Свойства верных равенств. Свойства равенств, на которых основывается решение уравнений. Свойства числовых равенств

Пусть даны 2 числовых выражения А иВ . Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством.

Равенство А =В считается истинным тогда и только тогда, когда оба выраженияА иВ имеют числовые значения, причем эти значения одинаковы.

Пример . 1) 16: 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8;

2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11;

3) 15: (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения.

Из данного выше определения вытекает, что если истинны равенства А =В иС =D , гдеА ,В ,С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А ) + (С ) = (В ) + (D ), (А ) – (С ) = (В ) – (D ), (А ) ∙ (С ) = (В ) ∙ (D ), (А ) : (С ) = (В ) : (D ), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить.

Отношение равенства числовых выражений обладает свойствами:

1) рефлексивности (А =А );

2) симметричности (А =В В =А );

3) транзитивности (А =В В =С А =С ), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение;

4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) + (С ) = (В ) + (С ));

5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) ∙ (С ) = (В ) ∙ (С ));

6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п А =В (А ) п = (В ) п ;

7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выраженийА иВ неотрицательны, тоА =В (А ) п = (В ) п . Если снять условие, что значения числовых выраженийА иВ неотрицательны, то вместо эквивалентности будем иметь лишь импликациюА =В (А ) п = (В ) п .

§ 3. Числовые неравенства и их свойства

Пусть А иВ – два числовых выражения. Соединив их знаком > или <, получим некоторое высказывание, называемое числовым неравенством. НеравенствоА <В считается истинным, еслиА иВ имеют числовые значения, причем числовое значение выраженияА меньше числового значения выраженияВ .

Пример . 2 + 5 < 3 ∙ 4 – истинное неравенство, т.к. левая часть имеет значение 7, правая имеет значение 12 и 7 < 12.

Неравенство А В является дизъюнкцией неравенстваА <В и равенстваА =В. Оно истинно тогда и только тогда, когда истинно хотя бы одно из данных элементарных высказываний.

Неравенство А <В <С является конъюнкцией неравенствА <В иВ <С. Оно истинно тогда и только тогда, когда истинны оба неравенства.

Выполнив указанные в числовых выражениях действия, мы получим в левой и правой части неравенства соответствующие числа. Пусть а , b ,с ,d – соответствующие значения числовых выраженийА ,B ,C ,D .

Свойства числовых неравенств

1) если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство (А <В (А ) + (С ) < (В ) + (С ));

2) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее положительное значение, то полученное числовое неравенство будет также истинным (А <В (А ) ∙ (С ) < (В ) ∙ (С ));

3) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее отрицательное значение, то, чтобы получить истинное числовое неравенство, необходимо знак неравенства поменять на противоположный (А <В (А ) ∙ (С ) > (В ) ∙ (С ));

4) неравенства одного знака можно почленно складывать (А <В ,С <D (А ) + (С ) < (В ) + (D ));

5) неравенства одного знака, имеющие положительные значения, можно почленно перемножать (если А <В ,С <D , причема , b ,с ,d > 0, то (А ) ∙ (С ) < (В ) ∙ (D ));

6) обе части истинного числового неравенства можно возвести в одну и ту же нечетную степень (если п – нечетное натуральное число, тоА <В (А ) п < (В ) п );

7) возводить в четную степень обе части неравенства можно лишь в том случае, если обе они имеют неотрицательные значения (если п – четное натуральное число иа , b ≥ 0, тоА <В (А ) п < (В ) п );

8) если а , b < 0,А <В  > .

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Yandex.RTB R-A-339285-1

Что такое числовое равенство

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 - 1 = 5 ; 2 · 1 = 2 ; 21: 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, (2 + 2) + 5 = 2 + (5 + 2) ; 4 · (4 − (1 + 2)) + 12: 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Определение 1

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

  • свойство рефлексивности: a = a ;
  • свойство симметричности: если a = b , то b = a ;
  • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.
Определение 2

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

Доказательство 1

Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a: разность a − a можно записать как сумму a + (− a) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

Определение 3

Согласно свойству симметричности числовых равенств: если число a равно числу b ,
то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

Доказательство 2

Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

Запишем разность b − a в виде − (a − b) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна - 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

Определение 4

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

Доказательство 3

Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + (− b + b) − c . Выполним группировку слагаемых: (a − b) + (b − c) . Разности в скобках равны нулю, тогда и сумма (a − b) + (b − c) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Определение 5

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

Доказательство 4

В качестве обоснования запишем разность (a + c) − (b + c) .
Это выражение легко преобразуется в вид (a − b) + (c − c) .
Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда (a − b) + (c − c) = 0 + 0 = 0 . Это доказывает, что (a + c) − (b + c) = 0 , следовательно, a + c = b + c ;

Определение 6

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a: c = b: c .

