Методы решения иррациональных уравнений с примерами. Как решать уравнения с корнем. Итак, как решать квадратные корни

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В реальной жизни нам необходимо оперировать обыкновенными дробями. Однако чтобы сложить или вычесть дроби с разными знаменателями, например, 2/3 и 5/7, нам потребуется найти общий знаменатель. Приведя дроби к общему знаменателю, мы сможем легко осуществить операции сложения или вычитания.

Определение

Дроби - одна из самых сложных тем в начальной арифметике, и рациональные числа пугают школьников, которые встречаются с ними впервые. Мы привыкли оперировать с числами, записанными в десятичном формате. Куда проще сходу сложить 0,71 и 0,44, чем суммировать 5/7 и 4/9. Ведь для суммирования дробей их необходимо привести к общему знаменателю. Однако дроби куда точнее представляют значение величин, чем их десятичные эквиваленты, а в математике представление рядов или иррациональных чисел в виде дроби становится приоритетной задачей. Такая задача носит название «приведение выражения к замкнутому виду».

Если и числитель, и знаменатель дроби умножить или разделить на один и тот же коэффициент, то значение дроби не изменится. Это одно из самых важных свойств дробных чисел. К примеру, дробь 3/4 в десятичной форме записывается как 0,75. Если умножить числитель и знаменатель на 3, то получим дробь 9/12, что точно также равняется 0,75. Благодаря этому свойству мы можем умножать разные дроби таким образом, чтобы они все имели одинаковые знаменатели. Как это сделать?

Поиск общего знаменателя

Наименьший общий знаменатель (НОЗ) - это наименьшее общее кратное для всех знаменателей выражения. Найти такое число мы можем тремя способами.

Использование максимального знаменателя

Это один из самых простых, но трудоемких методов поиска НОЗ. Вначале из знаменателей всех дробей выписываем самое большое число и проверяем его делимость на меньшие числа. Если делится, то наибольший знаменатель и есть НОЗ.

Если в предыдущей операции числа делятся с остатком, то необходимо самое большое из них умножить на 2 и повторить проверку на делимость. Если оно делится без остатка, то новый коэффициент становится НОЗ.

Если нет, то самый большой знаменатель умножается на 3, 4 , 5 и так далее, пока не будет найдено наименьшее общее кратное для нижних частей всех дробей. На практике это выглядит так.

Пусть у нас есть дроби 1/5, 1/8 и 1/20. Проверяем 20 на делимость 5 и 8. 20 не делится на 8. Умножаем 20 на 2. Проверяем 40 на делимость 5 и 8. Числа делятся без остатка, следовательно, НОЗ (1/5, 1/8 и 1/20) = 40, а дроби превращаются в 8/40, 5/40 и 2/40.

Последовательный перебор кратных

Второй способ - это простой перебор кратных и выбор из них наименьшего. Для поиска кратных мы умножаем число на 2, 3, 4 и так далее, поэтому количество кратных устремляется в бесконечность. Ограничить эту последовательность можно пределом, которое представляет собой произведение заданных чисел. К примеру, для чисел 12 и 20 НОК находится следующим образом:

  • выписываем числа, кратные 12 - 24, 48, 60, 72, 84, 96, 108, 120;
  • выписываем числа, кратные 20 - 40, 60, 80, 100, 120;
  • определяем общие кратные - 60, 120;
  • выбираем наименьшее из них - 60.

Таким образом, для 1/12 и 1/20 общим знаменателем будет 60, а дроби преобразуются в 5/60 и 3/60.

Разложение на простые множители

Этот способ нахождения НОК наиболее актуален. Данный метод подразумевает разложение всех чисел из нижних частей дробей на неделимые множители. После этого составляется число, которое содержит множители всех знаменателей. На практике это работает так. Найдем НОК для той же пары 12 и 20:

  • раскладываем на множители 12 - 2 × 2 × 3;
  • раскладываем 20 - 2 × 2 × 5;
  • объединяем множители таким образом, чтобы они содержали в себе числа и 12, и 20 - 2 × 2 × 3 × 5;
  • перемножаем неделимые и получаем результат - 60.

В третьем пункте мы объединяем множители без повторов, то есть двух двоек достаточно для формирования 12 в комбинации с тройкой и 20 - с пятеркой.

Наш калькулятор позволяет определить НОЗ для произвольного количества дробей, записанных как в обыкновенной, так и в десятичной форме. Для поиска НОЗ вам достаточно ввести значения через табуляцию или запятую, после чего программа вычислит общий знаменатель и выведет на экран преобразованные дроби.

Пример из реальной жизни

Сложение дробей

Пусть в задаче по арифметике нам необходимо сложить пять дробей:

0,75 + 1/5 + 0,875 + 1/4 + 1/20

Решение вручную производилось бы следующим способом. Для начала нам необходимо представить числа в одной форме записи:

  • 0,75 = 75/100 = 3/4;
  • 0,875 = 875/1000 = 35/40 = 7/8.

Теперь у нас есть ряд обыкновенных дробей, которые необходимо привести к одинаковому знаменателю:

3/4 + 1/5 + 7/8 + 1/4 + 1/20

Так как у нас 5 слагаемых, проще всего использовать способ поиска НОЗ по наибольшему числу. Проверяем 20 на делимость остальными числами. 20 не делится на 8 без остатка. Умножаем 20 на 2, проверим 40 на делимость - все числа делят 40 нацело. Это и есть наш общий знаменатель. Теперь для суммирования рациональных чисел нам необходимо определить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Дополнительные множители буду выглядеть так:

  • 40/4 = 10;
  • 40/5 = 8;
  • 40/8 = 5;
  • 40/4 = 10;
  • 40/20 = 2.

Теперь умножим числитель и знаменатель дробей на соответствующие дополнительные множители:

30/40 + 8/40 + 35/40 + 10/40 + 2/40

Для такого выражения мы можем легко определить сумму, равную 85/40 или 2 целых и 1/8. Это громоздкие вычисления, поэтому вы можете просто ввести данные задачи в форму калькулятора и сразу получить ответ.

Заключение

Арифметические операции с дробями - не слишком удобная вещь, ведь для поиска ответа приходится осуществлять множество промежуточных вычислений. Используйте наш онлайн-калькулятор для приведения дробей к общему знаменателю и быстрого решения школьных задач.

Решение иррациональных уравнений.

В этой статье мы поговорим о способах решения простейших иррациональных уравнений.

Иррациональным уравнением называется уравнение, которое содержит неизвестное под знаком корня.

Давайте рассмотрим два вида иррациональных уравнений , которые очень похожи на первый взгляд, но по сути сильно друг от друга отличаются.

(1)

(2)

В первом уравнении мы видим, что неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения. Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

При возведении правой и левой части уравнения в нечетную степень мы можем не опасаться получить посторонние корни.

Пример 1 . Решим уравнение

Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

Перенесем все слагаемые в одну сторону и вынесем за скобки х:

Приравняем каждый множитель к нулю, получим:

Ответ: {0;1;2}

Посмотрим внимательно на второе уравнение: . В левой части уравнения стоит квадратный корень, который принимает только неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

Title="g(x)>=0"> - это условие существования корней .

Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

(3)

Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо уравнения:

Title="f(x)>=0"> (4)

Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение равносильно системе:

Title="delim{lbrace}{matrix{2}{1}{{f(x)=g^2{(x)}} {g(x)>=0} }}{ }">

Пример 2 . Решим уравнение:

.

Перейдем к равносильной системе:

Title="delim{lbrace}{matrix{2}{1}{{2x^2-7x+5={(1-x)}^2} {1-x>=0} }}{ }">

Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

Неравеству title="1-x>=0">удовлетворяет только корень

Ответ: x=1

Внимание! Если мы в процессе решения возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3 . Решим уравнение:

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

Воозведем обе части уравнения в квадрат:

Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

Еще раз возведем обе части уравнения в квадрат:

По тереме Виета:

Сделаем проверку. Для этого подставим найденные корни в исходное уравнение. Очевидно, что при правая часть исходного уравнения отрицательна, а левая положительна.

