметров сводного сетевого графа и определения длительности критического пути получается первоначальный вариант исходного сетевого плана комплекса работ.

Второй этап сетевого планирования и управления заключается в корректировке сводного сетевого графа, т.е. в приведении его в соответствие с заданными сроками и ограниченными ресурсами подразделений, участвующих в разработке.

Процесс корректировки сетевого графа называют его оптимизацией, подразумевая под этим последовательное улучшение сети с целью достижения заданного срока или равномерного распределения (с учетом имеющихся ограничений) различных видов ресурсов.

Метод планирования и управления большими комплексами работ только по критерию «время» в современных условиях становится недостаточным. Успех выполнения сложных разработок зависит не только от четкой координации работ во времени, но и от того, насколько правильно распределены необходимые для достижения поставленной цели материальные, трудовые, денежные и другие ресурсы подразделений, осуществляющих эти работы.

В отдельных случаях материальные, финансовые и другие возможности могут оказать решающее влияние на создание системы. Поэтому при планировании современных разработок не менее важен учет данных, характеризующих размеры материальных, денежных и трудовых затрат и их рациональное распределение.

Как показывает практика, первоначально сетевой граф корректируется по параметру «время» без учета ограничений. По достижении заданного (желаемого) срока приступают к корректированию распределения ограниченных ресурсов.

Очередность корректировки по отдельным видам ресурсов устанавливается в зависимости от значения каждого из них в данных условиях. Чаще всего лимитирующими факторами являются время и людские ресурсы.

В отдельных случаях решающим для достижения заданного срока могут быть ограничения по какому-либо виду материала, деталям или конструкциям. Сетевой граф при этом следует корректировать в первую очередь по критерию «время - материальные ресурсы».

Если же ограничения касаются выделяемых ассигнований, то первоначальную корректировку необходимо производить по критерию «время – денежные затраты».

Ввиду отсутствия математического аппарата, позволяющего оптимизировать сетевой граф по нескольким критериям одновременно (есть разработки только для небольших моделей), приходится выполнять эту операцию последовательно, по каждому ресурсу в отдельности.

Поскольку оптимизация сетевого графа осуществляется за счет частных резервов времени работ, каждая последующая корректировка выполняется в пределах оставшихся частных запасов времени. Абсолютная величина первоначальных частных резервов времени работ постепенно уменьшается и в итоге по отдельным работам может быть полностью исчерпана.

Проведение каждой последующей оптимизации отражается на результатах предшествующей, которые могут измениться и потребовать повторного корректирования.

После каждой оптимизации производится поверочный расчет всех временных параметров сети: наиболее ранних и наиболее поздних сроков начала и окончания работ; резервов времени работ, используемых для последующей корректировки; длительности критического пути и количества критических работ, возрастающих с каждой оптимизацией. Окончательное решение, отвечающее требованиям соблюдения заданного срока, принципа равнопоточности при выполнении работ на разных участках, наиболее целесообразного распределения всех видов ресурсов, принимается на основе многократного просчета сети. Этот процесс весьма трудоемкий, он сопровождается большим количеством вычислений, поэтому его рекомендуется выполнять на компьютере. Кроме того, оптимизация необходима при поступлении новой информации о ходе выполнения работ, следовательно, выполнять ее надо в самые сжатые сроки. Просчитывание на ЭВМ нескольких вариантов решений и сравнение их между собой позволяет отыскать наилучший в данных условиях.

Реальные задачи сетевого планирования характеризуются высокой размерностью, многоэкстремальностью и трудностью построения адекватных моделей.

Для решения задач с учетом ограниченных ресурсов по временным критериям или критериям использования ресурсов обычно используют два типа различных модификаций эвристических методов, получивших название “Калибровка” и “Сглаживание”.

Метод “Сглаживание”

Метод “Сглаживание” используют в тех случаях, когда заданы жесткие ограничения на сроки завершения работ и требуется оптимизировать некоторый показатель качества использования ресурсов. Вначале строится некоторый базисный допустимый план, а затем в пределах имеющихся степеней свобод по установленным приоритетным правилам изменяют положение работ на оси времени или (и) интенсивности их выполнения до тех пор, пока не будет достигнут алгоритмический оптимум показателя использования ресурса или не найден практически приемлемый “сглаженный” график потребления ресурсов.

Основой метода “Сглаживание” является процедура поиска локального экстремума, которая состоит в последовательном улучшении некоторого заданного (опорного) плана. Такое улучшение достигается путем многократного просмотра работ модели.

Быстродействие в сочетании с процедурой случайного поиска позволяет повысить эффективность метода. Это сочетание состоит в том, что опорный план, с которого начинается процедура поиска локального экстремума, формируется как случайный план, а затем производится поиск самого локального экстремума. Генерация опорных планов продолжается до тех пор, пока число генерированных подряд опорных планов, не давших улучшения заданного плана,не превысит заданного числа.

Метод “Калибровка”

Метод “Калибровка” обычно минимизируют сроки или продолжительность выполнения комплекса работ. Сущность этого метода заключается в том, что на очередной планируемый элементарный отрезок времени ставятся “на обслуживание” и наделяются необходимыми ресурсами работы в соответствии с принятым приоритетом. Если в рассматриваемом отрезке времени ресурсов для некоторых работ не хватает, то начало выполнения этих работ сдвигается на следующий отрезок времени. Алгоритм последовательно рассматривает все элементарные отрезки времени. В результате получают рекомендуемый календарный план, который обеспечивает завершение работ в минимальный (в пределах возможностей алгоритма) срок при соблюдении заданных ограничений в ресурсах.

Календарный план называется ресурснодопустимым, если потребность в ресурсах для его выполнения не превышает их наличия в каждый момент времени t.

Задача состоит в том, что требуется найти технологически и ресурснодопустимый план с минимальным сроком окончания (т. е. минимальным сроком окончания последней по времени работы модели).