Доказательство 5

Равенство верно: a · c − b · c = (a − b) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

Определение 7

При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

Определение 8

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

Доказательство 6

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
К равенству a = b прибавим число c , а к равенству c = d - число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Определение 7

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

Доказательство 7

Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a = b , то b = a .

Если a = b и b = c , то a = c .

Если a = b , то a + c = b + c .

Если a = b , то a · c = b · c .

Если a = b и с ≠ 0 , то a: c = b: c .

Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

Если a = b и c = d , то a · c = b · d.

Если a = b , то a n = b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Интерактивный список. Начните вводить искомое слово.

РАВЕНСТВО

РА́ВЕНСТВО, -а, ср.

1. Полное сходство, подобие (по величине, качеству, достоинству). Р. сил.

2. Положение людей в обществе, обеспечивающее их одинаковое отношение к закону, одинаковые политические и гражданские права, равноправие. Социальное р.

3. В математике: соотношение между величинами, показывающее, что одна величина равна другой. Знак равенства (=). Ставить знак равенства между кем-чем-н. (перен. : признавать равноценным, уравнивать).

| прил. равенственный , -ая, -ое (ко 2 знач. ; устар. ).

Что такое РАВЕНСТВО , РАВЕНСТВО это, значение слова РАВЕНСТВО , происхождение (этимология) РАВЕНСТВО , синонимы к РАВЕНСТВО , парадигма (формы слова) РАВЕНСТВО в других словарях

Парадигма, формы слова РАВЕНСТВО - Полная акцентуированная парадигма по А. А. Зализняку

Синонимы к РАВЕНСТВО - Словарь русских синонимов 4

РАВЕНСТВО синонимы

равенство

Синонимы:

альтернат, единство, муссават, общность, одинаковость, паритет, паритетность, подобие, равновеликость, равноправие, равноправность, совпадение, соответствие, сходство, тождество, уравнение, эквивалентность

На данном уроке вы вместе с лягушкой познакомитесь с математическими понятиями: «равенство» и «неравенство», а также со знаками сравнения. На веселых и интересных примерах научитесь сравнивать группы фигур с помощью составления пар и сравнивать числа с помощью числового луча.

Тема: Знакомство с основными понятиями в математике

Урок: Равенство и неравенство

На данном уроке мы познакомимся с математическими понятиями: «равенство» и «неравенство» .

Попробуйте ответить на вопрос:

У стены стоят кадушки,

В каждой ровно по лягушке.

Если б было пять кадушек,

Сколько б было в них лягушек? (рис. 1)

Рис. 1

В стихотворении говорится, что кадушек было 5, в каждой кадушке по 1 лягушке, никто не остался без пары, значит число лягушек равно числу кадушек.

Обозначим кадушки буквой К, а лягушек - буквой Л.

Запишем равенство: К = Л. (рис. 2)

Рис. 2

Сравните по количеству две группы фигур. Фигур много, они разного размера, расположены без порядка. (рис. 3)

Рис. 3

Составим из этих фигур пары. Каждый квадрат соединим с треугольником. (рис. 4)

Рис. 4

Два квадрата остались без пары. Значит, количество квадратов не равно количеству треугольников. Обозначим квадраты буквой К, а треугольники - буквой Т.

Запишем неравенство: К ≠ Т. (рис. 5)

Рис. 5

Вывод : сравнивать количество элементов в двух группах можно, составляя пары. Если всем элементам хватает пары, то соответствующие числа равны , в этом случае ставим между цифрами или буквами знак равно . Эта запись называется равенством . (рис. 6)

Рис. 6

Если не хватает пары, то есть остаются лишние предметы, то эти числа неравны . Ставим между числами или буквами знак неравно . Эта запись называется неравенством. (рис. 7)

Рис. 7

Оставшиеся без пары элементы показывают, какое из двух чисел больше и на сколько. (рис. 8)

Рис. 8

Способ сравнения групп фигур с помощью составления пар не всегда удобен и занимает много времени. Можно сравнивать числа с помощью числового луча. (рис. 9)

Рис. 9

Сравните данные числа с помощью числового луча и поставьте знак сравнения.

