Дифференциальные уравнения в полных дифференциалах теория. Необходимое и достаточное условие полного дифференциала. Методы решения дифференциальных уравнений в полных дифференциалах

Определение: Уравнение вида

P(x,y)dx + Q(x,y)dy = 0, (9)

где левая часть представляет собой полный дифференциал некоторой функции двух переменных, называется уравнением в полных дифференциалах.

Обозначим эту функцию двух переменных через F(x,y). Тогда уравнение (9) можно переписать в виде dF(x,y) = 0, а это уравнение имеет общее решение F(x,y) = C.

Пусть дано уравнение вида (9). Для того чтобы узнать, является ли оно уравнением в полных дифференциалах, нужно проверить, является ли выражение

P(x,y)dx + Q(x,y)dy (10)

полным дифференциалом некоторой функции двух переменных. Для этого необходимо проверить выполнение равенства

Допустим, что для данного выражения (10) равенство (11) выполняется в некоторой односвязной области (S) и, следовательно, выражение (10) является полным дифференциалом некоторой функции F(x,y) в (S).

Рассмотрим следующий способ нахождения этой первообразной. Необходимо найти такую функцию F(x,y), чтобы

где функция (у) будет определена ниже. Из формулы (12) тогда следует, что

во всех точках области (S). Теперь подберем функцию (у) так, чтобы имело место равенство

Для этого перепишем нужное нам равенство (14), подставив вместо F(x,y) ее выражение по формуле (12):

Произведем дифференцирование по у под знаком интеграла (это можно делать так как P(x,y) и - непрерывные функции двух переменных):

Так как по (11) , то, заменяя на под знаком интеграла в (16), имеем:


Проинтегрировав по у, найдем саму функцию (у), которая построена так, что выполняется равенство (14). Используя равенства (13) и (14), видим, что

в области (S). (18)

Пример 5. Проверить, является ли данное дифференциальное уравнение уравнением в полных дифференциалах и решить его.

Это дифференциальное уравнение в полных дифференциалах. В самом деле, обозначая, убеждаемся в том, что

а это есть необходимое и достаточное условие того, что выражение

P(x,y)dx+Q(x,y)dy

является полным дифференциалом некоторой функции U(x,y). При этом - непрерывные в R функции.

Следовательно, чтобы проинтегрировать данное дифференциальное уравнение, нужно найти такую функцию, для которой левая часть дифференциального уравнения будет полным дифференциалом. Пусть такой функцией будет U(x,y), тогда

Интегрируя левую и правую части по x, получим:

Чтобы найти ц(y), используем тот факт, что

Подставляя найденное значение ц(y) в (*), окончательно получим функцию U(x,y):

Общий интеграл исходного уравнения имеет вид

Основные типы дифференциальных уравнений первого порядка (продолжение).

Линейные дифференциальные уравнения

Определение: Линейным уравнением первого порядка называется уравнение вида

y" + P(x)y = f(x), (21)

где P(x) и f(x) - непрерывные функции.

Название уравнения объясняется тем, что производная y" - линейная функция от у, то есть если переписать уравнение (21) в виде y" = - P(x) +f(x), то правая часть содержит у только в первой степени.

Если f(x) = 0, то уравнение

yґ+ P(x) y = 0 (22)

называется линейным однородным уравнением. Очевидно, что однородное линейное уравнение является уравнением с разделяющимися переменными:

y" +P(x)y = 0; ,

Если f(x) ? 0, то уравнение

yґ+ P(x) y = f(x) (23)

называется линейным неоднородным уравнением.

В общем случае переменные в уравнении (21) разделить нельзя.

Уравнение (21) решается следующим образом: будем искать решение в виде произведения двух функций U(x) и V(x):

Найдем производную:

y" = U"V + UV" (25)

и подставим эти выражения в уравнение (1):

U"V + UV" + P(x)UV = f(x).