Метод “Калибровка” не дает оптимального решения. Однако он отличается простотой и быстродействием, и, как правило, дает удовлетворительные календарные планы не только с точки зрения срока окончания строительства, но при подходящем выборе системы приоритетов и в других аспектах.

Оптимизация сетевых графов по критерию «время»

Рассчитанная продолжительность критического пути t кр первоначального варианта сетевого графа может оказаться меньше или больше заданного планируемого срока t пл. В первом случае, когда t кр < t пл , возникает дополнительный резерв времени R доп = t пл - t кр, который может быть использован для увеличения продолжительности отдельных работ t (i-j) , лежащих на критическом пути, при последующей оптимизации. Во втором случае, когда t кр > t пл , возникает отрицательный резерв, так как позднее окончание работ, входящих в завершающее событие, принимает значение t пл. Например, t пл = 30 дней,t кр = 35 дней, тогда R доп =30-35 = -5. В этом случае сетевой граф следует пересмотреть с целью его уплотнения. Главная задача, решаемая при этом, состоит в ускорении тех работ, из которых в каждом данном случае складывается длительность критического пути.

Уплотнение сетевого графа, или перепланировка, производится обычно несколько раз методом последовательных приближений, т.е. многократным сжатием очередного критического пути, пока не будет достигнут удовлетворительный результат.

Существует несколько методов приведения сетевого графа в соответствие с заданными сроками:

– сокращение временных оценок путем замены нормальной продолжительности выполнения работ, лежащих на критическом пути, сокращенной;

– сокращение сроков выполнения работ за счет привлечения дополнительной численности исполнителей (если есть ресурс и позволяет фронт работы);

– проверка правильности установления временных оценок работ, лежащих на критическом пути, и установка их в соответствие с нормами или фактически достигнутым результатом по выполнению подобного вида работ;

– анализ возможности интенсификации выполнения критических работ за счет использования ресурсов работ некритической зоны, которые располагают резервами времени;

– анализ возможности расчленения отдельных работ и параллельного их выполнения;

– пересмотр топологии сетевого графа с целью сокращения общей продолжительности выполнения всего комплекса работ.

Общий срок выполнения всего комплекса работ следует сокращать в первую очередь за счет изменения продолжительности выполнения работ критической зоны. Это один из наиболее распространенных приемов, так как он не связан с изменением топологии сети (сетевой граф не вычерчивается заново, изменяются лишь временные оценки, проставляемые под стрелками).

В ходе корректировки рекомендуется сокращать продолжительность не только критических работ, но и работ, лежащих на подкритических путях, так как последние легко могут стать критическими. При значительном сокращении сроков выполнения критических работ могут возникнуть новые критические пути, также превышающие установленный срок окончания разработки.

Уменьшение временных оценок по критическим работам обеспечивается в первую очередь за счет переброски соответствующих ресурсов с ненапряженных работ, характеризуемых значительными резервами времени. Однако такой переброской не следует злоупотреблять, так как работы, лишенные всех своих резервов, станут критическими и поставленная цель не будет достигнута. Если внутренних ресурсов недостаточно, возможно, следует ставить вопрос о привлечении необходимых ресурсов со стороны.

Не следует допускать волевого изменения временных оценок руководителем комплекса работ, так как это неизбежно приведет к дискредитации сетевого плана.

В результате сокращения продолжительности выполнения одних работ и увеличения продолжительности других (тех, с которых снимают ресурсы) получают новую сеть, требующую проверки всех расчетных параметров при сохранении той же топологии.

В стохастических сетевых графах, характеризуемых той или иной степенью неопределенности, временные оценки изменяют в следующем порядке: в первую очередь пересматривают все три оценки времени (t min , t нв, t max ) по критическим работам, имеющим наибольшую величину дисперсии, что указывает на недостаточно высокую точность принятой временной оценки.

Не обязательно изменять временные оценки по всем критическим работам. Может оказаться вполне достаточным изменение их только у части работ (критических работ, лежащих в начале пути), чтобы в будущем иметь возможность выполнить эту замену по другим работам, если установленный срок вновь окажется под угрозой срыва.

Если не удается в полной мере уменьшить срок выполнения разработки за счет форсирования работ, то прибегают к изменению топологии сетевого графа. Это возможно потому, что отдельные работы могут выполняться различными методами. Многовариантная технология позволяет отыскать новую последовательность производства работ и новые взаимосвязи. Ряд работ, которые ранее планировали выполнять последовательно, при измененной технологии будут выполняться параллельно, что и приведет к сокращению длительности критического пути.

Параллельное выполнение работ достигается и расчленением работ большой длительности, что дает возможность последующую работу начать еще до полного окончания предшествующей. Одновременно с сокращением критического пути уменьшаются и резервы времени, в результате чего постепенно возникает все больше и больше критических работ и путей. Возможно разветвление критических путей, а в перспективе все пути могут стать критическими.

В ходе корректировки сети по критерию «время» надлежит постоянно проверять длительность остальных путей сетевого графа и сравнивать их между собой.

Если после всех принятых мер по сокращению продолжительности выполнения всего комплекса работ установленный срок не достигнут, ставится вопрос об изменении этого срока.

Оптимизация по критерию «Время-затраты»

Целью оптимизации по критерию "Время - затраты" является сокращение времени выполнения проекта в целом. Эта оптимизация имеет смысл только в том случае, когда время выполнения работ может быть уменьшено за счет задействования дополнительных ресурсов, что приводит к повышению затрат на выполнение работ (см. рис.3.1). Для оценки величины дополнительных затрат, связанных с ускорением выполнения той или иной работы, используются либо нормативы, либо данные о выполнении аналогичных работ в прошлом. Под параметрами работ и понимаются так называемые прямые затраты, непосредственно связанные с выполнением конкретной работы. Таким образом, косвенные затраты типа административно-управленческих в процессе сокращения длительности проекта во внимание не принимаются, однако их влияние учитывается при выборе окончательного календарного плана проекта.