Нужно сравнить числа 2 и 5. Посмотрим на числовой луч. Число 2 находится ближе к 0, чем число 5, или говорят, число 2 на числовом луче левее, чем число 5. Значит, 2 не равно 5. Это неравенство.

Знак «≠» (не равно) лишь фиксирует неравенство чисел, но не указывает, какое из них больше, а какое - меньше.

Из двух чисел на числовом луче меньшее расположено левее, а большее - правее. (рис. 10)

Рис. 10

Можно данное неравенство записать по-другому, используя знак меньше « < » или знак больше « > » :

На числовом луче число 7 находится правее, чем число 4, следовательно:

7 ≠ 4 и 7 > 4

Числа 9 и 9 равны, поэтому ставим знак =, это равенство:

Сравните количество точек и число и поставьте соответствующий знак. (рис. 11)

Рис. 11

На первом рисунке нам необходимо поставить знак = или ≠ .

Сравниваем две точки и число 2, ставим между ними знак =. Это равенство.

Сравниваем одну точку и число 3, на числовом луче число 1 находится левее, чем число 3, ставим знак ≠.

Сравниваем четыре точки и 4. Между ними ставим знак =. Это равенство.

Сравниваем три точки и число 4. Три точки - это число 3. На числовом луче оно левее, ставим знак ≠. Это неравенство. (рис. 12)

Рис. 12

На втором рисунке между точками и числами надо поставить знаки = , <, >.

Сравним пять точек и число 5. Между ними ставим знак =. Это равенство.

Сравним три точки и число 3. Здесь тоже можно поставить знак =.

Сравним пять точек и число 6. На числовом луче число 5 левее, чем число 6. Ставим знак <. Это неравенство.

Сравним две точки и единицу, число 2 правее на числовом луче, чем число 1. Ставим знак >. Это неравенство. (рис. 13)

Рис. 13

Вставьте в окошко число, чтобы полученное равенство и неравенство стали верными.

Это неравенство. Посмотрим на числовой луч. Раз мы ищем число меньше, чем число 7, значит оно должно быть левее числа 7 на числовом луче. (рис. 14)

Рис. 14

В окошко можно вставить несколько чисел. Сюда подходят числа 0, 1, 2, 3, 4, 5, 6. Любое из них можно подставить в окошко и получить несколько верных неравенства. Например, 5 < 7 или 2 < 7

На числовом луче найдём числа, которые будут меньше 5. (рис. 15)

Рис. 15

Это числа 4, 3, 2, 1, 0. Следовательно, любое из этих чисел можно подставить в окошко, мы получим несколько верных неравенств. Например, 5 >4, 5 >3

В можно подставить только одно число 8.

На данном уроке мы познакомились с математическими понятиями: «равенство» и «неравенство», научились правильно расставлять знаки сравнения, потренировались сравнивать группы фигур с помощью составления пар и сравнивать числа с помощью числового луча, что поможет в дальнейшем изучении математики.

Список литературы

  1. Александрова Л.А., Мордкович А.Г. Математика 1 класс. - М: Мнемозина, 2012.
  2. Башмаков М.И., Нефедова М.Г. Математика. 1 класс. - М: Астрель, 2012.
  3. Беденко М.В. Математика. 1 класс. - М7: Русское слово, 2012.
  1. Igraem.pro ().
  2. Slideshare.net ().
  3. Iqsha.ru ().

Домашнее задание

1. Какие знаки сравнения вы знаете, в каких случаях они используются? Запишите знаки сравнения чисел.

2. Сравните количество предметов на рисунке и поставьте знак «<», «>» или «=».

3. Сравни числа, поставив знак «<», «>» или «=».

На бумаге написано следующее:

Три и два - это пять.

К трем прибавить два будет пять.

Складываем три и два, в результате получаем пять.

Три увеличить на два станет пять.

Сумма чисел три и два равна пяти.

Кстати, «роли», которые играют числа в этой записи, имеют такие названия:

первое слагаемое + второе слагаемое = сумма

Подобным же образом,

это не только «пять минус два равно три», но и:

Пять без двух - это три.

От пяти отнять два будет три.

Из пяти вычесть два получится три.

Пять уменьшить на два составит три.

Разность чисел пять и два равна трем.

Если уменьшаемое равно 5, а вычитаемое равно 2, то разность равна 3.

«Роли» чисел в примерах на вычитание называются так:

уменьшаемое − вычитаемое = разность

Семь - это столько же, сколько четыре плюс три.