Сгруппируем слагаемые в левой части:

U"V + U = f(x). (26)

Наложим условие на один из множителей (24), а именно, предположим, что функция V(x) такова, что она обращает в тождественный нуль выражение, стоящее в квадратных скобках в (26), т.е. что она является решением дифференциального уравнения

V" + P(x)V = 0. (27)

Это уравнение с разделяющимися переменными, находим из него V(x):

Теперь найдем функцию U(x) такую, чтобы при уже найденной функции V(x) произведение U V было решением уравнения (26). Для этого надо, чтобы U(x) была решением уравнения

Это уравнение с разделяющимися переменными, поэтому

Подставляя найденные функции (28) и (30) в формулу (4), получаем общее решение уравнения (21):

Таким образом, рассмотренный метод (способ Бернулли) сводит решение линейного уравнения (21) к решению двух уравнений с разделяющимися переменными.

Пример 6. Найти общий интеграл уравнения.

Это уравнение не является линейным относительно y и y", но оно оказывается линейным, если считать искомой функцией x, а аргументом y. Действительно, переходя к, получаем

Для решения полученного уравнения воспользуемся способом подстановки (Бернулли). Будем искать решение уравнения в виде x(y)=U(y)V(y), тогда. Получаем уравнение:

Выберем функцию V(y) так, чтобы. Тогда

Имеющее стандартный вид $P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy=0$, в котором левая часть представляет собой полный дифференциал некоторой функции $F\left(x,y\right)$, называется уравнением в полных дифференциалах.

Уравнение в полных дифференциалах всегда можно переписать в виде $dF\left(x,y\right)=0$, где $F\left(x,y\right)$ -- такая функция, что $dF\left(x,y\right)=P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy$.

Проинтегрируем обе части уравнения $dF\left(x,y\right)=0$: $\int dF\left(x,y\right)=F\left(x,y\right) $; интеграл от нулевой правой части равен произвольной постоянной $C$. Таким образом, общее решение данного уравнения в неявной форме имеет вид $F\left(x,y\right)=C$.

Для того, чтобы данное дифференциальное уравнение представляло собой уравнение в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие $\frac{\partial P}{\partial y} =\frac{\partial Q}{\partial x} $. Если указанное условие выполнено, то существует такая функция $F\left(x,y\right)$, для которой можно записать: $dF=\frac{\partial F}{\partial x} \cdot dx+\frac{\partial F}{\partial y} \cdot dy=P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy$, откуда получаем два соотношения: $\frac{\partial F}{\partial x} =P\left(x,y\right)$ и $\frac{\partial F}{\partial y} =Q\left(x,y\right)$.

Интегрируем первое соотношение $\frac{\partial F}{\partial x} =P\left(x,y\right)$ по $x$ и получаем $F\left(x,y\right)=\int P\left(x,y\right)\cdot dx +U\left(y\right)$, где $U\left(y\right)$ -- произвольная функция от $y$.

Подберем её так, чтобы удовлетворялось второе соотношение $\frac{\partial F}{\partial y} =Q\left(x,y\right)$. Для этого продифференцируем полученное соотношение для $F\left(x,y\right)$ по $y$ и приравняем результат к $Q\left(x,y\right)$. Получаем: $\frac{\partial }{\partial y} \left(\int P\left(x,y\right)\cdot dx \right)+U"\left(y\right)=Q\left(x,y\right)$.

Дальнейшее решение таково:

  • из последнего равенства находим $U"\left(y\right)$;
  • интегрируем $U"\left(y\right)$ и находим $U\left(y\right)$;
  • подставляем $U\left(y\right)$ в равенство $F\left(x,y\right)=\int P\left(x,y\right)\cdot dx +U\left(y\right)$ и окончательно получаем функцию $F\left(x,y\right)$.
\

Находим разность:

Интегрируем $U"\left(y\right)$ по $y$ и находим $U\left(y\right)=\int \left(-2\right)\cdot dy =-2\cdot y$.

Находим результат: $F\left(x,y\right)=V\left(x,y\right)+U\left(y\right)=5\cdot x\cdot y^{2} +3\cdot x\cdot y-2\cdot y$.