При получаем верное равенство.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

Получив квадратное уравнение, находим его корни:

Ответ: \

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Методические разработки к элективному курсу

«Методы решений иррациональных уравнений»»

ВВЕДЕНИЕ

Предлагаемый элективный курс «Методы решений иррациональных уравнений» предназначен для учащихся 11 класса общеобразовательной школы и является предметно-ориентированным, направлен на расширение теоретических и практических знаний учащихся. Элективный курс построен с опорой на знания и умения, получаемые учащимися при изучении математики в средней школе.

Специфика данного курса заключается в том, что он предназначен в первую очередь для учащихся, желающих расширить, углубить, систематизировать, обобщить свои математические знания, изучить единые методы и приемы решения иррациональных уравнений. В программу включены вопросы, частично выходящие за рамки ныне действующих программ по математике и нестандартные методы, которые позволяют более эффективно решать разные задачи.

Большинство заданий ЕГЭ требуют от выпускников владения различными методами решения разного рода уравнений и их систем. Материал, связанный с уравнениями и системами уравнений, составляет значительную часть школьного курса математики. Актуальность выбора темы элективного курса определяется значимостью темы «Иррациональные уравнения» в школьном курсе математики и, вместе с тем, нехваткой времени на рассмотрение нестандартных методов и подходов к решению иррациональных уравнений, которые встречаются в заданиях группы «С» ЕГЭ.

Наряду с основой задачей обучения математике -обеспечение прочного и сознательного овладения учащимися системой математических знаний и умений – данный элективный курс предусматривает формирование устойчивого интереса к предмету, развитие математических способностей, повышение уровня математической культуры учащихся, создает базу для успешной сдачи ЕГЭ и продолжения обучения в ВУЗах.

Цель курса:

Повысить уровень понимания и практической подготовки при решении иррациональных уравнений;

Изучить приёмы и методы решения иррациональных уравнений;

Формировать умение анализировать, выделять главное, формировать элементы творческого поиска на основе приёмов обобщения;

Расширить знания учащихся по данной теме, совершенствовать умения и навыки решения различных задач для успешной сдачи ЕГЭ.

Задачи курса:

Расширение знаний о методах и способах решения алгебраических уравнений;

Обобщение и систематизация знаний при обучении в 10-11 классах и подготовке к ЕГЭ;

Развитие умения самостоятельно приобретать и применять знания;

Приобщение учащихся к работе с математической литературой;

Развитие логического мышления учащихся, их алгоритмической культуры и математической интуиции;

Повышение математической культуры ученика.

Программа элективного курса предполагает изучение различных методов и подходов при решении иррациональных уравнений, отработку практических навыков по рассматриваемым вопросам. Курс рассчитан на 17 часов.

Программа усложнена, превосходит обычный курс обучения, способствует развитию абстрактного мышления, расширяет область познания учащегося. Вместе с тем она сохраняет преемственность с действующими программами, являясь их логическим продолжением.

Учебно-тематический план

п/п

Тема занятий

Кол-во часов

Решение уравнений с учетом области допустимых значений

Решение иррациональных уравнений путем возведения в натуральную степень

Решение уравнений методом введения вспомогательных переменных (метод замены)

Решение уравнения с радикалом третьей степени.

Тождественные преобразования при решении иррациональных уравнений

Нетрадиционные задачи. Задачи группы «С» ЕГЭ

Формы контроля: домашние контрольные, самостоятельные работы, рефераты и исследовательские работы.

В результате обучения данного элективного курса учащиеся должны уметь решать различные иррациональные уравнения, используя стандартные и нестандартные методы и приемы;

    усвоить алгоритм решения стандартных иррациональных уравнений;

    уметь использовать свойства уравнений для решения нестандартных заданий;

    уметь выполнять тождественные преобразования при решении уравнений;

    иметь четкое представление о темах единого государственного экзамена, об основных методах их решений;

    приобрести опыт в выборе методов для решения нестандартных задач.

ОСНОВНАЯ ЧАСТЬ.