Рис.3.1. Зависимость прямых затрат на работу от времени ее выполнения

Важными параметрами работы при проведении данного вида оптимизации являются:

· коэффициент нарастания затрат

,

который показывает затраты денежных средств, необходимые для сокращения длительности работы на один день;

· запас времени для сокращения длительности работы в текущий момент времени

где - длительность работы на текущий момент времени, максимально возможное значение запаса времени работы равно

Эта ситуация имеет место, когда длительность работы еще ни разу не сокращали, т.е. .

Общая схема проведения оптимизации "время -затраты"

1. Исходя из нормальных длительностей работ , определяются критические и подкритические пути сетевой модели и их длительности и .

2. Определяется сумма прямых затрат на выполнение всего проекта при нормальной продолжительности работ.

3. Рассматривается возможность сокращения продолжительности проекта, для чего анализируются параметры критических работ проекта.

3.1. Для сокращения выбирается критическая работа с min коэффициентом нарастания затрат , имеющая ненулевой запас времени сокращения .

3.2. Время , на которое необходимо сжать длительность работы , определяется как ,

где - разность между длительностью критического и подкритического путей в сетевой модели. Необходимость учета параметра вызвана нецелесообразностью сокращения критического пути более, чем на единиц времени. В этом случае критический путь перестанет быть таковым, а подкритический путь наоборот станет критическим, т.е. длительность проекта в целом принципиально не может быть сокращена больше, чем на .

4. В результате сжатия критической работы временные параметры сетевой модели изменяются, что может привести к появлению других критических и подкритических путей. Вследствие удорожания ускоренной работы общая стоимость проекта увеличивается на величину

.

5. Для измененной сетевой модели определяются новые критические и подкритические пути и их длительности, после чего необходимо продолжить оптимизацию с шага 3. При наличии ограничения в денежных средствах, их исчерпание является причиной окончания оптимизации. Если не учитывать подобное ограничение, то оптимизацию можно продолжать до тех пор пока у работ, которые могли бы быть выбраны для сокращения, не будет исчерпан запас времени сокращения.

Примечание. Рассмотренная общая схема оптимизации предполагает наличие одного критического пути в сетевой модели. В случае существования нескольких критических путей необходимо либо сокращать общую для них всех работу, либо одновременно сокращать несколько различных работ, принадлежащих различным критическим путям. Возможна комбинация этих двух вариантов. В каждом случае критерием выбора работы или работ для сокращения должен служить минимум затрат на их общее сокращение.

Пример проведения оптимизации сетевой модели по критерию "Время - затраты"

Проведем максимально возможное уменьшение сроков выполнения проекта при минимально возможных дополнительных затратах для следующих исходных данных (табл.3.1, рис. 3.2).

Таблица 3.1

Исходные данные для оптимизации "Время -затраты"

Нормальный режим Ускоренный режим
руб./день руб.

Рис.3.2. Исходная сетевая модель

Исходя из нормальных длительностей работ получаем следующие характеристики сетевой модели.

· Общие затраты на проект руб.

· Длительность проекта дней.

· Критический путь или .

· Подкритический путь или , дней.

Кроме того, вычислим коэффициенты нарастания затрат и максимальные запасы времени сокращения работ сетевой модели (табл. 3.2).

Таблица 3.2

Коэффициенты нарастания затрат работ сети

[дни] [руб./день]
7,00
3,00
3,50
2,00
0,60
1,00

I шаг. Для сокращения выбираем критическую работу с минимальным коэффициентом руб./день. Текущий запас сокращения времени работы на данном шаге равен дня. Разность между продолжительностью критического и подкритического путей дня. Поэтому согласно п.3.2 описанной выше общей схеме оптимизации сокращаем работу на дня. Новая текущая длительность работы дня, а запас ее дальнейшего сокращения сокращается до дня. Измененный сетевой график представлен на рис.3.3

Рис.3.3. Сетевая модель после первого шага оптимизации

Этап решения сетевой модели предусматривает расчет следующих временных характеристик событий и работ сетевого графика. Для каждого события рассчитывается ранний возможный срок его свершения t° - срок, необходимый для выполнения всех работ, предшествующих данному событию. Наиболее поздний из допустимых сроков t" - это такой срок свершения события, превышение которого вызовет аналогичную задержку наступления завершающего события.

т. е. это такой промежуток времени, на который может быть отсрочено свершение данного события без нарушения сроков завершения разработки в целом.

При определении ранних и поздних сроков, следует помнить, что событие считается свершившимся только тогда, когда завершится самый длительный из предшествующих ему процессов. Например, см. рис. 6.8, если срок начального события примем равным нулю, тогда ранний срок наступления первого события:

Рис. 6.8

Ранний срок свершения конечного события показывает длину критического пути. Это самый ранний возможный срок окончания всей разработки. Для контроля определяют длину критического пути методом обратного хода. Двигаются от конца графа к началу и определяют ранние сроки свершения событий при обратном ходе: toi (обр). Ранний обратный срок свершения каждого предыдущего события t и длительности связывающей их работы tij. Ecли предыдущее событие служит началом нескольких работ, то берем максимальную сумму:

Сроки, полученные методом обратного хода, являются самыми ранними по отношению к концу графа. Следовательно, если вычесть эти сроки из длины критического пути, мы получим самые поздние сроки (t") по отношению к началу графа.

Для удобства проведения расчетов всех временных характеристик сетевого графика можно использовать различные методы: вычисления непосредственно на сетевом графике (метод используется, когда число событий невелико); табличный метод (последовательное заполнение таблицы параметров сети по определенным правилам; матричный метод (наиболее эффективный при ручных методах расчета); при наличии ЭВМ - метод расчета по таблице на основе алгоритма Форда.

Рассмотрим более подробно матричный способ (табл.6.3)

Табл. 6.3.

Число строк и столбцов в этой таблице одинаково и равно N+3, где N - число событий графика. В графе і записываем номера событий, а длительность работ записываем в клетках, лежащих справа от диагонали на пересечении строки и колонки, соответствующих индексу работы. Например, длительность работы 3.4 записываем в клетке, лежащей на пересечении строки, где і = 3 и колонки, где j = 4.

При прямом счете мы последовательно перебираем колонки слева направо и в каждой j -й колонке находим максимальную сумму раннего срока предыдущего (і-го) события и длительности работы, лежащей между і-тым и і-тым событиями, а затем записываем результат в первой графе против соответствующего события. В последней строке получим длину критического пути.

При обратном ходе мы последовательно перебираем строки снизу вверх и в каждой і-той строке находим максимум суммы раннего обратного срока последующего события (j того) и длительности работы, лежащей между і-тым и j-тым событиями, а результат записываем в последней графе. В первой строке получим длину критического пути. В двух последних строках определяются поздние сроки и резервы по событиям. События, не имеющие резервов, лежат на критическом пути. Таким образом, наиболее простой и надежный способ выявления критического пути - это определение всех последовательно расположенных событий, имеющих нулевые резервы времени.

В нашем примере маршрут критического пути проходит по событиям 0-2-4-5 (на рис.6.8 он показан двойной линией). События, имеющие резервы, называются плавающими (событие 1, событие 3).

Рассмотрим последовательность расчетов временных характеристик работ. Необходимо помнить, что событие не имеет продолжительности, а только срок свершения. Работа же отличается протяженностью во времени, она начинается предыдущим событием и кончается последующим. Поэтому работа имеет ранний и поздний сроки начала, а также поздний и ранний сроки окончания.

Рассмотрим это на примере, задавшись следующими значениями:

Работа ц может начаться, как только свершилось предыдущее событие. Поэтому ранний срок начала работы равен раннему сроку предыдущего события, а ранний срок окончания равен раннему сроку начала и плюс длительность самой работы.

Работа должна окончиться не позже самого позднего срока последующего события}. Поэтому поздний срок окончания работы равен позднему сроку свершения последующего события. Отсюда поздний срок начала работы равен позднему сроку ее окончания, минус длительность самой работы.

Для каждой работы определяют 4 вида резервов времени. Полный резерв (К^) - разность между поздним и ранним началом работы (рис. 6.10).

На рис. 6.9 показана работа начатая в ранний и поздний срок. Отрезок между ранним и поздним началом (или концом) работы представляет полный резерв.

Рис. 6.9.

Полный резерв - это самый большой из всех видов резервов по работам. Если он равен нулю, то и все прочие виды резервов отсутствуют.

Для уяснения понятия о других видах резервов по работам необходимо рассмотреть данную работу ij во взаимосвязи с предыдущей (tni) и последующей (tj) работами.

Аналогичный случай имеет место, когда данная (ij) и предыдущая (hi) работы начинаются (и оканчиваются) в поздние сроки (рис. 6.11).

Если ранний срок начала последующей работы меньше срока окончания данной работы, то это говорит о нехватке времени, т.е. возможности начать последующую работу в ранний срок.

Все резервы времени по работам могут быть легко рассчитаны по той же матрице (рис. 6.13). Под диагональю для работ, имеющих резервы времени, проставляют численные значения резервов, рассчитанных по приведенным формулам по следующей схеме:

Рис. 6.13.

Оптимизация сетевых моделей

Расчет временных характеристик сетевого графика позволяет перейти к следующему этапу сетевого планирования. На этом этапе выполняется всесторонний анализ созданного графика и предпринимаются меры для его оптимизации. Анализ сетевого графика позволяет оценить целесообразность структуры графика, загрузку исполнителей работ на всех этапах выполнения разработки, возможность смещения начала работ некритической зоны. Анализ имеет своей целью в первую очередь выявление возможностей сокращения сроков разработки в целом. Анализ сетевого графика и оптимизация его тесно связаны и проводятся обычно одновременно. В зависимости от полноты решаемых задач оптимизация может быть условно разделена на частную (минимизация времени выполнения разработки при заданной ее стоимости; минимизация стоимости всего комплекса работ при заданном времени выполнения проекта) и комплексную - нахождение оптимума в соотношениях величин затрат и сроков выполнения разработки в зависимости от конкретных целей ее реализации. Полное решение всех трех форм оптимизации пока неизвестно. Методом последовательных итераций на основе симплекс-метода линейного программирования или алгоритма Келли эти задачи получают приближенное, достаточное для практических целей решение.

В простейших случаях для частной оптимизации используют графические методы и приемы.

Наиболее известный прием - построение линейного графика и гистограммы загрузки рабочей силы.

Линейный график (рис.6.13) представляет собой развернутый в масштабе времени сетевой график. Обычно его строят по ранним срокам начала работ с учетом свободных резервов по ранним срокам.

Шкала времени может быть календаризирована в соответствии с директивным сроком окончания разработки. Такой график наглядно показывает взаимосвязь между работами и возможностями маневрирования сроками начала работ. Кроме того, он дает возможность правильно распределить производственные ресурсы (материалы, рабочую силу, оборудование и т.п.) и добиться наиболее эффективного их использования. Перераспределение ресурсов (особенно трудовых) следует проводить с учетом следующих правил:

  • - ресурсы направляются на работы критического пути, а источниками являются работы некритического пути;
  • - работы, по которым осуществляется перераспределение, должны выполняться в один и тот же период времени;
  • - перераспределять ресурсы возможно только на равнокачественных работах, т.е. таких, которые требуют работников одной и той же или взаимозаменяемой профессии или квалификации;
  • - перераспределять ресурсы необходимо по величине их убывания в работы с наибольшим дефицитом ресурсов.

Например, при использовании однородного оборудования или рабочих одной профессии важно добиться их равномерной загрузки в течение всего периода разработки. Это достигается при помощи сдвига сроков начала работ в пределах имеющихся резервов. Для этого непосредственно под линейным графиком строится диаграмма распределения рабочей силы (рис. 6.14, 6.15), где на оси повторяется та же шкала времени, что на рис. 6.14, а на оси ординат откладывается количество рабочих или механизмов. На основе этой диаграммы можно определить:

а) общую трудоемкость работ


Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Северный (Арктический) федеральный университет имени М.В. Ломоносова»

Кафедра математики

КУРСОВАЯ РАБОТА

По дисциплине Математика

Пятышева Анастасия Андреевна

Руководитель

ст. преподаватель

Бородкина Т. А.

Архангельск 2014

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Приложения определенного интеграла

ИСХОДНЫЕ ДАННЫЕ:

21. y=x 3 , y= ; 22.

ВВЕДЕНИЕ

В данной курсовой работе, передо мной поставлены следующие задачи: вычислить площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями, также ограниченных линиями, заданными уравнениями в полярных координатах, вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат, заданных параметрическими уравнениями, заданных уравнениями в полярных координатах, а также вычислить объемы тел, ограниченных поверхностями, ограниченных графиками функций, и образованных вращением фигур, ограниченных графиками функций вокруг полярной оси. Мною была выбрана курсовая работа по теме «Определенный интеграл. В связи с этим, я решила узнать, как легко и быстро можно использовать интегральные вычисления, и насколько точно можно вычислить поставленные передо мной задачи.

ИНТЕГРАЛ одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой - измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.

Раскрытие темы курсовой работы я провела по следующему плану: определение определенного интеграла и его свойства; длина дуги кривой; площадь криволинейной трапеции; площадь поверхности вращения.

Для всякой функции f(x), непрерывной на отрезке , существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.

Если функция F(x) - какая- либо первообразная от непрерывной функции f(x), то это выражение известно под названием формулы Ньютона-Лейбница:

Основные свойства определенного интеграла:

Если нижний и верхний пределы интегрирования равны (a=b), то интеграл равен нулю:

Если f(x)=1, то:

При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:

Постоянный множитель можно выносить за знак определенного интеграла:

Если функции интегрируемы на, тогда интегрируема на их сумма и интеграл от суммы равен сумме интегралов:

Существуют также основные методы интегрирования, например замена переменной,:

Исправление дифференциала:

Формула интегрирования по частям дает возможность свести вычисление интеграла к вычислению интеграла, который может оказаться более простым:

Геометрический смысл определенного интеграла состоит в том, что для непрерывной и неотрицательной функции представляет собой в геометрическом смысле площадь соответствующей криволинейной трапеции.

Кроме того, с помощью определенного интеграла можно найти площадь области, ограниченной кривыми, прямыми и, где

Если криволинейная трапеция ограничена кривой, заданной параметрически прямыми x = a и x = b и осью Ox, то площадь ее находится по формуле, где определяются из равенства:

. (12)

Основная область, площадь которой находят с помощью определенного интеграла- криволинейный сектор. Это область, ограниченная двумя лучами и кривой, где r и - полярные координаты:

Если кривая является графиком функции где, а функция ее производная непрерывны на этом отрезке, то площадь поверхности фигуры, образованной вращением кривой вокруг оси Ox, можно вычислить по формуле:

. (14)

Если функция и ее производная непрерывны на отрезке то кривая имеет длину, равную:

Если уравнение кривой задано в параметрической форме

где x(t) и y(t) - непрерывные функции с непрерывными производными и то длина кривой находится по формуле:

Если кривая задана уравнением в полярных координатах, где и непрерывны на отрезке, тогда длину дуги можно посчитать следующим образом:

Если вокруг оси Ox вращается криволинейная трапеция, ограниченная непрерывной линией отрезком и прямыми x = a и x = b, то объем тела, образованного вращением этой трапеции вокруг оси Ox, будет равен:

Если криволинейная трапеция ограничена графиком непрерывной функции и прямыми x = 0, y = c, y = d (c < d), то объем тела, образованного вращением этой трапеции вокруг оси Oy, будет равен:

Если фигура ограничена кривыми и (находится «выше», чем и прямыми x = a, x = b, то объем тела вращения вокруг оси Ox будет равен:

а вокруг оси Oy (:

Если криволинейный сектор вращать вокруг полярной оси, то площадь полученного тела можно найти по формуле:

2. РЕШЕНИЕ ЗАДАЧ

Задача 14: Вычислить площади фигур, ограниченных графиками функций:

1) Решение:

Рисунок 1 - График функций

X меняется от 0 до

x 1 = -1 и x 2 = 2 - пределы интегрирования (это видно на Рисунке 1).

3) Посчитаем площадь фигуры, использую формулу (10).

Ответ: S = .

Задача 15: Вычислить площади фигур, ограниченных линиями, заданными уравнениями:

1) Решение:

Рисунок 2 - График функций

Рассмотрим функцию на интервале .

Рисунок 3 - Таблица переменных для функции

Так как, то на этом периоде поместиться 1 дуга. Эта дуга состоит из центральной части (S 1) и боковых частей. Центральная чаcть состоит из искомой части и из прямоугольника (S пр):. Посчитаем площадь одной центральной части дуги.

2) Найдем пределы интегрирования.

и y = 6, следовательно

Для интервала - пределы интегрирования.

3) Найдем площадь фигуры, используя формулу (12).

интеграл криволинейный трапеция

Задача 16: Вычислить площади фигур, ограниченных линиями, заданными уравнениями в полярных координатах:

1) Решение:

Рисунок 4 - График функций,

Рисунок 5 - Таблица переменных функций,

2) Найдем пределы интегрирования.

следовательно -

3) Найдем площадь фигуры, используя формулу (13).

Ответ: S =.

Задание 17: Вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат:

1) Решение:

Рисунок 6- График функции

Рисунок 7 -Таблица переменных функции

2) Найдем пределы интегрирования.

меняется от ln до ln, это очевидно из условия.

3) Найдем длину дуги, используя формулу (15).

Ответ: l =

Задание 18: Вычислить длины дуг кривых, заданных параметрическими уравнениями: 1)

1) Решение:

Рисунок 8- График функции

Рисунок 11- Таблица переменных функции

2) Найдем пределы интегрирования.

ц меняется от, это очевидно из условия.

Найдем длину дуги, используя формулу (17).

Задание 20: Вычислить объемы тел, ограниченных поверхностями:

1) Решение:

Рисунок 12 - График функций:

2) Найдем пределы интегрирования.

Z меняется от 0 до 3.

3) Найдем объем фигуры, используя формулу (18)

Задание 21: Вычислить объемы тел, ограниченных графиками функций, ось вращения Ох: 1)

1) Решение:

Рисунок 13 - График функций

Рисунок 15- Таблица графика функции

2) Найдем пределы интегрирования.

Точки (0;0) и (1;1) являются общими для обоих графиков, следовательно это и есть пределы интегрирования, что очевидно на рисунке.

3) Найдем объем фигуры, используя формулу (20).

Задание 22: Вычислить площадь тел, образованных вращением фигур, ограниченных графиками функций, вокруг полярной оси:

1) Решение:

Рисунок 16 - График функции

Рисунок 17- Таблица переменных для графика функции

2) Найдем пределы интегрирования.

ц меняется от

3) Найдем площадь фигуры, используя формулу (22).

Ответ: 3,68

ЗАКЛЮЧЕНИЕ

В процессе выполнения курсовой работы на тему «Определенный интеграл», я научилась вычислять площади разных тел, находить длины различных дуг кривых, а также вычислять объемы. Данное представление о работе с интегралами, поможет мне в будущей профессиональной деятельности, как быстро и оперативно выполнять различные действия. Ведь сам интеграл - одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой - измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Письменный, Д.Т. Конспект лекций по высшей математике: Ч.1 - 9-е изд. - М.: Айрис-пресс, 2008. - 288 с.

2. Бугров, Я.С., Никольский, С.М. Высшая математика. Дифференциальное и интегральное исчисление: Т.2 - М.: Дрофа, 2004. - 512 с.

3. Зорич В. А. Математический анализ. Часть I. -- Изд. 4-е -- М.: МЦНМО, 2002. --664 с.

4. Кузнецов Д.А. «Сборник задач по высшей математики» Москва, 1983 г.

5. Никольский С. Н. «Элементы математического анализа». - М.: Наука, 1981г.

Подобные документы

    Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.

    презентация , добавлен 18.09.2013

    Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.

    презентация , добавлен 17.09.2013

    Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.

    контрольная работа , добавлен 22.08.2009

    Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.

    лекция , добавлен 04.09.2003

    Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.

    контрольная работа , добавлен 21.11.2010

    Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация , добавлен 18.09.2013

    Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка , добавлен 01.07.2009

    Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация , добавлен 15.01.2014

    Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа , добавлен 14.12.2012

    Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

Приведем некоторые приложения определенного интеграла.

Вычисление площади плоской фигуры

Площадь криволинейной трапеции, ограниченной кривой (где
), прямыми
,
и отрезком
оси
, вычисляется по формуле

.

Площадь фигуры, ограниченной кривыми
и
(где
) прямыми
и
вычисляется по формуле

.

Если кривая задана параметрическими уравнениями
, то площадь криволинейной трапеции, ограниченной этой кривой, прямыми
,
и отрезком
оси
, вычисляется по формуле

,

где иопределяются из уравнений
,
, а
при
.

Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением
и двумя полярными радиусами
,
(
), находится по формуле

.

Пример 1.27. Вычислить площадь фигуры, ограниченной параболой
и прямой
(рис 1.1).

Решение. Найдем точки пересечения прямой и параболы. Для этого решим уравнение

,
.

Откуда
,
. Тогда по формуле (1.6) имеем

.

Вычисление длины дуги плоской кривой

Если кривая
на отрезке
- гладкая (то есть производная
непрерывна), то длина соответствующей дуги этой кривой находится по формуле

.

При параметрическом задании кривой
(
- непрерывно дифференцируемые функции) длина дуги кривой, соответствующая монотонному изменению параметраотдо, вычисляется по формуле

Пример 1.28. Вычислить длину дуги кривой
,
,
.

Решение. Найдем производные по параметру :
,
. Тогда по формуле (1.7) получаем

.

2. Дифференциальное исчисление функций нескольких переменных

Пусть каждой упорядоченной паре чисел
из некоторой области
соответствует определенной число
. Тогданазываетсяфункцией двух переменных и,
-независимыми переменными или аргументами ,
-областью определения функции, а множество всех значений функции -областью ее значений и обозначают
.

Геометрически область определения функции обычно представляет собой некоторую часть плоскости
, ограниченную линиями, которые могут принадлежать или не принадлежать этой области.

Пример 2.1. Найти область определения
функции
.

Решение. Данная функция определена в тех точках плоскости
, в которых
, или
. Точки плоскости, для которых
, образуют границу области
. Уравнение
задает параболу (рис. 2.1; поскольку парабола не принадлежит области
, то она изображена пунктирной линией). Далее, легко проверить непосредственно, что точки, для которых
, расположены выше параболы. Область
является открытой и ее можно задать с помощью системы неравенств:

Если переменной дать некоторое приращение
, аоставить постоянной, то функция
получит приращение
, называемоечастным приращением функции по переменной :

Аналогично, если переменная получает приращение
, а остается постоянной, то функция
получит приращение
, называемоечастным приращением функции по переменной :

Если существуют пределы:

,

,

они называются частными производными функции
по переменными
соответственно.

Замечание 2.1. Аналогично определяются частные производные функций любого числе независимых переменных.

Замечание 2.2. Так как частная производная по любой переменной является производной по этой переменной при условии, что остальные переменные – постоянны, то все правила дифференцирования функций одной переменной применимы для нахождения частных производных функций любого числа переменных.

Пример 2.2.
.

Решение . Находим:

,

.

Пример 2.3. Найти частные производные функции
.

Решение . Находим:

,

,

.

Полным приращением функции
называется разность

Главная часть полного приращения функции
, линейно зависящая от приращений независимых переменных
и
,называется полным дифференциалом функции и обозначается
. Если функция имеет непрерывные частные производные, то полный дифференциал существует и равен

,

где
,
- произвольные приращения независимых переменных, называемые их дифференциалами.

Аналогично, для функции трех переменных
полный дифференциал определяется выражением

.

Пусть функция
имеет в точке
частные производные первого порядка по всем переменным. Тогда векторназываетсяградиентом функции
в точке
и обозначается
или
.

Замечание 2.3. Символ
называется оператором Гамильтона и произносится “намбла”.

Пример 2.4. Найти градиент функции в точке
.

Решение . Найдем частные производные:

,
,

и вычислим их значения в точке
:

,
,
.

Следовательно,
.

Производной функции
в точке
по направлению вектора
называют предел отношения
при
:

, где
.

Если функция
дифференцируема, то производная в данном направлении вычисляется по формуле:

,

где ,- углы, который векторобразует с осями
и
соответственно.

В случае функции трех переменных
производная по направлению определяется аналогично. Соответствующая формула имеет вид

,

где
- направляющие косинусы вектора.

Пример 2.5. Найти производную функции
в точке
в направлении вектора
, где
.

Решение . Найдем вектор
и его направляющие косинусы:

,
,
,
.

Вычислим значения частных производных в точке
:

,
,
;
,
,
.

Подставляя в (2.1), получаем

.

Частными производными второго порядка называют частные производные, взятые от частных производных первого порядка:

,

,

,

Частные производные
,
называютсясмешанными . Значения смешанных производных равны в тех точках, в которых эти производные непрерывны.

Пример 2.6. Найти частные производные второго порядка функции
.

Решение . Вычислим предварительно частные производные первого порядка:

,
.

Продифференцировав их еще раз, получим:

,
,

,
.

Сравнивая последние выражения, видим, что
.

Пример 2.7. Доказать, что функция
удовлетворяет уравнению Лапласа

.

Решение . Находим:

,
.

,
.


.

Точка
называетсяточкой локального максимума (минимума ) функции
, если для всех точек
, отличных от
и принадлежащих достаточно малой ее окрестности, выполняется неравенство

(
).

Максимум или минимум функции называется ее экстремумом . Точка, в которой достигается экстремум функции, называется точкой экстремума функции .

Теорема 2.1 (Необходимые условия экстремума ). Если точка
является точкой экстремум функции
, тоили хотя бы одна из этих производных не существует.

Точки, для которых эти условия выполнены, называются стационарными или критическими . Точки экстремума всегда являются стационарными, но стационарная точка может и не быть точкой экстремума. Чтобы стационарная точка была точкой экстремума, должны выполняться достаточные условия экстремума.

Введем предварительно следующие обозначения:

,
,
,
.

Теорема 2.2 (Достаточные условия экстремума ). Пусть функция
дважды дифференцируема в окрестности точки
и точка
является стационарной для функции
. Тогда:

1. Если
, то точка
является экстремумом функции, причем
будет точкой максимума при
(
) и точкой минимума при
(
).

2. Если
, то в точке

экстремума нет.

3. Если
, то экстремум может быть, а может и не быть.

Пример 2.8. Исследовать на экстремум функцию
.

Решение . Так как в данном случае частные производные первого порядка всегда существуют, то для нахождения стационарных (критических) точек решим систему:

,
,

откуда
,
,
,
. Таким образом, получили две стационарные точки:
,
.

,
,
.

Для точки
получаем:, то есть в этой точке экстремума нет. Для точки
получаем:и
, следовательно

в этой точке данная функция достигает локального минимума: .

Лекция 21 Приложения определенного интеграла (2ч)

Геометрические приложения

а) Площадь фигуры

Как уже отмечалось в лекции 19, численно равен площади криволинейной трапеции, ограниченной кривой у = f (x ) , прямыми х = а , х = b и отрезком [a , b ] оси ОХ. При этом если f (x ) £ 0 на [a , b ], то интеграл следует взять со знаком минус.

Если же на заданном отрезке функция у = f (x ) меняет знак, то для вычисления площади фигуры, заключенной между графиком этой функции и осью ОХ, следует разбить отрезок на части, на каждой из которых функция сохраняет знак, и найти площадь каждой части фигуры. Искомая площадь в этом случае есть алгебраическая сумма интегралов по этим отрезкам, причем интегралы, соответствующие отрицательным значения функции, взяты в этой сумме со знаком «минус».

Если фигура ограничена двумя кривыми у = f 1 (x ) и у = f 2 (x ), f 1 (x f 2 (x ), то, как следует из рис.9, ее площадь равна разности площадей криволинейных трапеций а ВСb и а АDb , каждая из которых численно равна интегралу. Значит,


Заметим, что площадь фигуры, изображенной на рисунке 10,а находятся по такой же формуле: S = (докажите это!). Подумайте, как вычислить площадь фигуры, изображенной на рисунке 10,б?

Мы вели речь только о криволинейных трапециях, прилежащих к оси ОХ. Но аналогичные формулы справедливы и для фигур, прилежащих к оси ОУ. Например, площадь фигуры, изображенной на рисунке 11, находится по формуле

Пусть линия y = f (x ), ограничивающая криволинейную трапецию, может быть задана параметрическими уравнениями , t Î , причем j(a)=а , j(b) = b , т.е. у = . Тогда площадьэтой криволинейной трапеции равна

.

б) Длина дуги кривой

Пусть дана кривая у = f (x ). Рассмотрим дугу этой кривой, соответствующую изменению х на отрезке [a , b ]. Найдем длину этой дуги. Для этого разобьем дугу АВ на п частей точками А = М 0 ,М 1 , М 2, ..., М п = В (рис.14), соответствующими точкам х 1 , х 2 , ..., х п Î [a , b ].



Обозначим Dl i длину дуги , тогда l = . Если длины дуг Dl i достаточно малы, то их можно считать приближенно равными длинам соответствующих отрезков , соединяющих точки М i -1, Mi . Эти точки имеют координаты М i -1 (х i -1, f (x i -1)) , M i (х i , f (x i )). Тогда длины отрезков равны соответственно

Здесь использована формула Лагранжа. Положим х i x i -1 =Dх i , получим

Тогда l = , откуда

l = .

Таким образом, длина дуги кривой у = f (x ), соответствующей изменению х на отрезке [a , b ], находится по формуле

l = , (1)

Если кривая задана параметрически , t Î, т.е. y (t ) = f (x (t )), то из формулы (1) получим:

l =
.

Значит, если кривая задана параметрически , то длина дуги этой кривой, соответствующей изменению t Î, находится по формуле

в) Объем тела вращения.

Рис.15
Рассмотрим криволинейную трапецию а АВb , ограниченную линией у = f (x ), прямыми х = а , х = b и отрезком [a , b ] оси ОХ (рис.15). Пусть эта трапеция вращается вокруг оси ОХ, в результате получится тело вращения. Можно доказать, что объем этого тела будет равен

Аналогично можно вывести формулу объема тела, полученного вращением вокруг оси ОУ криволинейной трапеции, ограниченной графиком функции х = j(у ), прямыми y = c , y = d и отрезком [c , d ] оси ОУ (рис.15):

Физические приложения определенного интеграла

В лекции 19 мы доказали, что с физической точки зрения, интеграл численно равен массе прямолинейного тонкого неоднородного стержня длины l = b a , с переменной линейной плотностью r = f (x ), f (x ) ³ 0, где х – расстояние от точки стержня до его левого конца.

Рассмотрим другие физические приложения определенного интеграла.

Задача 1 . Найти работу, необходимую для выкачивания масла из вертикального цилиндрического резервуара высотой Н и радиусом основания R. Плотность масла равна r.

Решение. Построим математическую модель данной задачи. Пусть ось ОХ проходит вдоль оси симметрии цилиндра высоты Н и радиуса R, начало – в центре верхнего основания цилиндра (рис.17). Разобьем цилиндр на п малых горизонтальных частей. Тогда , где A i – работа по выкачиванию i -го слоя. Это разбиение цилиндра соответствует разбиению отрезка изменения высоты слоя на п частей. Рассмотрим один из таких слоев, расположенный на расстоянии х i от поверхности, шириной Dх (или сразу dx ). Выкачивание этого слоя можно рассматривать как «поднятие» слоя на высоту х i .

Тогда работа по выкачиванию этого слоя равна

A i »Р i x i , ,

где Р i =rgV i = rgpR 2 dx , Р i – вес, V i – объем слоя. Тогда A i » Р i x i = rgpR 2 dx.х i , откуда

, и, следовательно, .

Задача 2 . Найти момент инерции

а) полого тонкостенного цилиндра относительно оси, проходящей через ось его симметрии;

б) сплошного цилиндра относительно оси, проходящей через ось его симметрии;

в) тонкого стержня длины l относительно оси, проходящей через его середину;

г) тонкого стержня длины l относительно оси, проходящей через его левый конец.

Решение. Как известно, момент инерции точки относительно оси равен J =mr 2 , а системы точек .

а) Цилиндр тонкостенный, значит, толщиной стенок можно пренебречь. Пусть радиус основания цилиндра R, высота его Н, плотность масс на стенках равна r.


Разобьем цилиндр на п частей и найдем , где J i – момент инерции i -го элемента разбиения.

Рассмотрим i -й элемент разбиения (бесконечно малый цилиндрик). Все его точки находятся на расстоянии R от оси l . Пусть масса этого цилиндрика т i , тогда т i = rV i » rS бок = 2prRdx i , где х i Î. Тогда J i » R 2 prRdx i , откуда

.

Если r – постоянная, то J = 2prR 3 Н, а так как при этом масса цилиндра равна М = 2prRН, то J = МR 2 .

б) Если цилиндр сплошной (заполненный), то разобьем его на п вло женных один в другого тонких цилиндров. Если п велико, каждый из этих цилиндров можно считать тонкостенным. Это разбиение соответствует разбиению отрезка на п частей точками R i . Найдем массу i -го тонкостенного цилиндра: т i = rV i , где

V i = pR i 2 Н – pR i - 1 2 Н = pН(R i 2 –R i -1 2) =

PН(R i –R i -1)(R i +R i -1).

Ввиду того, что стенки цилиндра тонкие, то можно считать, что R i +R i -1 » 2R i , а R i –R i -1 = DR i , тогда V i » pН2R i DR i , откуда т i » rpН×2R i DR i ,

Тогда окончательно

в) Рассмотрим стержень длины l , плотность масс которого равна r. Пусть ось вращения проходит через его середину.

Моделируем стержень как отрезок оси ОХ, тогда ось вращения стержня –ось ОУ. Рассмотрим элементарный отрезок , масса его , расстояние до оси можно считать приближенно равным r i = х i . Тогда момент инерции этого участка равен , откуда момент инерции всего стержня равен . Учитывая, что масса стержня равна , то

г) Пусть теперь ось вращения проходит через левый конец стержня, т.е. моделью стержня является отрезок оси ОХ. Тогда аналогично , r i = х i , , откуда , а так как , то .

Задача 3. Найти силу давления жидкости с плотностью r на прямоугольный треугольник с катетами а и b , погруженный вертикально в жидкость так, что катет а находится на поверхности жидкости.

Решение .

Построим модель задачи. Пусть вершина прямого угла треугольника находится в начале координат, катет а совпадает с отрезком оси ОУ (ось ОУ определяет поверхность жидкости), ось ОХ направлена вниз, катет b совпадает с отрезком этой оси. Гипотенуза этого треугольника имеет уравнение , или .

Известно, что если на горизонтальную область площади S , погруженную в жидкость плотности r, давит столб жидкости высотой h , то сила давления равна (закон Паскаля). Воспользуемся этим законом.