Записываем общее решение в виде $F\left(x,y\right)=C$, а именно:

Находим частное решение $F\left(x,y\right)=F\left(x_{0} ,y_{0} \right)$, где $y_{0} =3$, $x_{0} =2$:

Частное решение имеет вид: $5\cdot x\cdot y^{2} +3\cdot x\cdot y-2\cdot y=102$.


Левые части дифференциальных уравнений вида иногда представляют собой полные дифференциалы некоторых функций. Если восстановить функцию по ее полному дифференциалу, то будет найден общий интеграл дифференциального уравнения. В этой статье опишем метод восстановления функции по ее полному дифференциалу, теоретический материал снабдим примерами и задачами с подробным описанием решения.

Левая часть дифференциального уравнения является полным дифференциалом некоторой функции U(x, y) = 0 , если выполняется условие .

Так как полный дифференциал функции U(x, y) = 0 есть , то при выполнении условия можно утверждать, что . Следовательно, .

Из первого уравнения системы имеем . Функцию можно найти, используя второе уравнение системы:

Так будет найдена искомая функция U(x, y) = 0 .


Рассмотрим пример.

Пример.

Найти общее решение дифференциального уравнения .

Решение.

В этом примере . Условие выполняется, так как

следовательно, левая часть исходного дифференциального уравнения представляет собой полный дифференциал некоторой функции U(x, y) = 0 . Наша задача сводится к отысканию этой функции.

Так как есть полный дифференциал функции U(x, y) = 0 , то . Интегрируем по x первое уравнение системы и дифференцируем по y полученный результат . С другой стороны, из второго уравнения системы имеем . Следовательно,

где С – произвольная постоянная.

Таким образом, и общим интегралом исходного уравнения является .

Существует другой метод нахождения функции по ее полному дифференциалу. Он заключается во взятии криволинейного интеграла от фиксированной точки (x 0 , y 0) до точки с переменными координатами (x, y) : . В этом случае значение интеграла не зависит от пути интегрирования. Удобно брать в качестве пути интегрирования ломаную, звенья которой параллельны осям координат.

Рассмотрим на примере.


Пример.

Найдите общее решение дифференциального уравнения .

Решение.

Проверим выполнение условия :

Таким образом, левая часть дифференциального уравнения представляет собой полный дифференциал некоторой функции U(x, y) = 0 . Найдем эту функцию, вычислив криволинейный интеграл от точки (1; 1) до (x, y) . В качестве пути интегрирования возьмем ломаную: первый участок ломаной пройдем по прямой y = 1 от точки (1, 1) до (x, 1) , вторым участком пути возьмем отрезок прямой от точки (x, 1) до (x, y) .

В этой теме мы рассмотрим метод восстановления функции по ее полному дифференциалу, дадим примеры задач с полным разбором решения.

Бывает так, что дифференциальные уравнения (ДУ) вида P (x , y) d x + Q (x , y) d y = 0 могут содержать в левых частях полные дифференциалы некоторых функций. Тогда мы можем найти общий интеграл ДУ, если предварительно восстановим функцию по ее полному дифференциалу.

Пример 1

Рассмотрим уравнение P (x , y) d x + Q (x , y) d y = 0 . В записи левой его части содержится дифференциал некоторой функции U (x , y) = 0 . Для этого должно выполняться условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Полный дифференциал функции U (x , y) = 0 имеет вид d U = ∂ U ∂ x d x + ∂ U ∂ y d y . С учетом условия ∂ P ∂ y ≡ ∂ Q ∂ x получаем:

P (x , y) d x + Q (x , y) d y = ∂ U ∂ x d x + ∂ U ∂ y d y

∂ U ∂ x = P (x , y) ∂ U ∂ y = Q (x , y)

Преобразовав первое уравнение из полученной системы уравнений, мы можем получить:

U (x , y) = ∫ P (x , y) d x + φ (y)

Функцию φ (y) мы можем найти из второго уравнения полученной ранее системы:
∂ U (x , y) ∂ y = ∂ ∫ P (x , y) d x ∂ y + φ y " (y) = Q (x , y) ⇒ φ (y) = ∫ Q (x , y) - ∂ ∫ P (x , y) d x ∂ y d y

Так мы нашли искомую функцию U (x , y) = 0 .