Рассмотрим такую ситуацию. У Дениса есть 5 конфет. Его младший брат Матвей просит:

Денис раскладывает конфеты на две кучки. Одну кучку оставляет себе, другую дает Матвею. Спрашивается: как 5 конфет можно поделить на две кучки? Возможные ответы:

5 = 1 + 4 (Денис оставляет одну конфету себе, а четыре дает Матвею);
5 = 2 + 3;
5 = 3 + 2;
5 = 4 + 1.

Но это еще не все возможные варианты. Может оказаться так, что Денису эти конфеты вообще не нравятся, и он все их отдает Матвею:

А, может быть, Денис вовсе не захочет делиться конфетами, и тогда следует написать так:

Все эти ответы можно объединить в одну строчку:

Допустим, что какой-нибудь взрослый дядя - непрошеный экзаменатор - спросит у Дениса:

Денис теперь смело может ответить:

Это равно три плюс два.

И Денис будет совершенно прав. Действительно,

Но как же тогда грамотно попросить вычислить «два плюс три», чтобы ответом было одно-единственное число?

Грамотный вопрос звучит так:

Чему равно значение выражения 2 + 3?

Математическим выражением называется всё, про что можно спросить: «Это сколько? Какому числу это равно?» Мы уже встречались с такими выражениями, как «2 + 3», «5 − 2». Числа сами по себе тоже являются выражениями. Ведь не будет ошибкой утверждать, что

Значит, «2» - это выражение.

Ответ на вопрос: «Это сколько? Какому числу это равно?» - называется значением выражения. Например, значением выражения «2 + 3» является «5». Записывается это уже знакомым нам способом:

Если два выражения имеют одно и то же значение, то между ними ставится знак «=» и полученная запись называется равенством , например:

1 + 4 = 2 + 3;
7 = 2 + 5.

Мы уже знаем, что равенства могут образовывать цепочки:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Если два выражения имеют разные значения, то ставить знак «=» между ними было бы неверно, но можно поставить другой знак, а именно «≠». Например,

1 ≠ 2 (читается: один не равен двум);
3 + 2 ≠ 4 (три плюс два не равно четырем);
10 ≠ 7 − 3 (десять не равно семи минус три).

Такие записи называются неравенствами . Однако такого рода неравенства часто оставляют некоторую неудовлетворенность. Вряд ли Денис скажет:

Мой возраст неравен возрасту Матвея.

Скорее всего, он выразится так:

Я старше Матвея. Мне больше лет, чем ему. Матвей младше меня. Ему меньше лет, чем мне.

Мы знаем, что Денису 7 лет, а Матвею 5. Мы можем записать так:

7 > 5 (читается: семь больше пяти; или: семь больше, чем пять)

5 < 7 (пять меньше семи; пять меньше, чем семь).

Через три года оба будут взрослее, но Денис так и останется старше Матвея:

7 + 3 > 5 + 3 (семь плюс три больше, чем пять плюс три);
5 + 3 < 7 + 3 (пять плюс три меньше, чем семь плюс три).

Записи, в которых присутствует символ «>» («больше») или «<» («меньше») тоже называются неравенствами . Неравенства могут образовывать цепочки:

0 < 1 < 2 < 3;
3 > 2 > 1 > 0.

Допустимы также смешанные цепочки, в которых присутствуют как равенства, так и неравенства. Пусть, например, спрашивается: что больше:

7 + 3 или 5 + 3?

Ответ на этот вопрос удобно представить в следующем виде:

7 + 3 = 10 > 8 = 5 + 3.

Вероятно, иногда Денису захочется сказать так:

Я старше Матвея на два года. Мне на два года больше, чем ему. Матвей младше меня на два года. Ему на два года меньше, чем мне.

Чтобы это записать с помощью чисел, снова понадобятся равенства. Такую запись можно сделать разными способами:

7 = 5 + 2;
5 = 7 − 2;
2 = 7 − 5.

Теперь поговорим о словах, которые принято употреблять, когда мы говорим об умножении и делении нацело. Пусть дано равенство

3 умножить на 5 равно 15;
произведение чисел 3 и 5 равно 15;
число 3 увеличили в 5 раз и получили 15;
число 5 увеличили в 3 раза и получили 15;
число 15 в 5 раз больше числа 3;
число 3 в 5 раз меньше числа 15;

«Роли» распределяются таким образом:

первый сомножитель ∙ второй сомножитель = произведение

В школе произведения всех чисел, которые меньше или равны десяти, записывают в виде большой скучной таблицы, называемой таблицей умножения. Эту таблицу заставляют учить наизусть. Для облегчения зубрежки, в русском языке для произведений из таблицы умножения имеются специальные названия, например,

2 ∙ 2 - дважды два;
3 ∙ 6 - трижды шесть;
4 ∙ 5 - четырежды пять;
5 ∙ 8 - пятью восемь
и тому подобное.

Рассмотрим теперь равенство

Прочесть эту запись можно так:

15 поделить на 3 равно 5;
15 разделить на 3 равно 5;
частное от деления числа 15 на число 3 равно 5;
отношение чисел 15 и 3 равно 5;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются так:

делимое / делитель = частное

Задачи

2.1.1. Какие два числа надо сложить, чтобы результат был равен четырем? Выписать все возможные ответы.

2.1.2. Какое число надо вычесть из какого, чтобы результат был равен двум? Написать один из возможных ответов.

2.1.3. Указать, что из следующих записей является выражением, что равенством, что неравенством, что бессмыслицей. Какие из равенств и неравенств являются верными, а какие нет?

1
10
10 +
10 + 8
10 + 8 =
10 + 8 = 1
10 + 8 = 18
2
25
25 −
25 − 5
25 − 5 >
25 − 5 > 1
25 − 5 > 10
25 − 5 > 10 +
25 − 5 > 10 + 2
25 − 5 > 10 + 20

2.1.4. Найти значение выражений

37 + 54
98 − 73
и т.п.

2.1.5. Сравнить выражения (поставить между ними знак «=», «>» или «<»):

45 + 18 __ 71 − 16
78 − 14 __ 13 + 56
и т.п.

Пример записи решения:

63 = 45 + 18 > 71 − 16 = 55.

2.1.6. У Дениса 25 конфет, а у Матвея на 3 конфеты меньше. Сколько конфет у Матвея?

2.1.7. У Дениса 25 конфет, а у Матвея на 3 конфеты больше. Сколько конфет у Матвея?

2.1.8. У Дениса 25 конфет, а у Матвея 23 конфеты. У кого конфет больше и насколько?

2.1.9. У Дениса 33 конфеты, а у Матвея 35 конфет. У кого конфет меньше и насколько?

2.1.10. У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 4 конфеты. У кого конфет теперь больше и насколько?

2.1.11. (Маленькая провокация) У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 2 конфеты. У кого конфет теперь меньше и насколько?

2.1.12. У Дениса было 25 конфет, а у Матвея 23 конфеты. Денис съел 14 конфет, а Матвей съел 10 конфет. У кого конфет стало больше и насколько?

2.1.14. Денису 7 лет, а Матвею 5 лет. Сколько лет будет Матвею, когда Денису будет 10 лет? Сколько лет будет Денису, когда Матвею будет 10 лет?

2.1.15. У Дениса 20 конфет, а у Матвея в два раза меньше. Сколько конфет у Матвея?

2.1.16. У Дениса 5 конфет, а у Матвея в 3 раза больше. Сколько конфет у Матвея?

2.1.17. Начиная с этого этапа, задачи можно брать из пособий и задачников, официально рекомендованных для школьников и продающихся в книжных магазинах. Однако такие задачи часто сформулированы весьма заумно и требуют дополнительного редактирования. Например, имеется следующая задача (О. В. Узорова. 3000 задач и примеров по математике: 3-4 кл. Москва, 2001):

«Камни, которые врезаются в атмосферу Земли и полностью в ней сгорают, называются метеорами. Они загораются на высоте 100 км, и, горя, летят еще 30 км. Сколько километров до Земли остается пролететь пыли и пеплу от этого метеора?»

Если предложить ребенку задачу именно в таком виде, то есть риск погрязнуть в объяснениях относительно того, откуда берутся метеоры, чем они отличаются от метеоритов, что такое атмосфера, почему тела нагреваются при трении о воздух, и, вообще, как устроена Вселенная. Это всё вещи, конечно, интересные, но, раз уж мы решили заниматься математикой, то лучше ту же самую задачу перевести на более привычный язык. Вот один из возможных вариантов:

«От подъезда дома до магазина, где продается мороженое, 100 шагов. Папа отправился в магазин, чтобы купить Денису мороженое. Он прошел уже 30 шагов. Сколько шагов ему осталось пройти?»