Уравнения, в которых неизвестная величина находится под знаком радикала, называются иррациональными.

К простейшим иррациональным уравнениям относятся уравнения вида:

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. При решении иррациональных уравнений речь всегда идет об отыскании действительных корней.

Рассмотрим некоторые способы решения иррациональных уравнений.

1.Решение иррациональных уравнений с учетом области допустимых значений (ОДЗ).

Область допустимых значений иррационального уравнения состоит из тех значений неизвестных, при которых неотрицательными являются все выражения, стоящие под знаком радикала четной степени.

Иногда знание ОДЗ позволяет доказать, что уравнение не имеет решений, а иногда позволяет найти решения уравнения непосредственной подстановкой чисел из ОДЗ .

Пример1 . Решить уравнение .

Решение . Найдя ОДЗ этого уравнения, приходим к выводу, что ОДЗ исходного уравнения – одноэлементное множество . Подставив х=2 в данное уравнение, приходим к выводу, что х=2 – корень исходного уравнения.

Ответ : 2 .

Пример2.

Уравнение не имеет решений, т.к. при каждом допустимом значении переменной сумма двух неотрицательных чисел не может быть отрицательна.

Пример 3.
+ 3 =
.

ОДЗ:

ОДЗ уравнения пустое множество.

Ответ: уравнение корней не имеет.

Пример4. 3
−4

=−(2+
).

ОДЗ:

ОДЗ:
. Проверкой убеждаемся, что х=1 - корень уравнения.

Ответ: 1.

Докажите, что уравнение не имеет

корней.

1.
= 0.

2.
=1.

3. 5
.

4.
+
=2.

5.
=
.

Решите уравнение.

1. .

2. = 0.

3.
= 92.

4. = 0.

5.
+
+(х+3)(2005−х)=0.

2. Возведение обеих частей уравнения в натуральную степень , то есть переход от уравнения

(1)

к уравнению

. (2)

Справедливы следующие утверждения:

1) при любом уравнение (2) является следствием уравнения (1);

2) если (n – нечетное число), то уравнения (1) и (2) равносильны ;

3) если (n – четное число), то уравнение (2) равносильно уравнению

, (3)

а уравнение (3) равносильно совокупности уравнений

. (4)

В частности, уравнение

(5)

равносильно совокупности уравнений (4).

Пример 1 . Решить уравнение

.

Уравнение равносильно системе

откуда следует, что х=1 , а корень не удовлетворяет второму неравенству. При этом грамотное решение не требует проверки.

Ответ: х=1 .

Пример 2 . Решить уравнение .

Решая первое уравнение этой системы, равносильное уравнению , получим корни и . Однако при этих значениях x не выполняется неравенство , и потому данное уравнение не имеет корней.

Ответ : корней нет.

Пример 3 . Решить уравнение

Уединив первый радикал, получаем уравнение

равносильное исходному.

Возводя обе части этого уравнения в квадрат, так как они обе положительны, получаем уравнение

,

которое является следствием исходного уравнения. Возводя обе части этого уравнения в квадрат при условии, что , приходим к уравнению

.

Это уравнение имеет корни , . Первый корень удовлетворяет исходному условию , а второй – не удовлетворяет.

Ответ : х=2 .

Если уравнение содержит два и более радикалов, то их сначала уединяют, а потом возводят в квадрат.

Пример 1.

Уединив первый радикал, получим уравнение , равносильное данному. Возведем в квадрат обе части уравнения:

Выполнив необходимые преобразования, полученное уравнение возведем в квадрат



Выполнив проверку, замечаем, что

не входит в область допустимых значений.

Ответ: 8.

Ответ: 2

Ответ: 3; 1,4 .

3. Многие иррациональные уравнения решаются методом введения вспомогательных переменных.

Удобным средством решения иррациональных уравнений иногда является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение , зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную.

Удачный выбор новой переменной делает структуру уравнения более прозрачной. Новая переменная иногда очевидна, иногда несколько завуалирована, но «ощущается», а иногда «проявляется» лишь в процессе преобразований.

Пример 1.

Пусть
t>0, тогда

t =
,

t 2 +5t-14=0,

t 1 =-7, t 2 =2. t=-7 не удовлетворяет условию t>0, тогда

,

х 2 -2х-5=0,

х 1 =1-
, х 2 =1+
.

Ответ: 1-
; 1+
.

Пример 2. Решить иррациональное уравнение

Замена:

Обратная замена: /

Ответ:

Пример 3. Решите уравнение .

Сделаем замены: , . Исходное уравнение перепишется в виде , откуда находим, что а = 4b и . Далее, возводя обе части уравнения в квадрат, получаем: Отсюда х = 15 . Осталось сделать проверку:

- верно!

Ответ: 15.

Пример 4 . Решить уравнение

Положив , получим существенно более простое иррациональное уравнение . Возведем обе части уравнения в квадрат: .

; ;

; ; , .

Проверка найденных значений, их подстановка в уравнение показывает, что – корень уравнения, а – посторонний корень.

Возвращаясь к исходной переменной x , получаем уравнение , то есть квадратное уравнение , решив которое находим два корня: ,. Оба корня удовлетворяют исходному уравнению.

Ответ : , .

Замена особенно полезна, если в результате достигается новое качество, например, иррациональное уравнение превращается в рациональное.

Пример 6 . Решить уравнение .

Перепишем уравнение так: .

Видно, что если ввести новую переменную , то уравнение примет вид , откуда - посторонний корень и .

Из уравнения получаем , .

Ответ : , .

Пример 7 . Решить уравнение .

Введем новую переменную , .

В результате исходное иррациональное уравнение принимает вид квадратного

,

откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Ответ : 2,5.

Задания для самостоятельного решения.

1.
+
=
.

2.
+
=.

3.
.

5.
.

4.Метод введения двух вспомогательных переменных.

Уравнения вида (здесь a , b , c , d некоторые числа, m , n натуральные числа) и ряд других уравнений часто удается решить при помощи введения двух вспомогательных неизвестных: и , где и последующего перехода к эквивалентной системе рациональных уравнений .

Пример 1 . Решить уравнение .

Возведение обеих частей этого уравнения в четвертую степень не обещает ничего хорошего. Если же положить , , то исходное уравнение переписывается так: . Поскольку мы ввели две новые неизвестные, надо найти еще одно уравнение, связывающее y и z . Для этого возведем равенства , в четвертую степень и заметим, что . Итак, надо решить систему уравнений

Возведением в квадрат получаем:

После подстановки имеем: или . Тогда система имеет два решения: , ; , , а система не имеет решений.

Остается решить систему двух уравнений с одним неизвестным

и систему Первая из них дает , вторая дает .

Ответ : , .

Пример 2.

Пусть







Ответ:

5. Уравнения с радикалом третьей степени.
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:

Пример 1. .
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:

Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:
Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .

6.Умножение обеих частей уравнения на сопряженное одной из них выражение.

Иногда иррациональное уравнение удается решить довольно быстро, если обе его части умножить на удачно подобранную функцию. Конечно, при умножении обеих частей уравнения на некоторую функцию могут появиться посторонние решения, ими могут оказаться нули самой этой функции. Поэтому предлагаемый метод требует обязательного исследования получающихся значений.

Пример 1. Решите уравнение

Решение: Выберем функцию

Умножим обе части уравнения на выбранную функцию:

Приведем подобные слагаемые и получим равносильное уравнение

Сложим исходное уравнение и последнее, получим

Ответ: .

7.Тождественные преобразования при решении иррациональных уравнений

При решении иррациональных уравнений часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, так же как возведение в четную степень, – могут приобретаться или теряться решения.

Рассмотрим несколько ситуаций, в которых эти проблемы наступают, и научимся их распознать и предотвращать.

I. Пример 1 . Решить уравнение .

Решение. Здесь применима формула .

Только необходимо задуматься о безопасности ее применения. Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии . Поэтому исходное уравнение равносильно системе

Решая уравнение этой системы, получим корни и . Второй корень не удовлетворяет совокупности неравенств системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ: -1 .

II .Следующее опасное преобразование при решении иррациональных уравнений, определяется формулой .

Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции и должны быть неотрицательны; а в правой неотрицательным должно быть их произведение.

Рассмотрим пример, где реализуется проблема с использованием формулы .

Пример 2 . Решить уравнение .

Решение. Попробуем решить это уравнение разложением на множители

Заметим, что при этом действии оказалось потерянным решение , так как оно подходит к исходному уравнению и уже не подходит к полученному: не имеет смысла при . Поэтому это уравнение лучше решать обычным возведением в квадрат

Решая уравнение этой системы, получим корни и . Оба корня удовлетворяют неравенству системы.

Ответ: , .

III .Существует еще более опасное действие – сокращение на общий множитель.

Пример 3 . Решить уравнение .

Неверное рассуждение: Сократим обе части уравнения на , получим .

Нет ничего более опасного и неправильного, чем это действие. Во-первых, подходящее решение исходного уравнения было потеряно; во-вторых, было приобретено два посторонних решения . Получается, что новое уравнение не имеет ничего общего с исходным! Приведем правильное решение.

Решение . Перенесем все члены в левую часть уравнения и разложим ее на множители

.

Это уравнение равносильно системе

которая имеет единственное решение .

Ответ: 3 .

ЗАКЛЮЧЕНИЕ.

В рамках изучения элективного курса показаны нестандартные приемы решения сложных задач, которые успешно развивают логическое мышление, умение найти среди множества способов решения тот, который комфортен для ученика и рационален. Этот курс требует от учащихся большой самостоятельной работы, способствует подготовке учащихся к продолжению образования, повышения уровня математической культуры.

В работе были рассмотрены основные методы решения иррациональных уравнений, некоторые подходы к решению уравнений высших степеней, использование которых предполагается при решении заданий ЕГЭ, а также при поступлении в ВУЗы и продолжении математического образования. Также было раскрыто содержание основных понятий и утверждений, относящихся к теории решения иррациональных уравнений. Определив самый распространённый метод решения уравнений, выявили его применение в стандартных и не стандартных ситуациях. Кроме того, были рассмотрены типичные ошибки при выполнении тождественных преобразований и способы их преодоления.

При прохождении курса учащиеся получат возможность овладеть различными методами и приемами решения уравнений, при этом научатся систематизировать и обобщать теоретические сведения, самостоятельно заниматься поиском решения некоторых проблем и в связи с этим составлять ряд задач и упражнений по данным темам. Выбор сложного материала поможет школьникам проявить себя в исследовательской деятельности.

Положительной стороной курса является возможность дальнейшего применения учащимися изученного материала при сдаче ЕГЭ, поступлении в ВУЗы.

Отрицательной стороной является то, что не каждый учащийся в состоянии овладеть всеми приемами данного курса, даже имея на то желание, ввиду трудности большинства решаемых задач.

ЛИТЕРАТУРА:

    Шарыгин И.Ф. « Математика для поступающих в вузы».-3-е изд.,-М.:Дрофа, 2000.

    Уравнения и неравенства. Справочное пособие./ Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. –М.: Экзамен,1998.

    Черкасов О.Ю., Якушев А.Г. «Математика: интенсивный курс подготовки к экзамену». – 8-е изд., испр. и доп. – М.:Айрис, 2003. – (Домашний репетитор)

    Балаян Э.Н. Комплексные упражнения и варианты тренировочных заданий к ЕГЭ по математике. Ростов на – Дону: Изд-во «Феникс», 2004.

    Сканави М.И. «Сборник задач по математике для поступающих в вузы». - М., «Высшая школа»,1998.

    Игусман О.С. «Математика на устном экзамене». - М.,Айрис,1999.

    Экзаменационные материалы для подготовки к ЕГЭ – 2008 – 2012.

    В.В.Кочагин, М.Н.Кочагина «ЕГЭ – 2010. Математика. Репетитор» Москва «Просвещение» 2010г.

    В.А.Гусев, А.Г.Мордкович «Математика. Справочные материалы» Москва «Просвещение» 1988г.