Пример 2

Найдите для ДУ (x 2 - y 2) d x - 2 x y d y = 0 общее решение.

Решение

P (x , y) = x 2 - y 2 , Q (x , y) = - 2 x y

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x:

∂ P ∂ y = ∂ (x 2 - y 2) ∂ y = - 2 y ∂ Q ∂ x = ∂ (- 2 x y) ∂ x = - 2 y

Наше условие выполняется.

На основе вычислений мы можем сделать вывод, что левая часть исходного ДУ является полным дифференциалом некоторой функции U (x , y) = 0 . Нам нужно найти эту функцию.

Так как (x 2 - y 2) d x - 2 x y d y является полным дифференциалом функции U (x , y) = 0 , то

∂ U ∂ x = x 2 - y 2 ∂ U ∂ y = - 2 x y

Интегрируем по x первое уравнение системы:

U (x , y) = ∫ (x 2 - y 2) d x + φ (y) = x 3 3 - x y 2 + φ (y)

Теперь дифференцируем по y полученный результат:

∂ U ∂ y = ∂ x 3 3 - x y 2 + φ (y) ∂ y = - 2 x y + φ y " (y)

Преобразовав второе уравнение системы, получаем: ∂ U ∂ y = - 2 x y . Это значит, что
- 2 x y + φ y " (y) = - 2 x y φ y " (y) = 0 ⇒ φ (y) = ∫ 0 d x = C

где С – произвольная постоянная.

Получаем: U (x , y) = x 3 3 - x y 2 + φ (y) = x 3 3 - x y 2 + C . Общим интегралом исходного уравнения является x 3 3 - x y 2 + C = 0 .

Разберем еще один метод нахождения функции по известному полному дифференциалу. Он предполагает применение криволинейного интеграла от фиксированной точки (x 0 , y 0) до точки с переменными координатами (x , y) :

U (x , y) = ∫ (x 0 , y 0) (x , y) P (x , y) d x + Q (x , y) d y + C

В таких случаях значение интеграла никак не зависит от пути интегрирования. Мы можем взять в качестве пути интегрировании ломаную, звенья которой располагаются параллельно осям координат.

Пример 3

Найдите общее решение дифференциального уравнения (y - y 2) d x + (x - 2 x y) d y = 0 .

Решение

Проведем проверку, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x:

∂ P ∂ y = ∂ (y - y 2) ∂ y = 1 - 2 y ∂ Q ∂ x = ∂ (x - 2 x y) ∂ x = 1 - 2 y

Получается, что левая часть дифференциального уравнения представлена полным дифференциалом некоторой функции U (x , y) = 0 . Для того, чтобы найти эту функцию, необходимо вычислить криволинейный интеграл от точки (1 ; 1) до (x , y) . Возьмем в качестве пути интегрирования ломаную, участки которой пройдут по прямой y = 1 от точки (1 , 1) до (x , 1) , а затем от точки (x , 1) до (x , y) :

∫ (1 , 1) (x , y) y - y 2 d x + (x - 2 x y) d y = = ∫ (1 , 1) (x , 1) (y - y 2) d x + (x - 2 x y) d y + + ∫ (x , 1) (x , y) (y - y 2) d x + (x - 2 x y) d y = = ∫ 1 x (1 - 1 2) d x + ∫ 1 y (x - 2 x y) d y = (x y - x y 2) y 1 = = x y - x y 2 - (x · 1 - x · 1 2) = x y - x y 2

Мы получили общее решение дифференциального уравнения вида x y - x y 2 + C = 0 .

Пример 4

Определите общее решение дифференциального уравнения y · cos x d x + sin 2 x d y = 0 .

Решение

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Так как ∂ (y · cos x) ∂ y = cos x , ∂ (sin 2 x) ∂ x = 2 sin x · cos x , то условие выполняться не будет. Это значит, что левая часть дифференциального уравнения не является полным дифференциалом функции. Это дифференциальное уравнение с разделяющимися переменными и для его решения подходят другие способы решения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter