Чтобы умножить число на дробь нужно. Составление системы уравнений. Вычитание дробей с разными знаменателями

Умножение десятичных дробей происходит в три этапа.

Десятичные дроби записывают в столбик и умножают как обыкновенные числа.

Считаем количество знаков после запятой у первой десятичной дроби и у второй. Их количество складываем.

В полученном результате отсчитываем справа налево столько же цифр, сколько получилось их в пункте выше и ставим запятую.

Как умножать десятичные дроби

Записываем десятичные дроби в столбик и умножаем их как натуральные числа, не обращая внимания на запятые. То есть 3,11 мы рассматриваем как 311 , а 0,01 как 1 .

Получили 311 . Теперь считаем количество знаков (цифр) после запятой у обеих дробей. В первой десятичной дроби два знака и во второй - два. Общее количество цифр после запятых:

Отсчитываем справа налево 4 знака (цифры) у полученного числа. В полученном результате цифр меньше, чем нужно отделить запятой. В таком случае нужно слева приписать недостающее число нулей.

У нас не хватает одной цифры, поэтому приписываем слева один ноль.

При умножении любой десятичной дроби на 10; 100; 1000 и т.д. запятая в десятичной дроби перемещается вправо на столько знаков, сколько нулей стоит после единицы.

  • 70,1 · 10 = 701
  • 0,023 · 100 = 2,3
  • 5,6 · 1 000 = 5 600

Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т.д., надо в этой дроби перенести запятую влево на столько знаков, сколько нулей стоит перед единицей.

Считаем и ноль целых!

  • 12 · 0,1 = 1,2
  • 0,05 · 0,1 = 0,005
  • 1,256 · 0,01 = 0,012 56

Умножение дробей

Умножение обыкновенных дробей рассмотрим в нескольких возможных вариантах.

Умножение обыкновенной дроби на дробь

Это наиболее простой случай, в котором нужно пользоваться следующими правилами умножения дробей .

Чтобы умножить дробь на дробь , надо:

  • числитель первой дроби умножить на числитель второй дроби и их произведение записать в числитель новой дроби;
  • знаменатель первой дроби умножить на знаменатель второй дроби и их произведение записать в знаменатель новой дроби;

Прежде чем перемножать числители и знаменатели проверьте нельзя ли сократить дроби. Сокращение дробей при расчётах значительно облегчит ваши вычисления.

Умножение дроби на натуральное число

Чтобы дробь умножить на натуральное число нужно числитель дроби умножить на это число, а знаменатель дроби оставить без изменения.

Если в результате умножения получилась неправильная дробь, не забудьте превратить её в смешанное число, то есть выделить целую часть.

Умножение смешанных чисел

Чтобы перемножить смешанные числа, надо вначале превратить их в неправильные дроби и после этого умножить по правилу умножения обыкновенных дробей.

Другой способ умножения дроби на натуральное число

Иногда при расчётах удобнее воспользоваться другим способом умножения обыкновенной дроби на число.

Чтобы умножить дробь на натуральное число нужно знаменатель дроби разделить на это число, а числитель оставить прежним.

Как видно из примера, этим вариантом правила удобнее пользоваться, если знаменатель дроби делится без остатка на натуральное число.

Как умножить дробь на целое число правило

I. Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.

Примеры. Выполнить умножение: 1) 1,25·7; 2) 0,345·8; 3) 2,391·14.

Решение.

II . Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение, не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.

Примеры. Выполнить умножение: 1) 18, 2·0,09; 2) 3,2·0,065; 3) 0,54·12,3.

Решение.

III. Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.

Примеры. Выполнить умножение: 1) 3,25·10; 2) 0,637·100; 3) 4,307·1000; 4) 2,04·1000; 5) 0,00031·10000.

Решение.

IV. Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.

Примеры. Выполнить умножение: 1) 28,3·0,1; 2) 324,7·0,01; 3) 6,85·0,01; 4) 6179,5·0,001; 5) 92,1·0,0001.

www.mathematics-repetition.com

Умножение десятичных дробей, правила, примеры, решения.

Переходим к изучению следующего действия с десятичными дробями, сейчас мы всесторонне рассмотрим умножение десятичных дробей . Сначала обговорим общие принципы умножения десятичных дробей. После этого перейдем к умножению десятичной дроби на десятичную дробь, покажем, как выполняется умножение десятичных дробей столбиком, рассмотрим решения примеров. Дальше разберем умножение десятичных дробей на натуральные числа, в частности на 10, 100 и т.д. В заключение поговорим об умножении десятичных дробей на обыкновенные дроби и смешанные числа.

Сразу скажем, что в этой статье мы будем говорить лишь об умножении положительных десятичных дробей (смотрите положительные и отрицательные числа). Остальные случаи разобраны в статьях умножение рациональных чисел и умножение действительных чисел .

Навигация по странице.

Общие принципы умножения десятичных дробей

Обсудим общие принципы, которых следует придерживаться при проведении умножения с десятичными дробями.

Так как конечные десятичные дроби и бесконечные периодические дроби являются десятичной формой записи обыкновенных дробей, то умножение таких десятичных дробей по сути является умножением обыкновенных дробей. Иными словами, умножение конечных десятичных дробей , умножение конечной и периодической десятичных дробей , а также умножение периодических десятичных дробей сводится к умножению обыкновенных дробей после перевода десятичных дробей в обыкновенные.

Рассмотрим примеры применения озвученного принципа умножения десятичных дробей.

Выполните умножение десятичных дробей 1,5 и 0,75 .

Заменим умножаемые десятичные дроби соответствующими обыкновенными дробями. Так как 1,5=15/10 и 0,75=75/100 , то. Можно провести сокращение дроби, после чего выделить целую часть из неправильной дроби, а удобнее полученную обыкновенную дробь 1 125/1 000 записать в виде десятичной дроби 1,125 .

Следует отметить, что конечные десятичные дроби удобно умножать столбиком, об этом способе умножения десятичных дробей мы поговорим в следующем пункте.

Рассмотрим пример умножения периодических десятичных дробей.

Вычислите произведение периодических десятичных дробей 0,(3) и 2,(36) .

Выполним перевод периодических десятичных дробей в обыкновенные дроби:

Тогда. Можно полученную обыкновенную дробь перевести в десятичную дробь:

Если среди умножаемых десятичных дробей присутствуют бесконечные непериодические, то все умножаемые дроби, в том числе конечные и периодические, следует округлить до некоторого разряда (смотрите округление чисел ), после чего выполнять умножение полученных после округления конечных десятичных дробей.

Выполните умножение десятичных дробей 5,382… и 0,2 .

Сначала округлим бесконечную непериодическую десятичную дробь, округление можно провести до сотых, имеем 5,382…≈5,38 . Конечную десятичную дробь 0,2 округлять до сотых нет необходимости. Таким образом, 5,382…·0,2≈5,38·0,2 . Осталось вычислить произведение конечных десятичных дробей: 5,38·0,2=538/100·2/10= 1 076/1 000=1,076 .

Умножение десятичных дробей столбиком

Умножение конечных десятичных дробей можно выполнять столбиком, аналогично умножению столбиком натуральных чисел.

Сформулируем правило умножения десятичных дробей столбиком . Чтобы умножить десятичные дроби столбиком, надо:

  • не обращая внимания на запятые, выполнить умножение по всем правилам умножения столбиком натуральных чисел;
  • в полученном числе отделить десятичной запятой столько цифр справа, сколько десятичных знаков в обоих множителях вместе, при этом если в произведении не хватает цифр, то слева нужно дописать нужное количество нулей.

Рассмотрим примеры умножения десятичных дробей столбиком.

Выполните умножение десятичных дробей 63,37 и 0,12 .

Проведем умножение десятичных дробей столбиком. Сначала умножаем числа, не обращая внимания на запятые:

Осталось в полученном произведении поставить запятую. Ей нужно отделить 4 цифры справа, так как в множителях в сумме четыре десятичных знака (два в дроби 3,37 и два в дроби 0,12). Цифр там хватает, поэтому нулей слева дописывать не придется. Закончим запись:

В итоге имеем 3,37·0,12=7,6044 .

Вычислите произведение десятичных дробей 3,2601 и 0,0254 .

Выполнив умножение столбиком без учета запятых, получаем следующую картину:

Теперь в произведении нужно отделить запятой 8 цифр справа, так как общее количество десятичных знаков умножаемых дробей равно восьми. Но в произведении только 7 цифр, поэтому, нужно слева приписать столько нулей, чтобы можно было отделить запятой 8 цифр. В нашем случае нужно приписать два нуля:

На этом умножение десятичных дробей столбиком закончено.

Умножение десятичных дробей на 0,1, 0,01, и т.д.

Довольно часто приходится умножать десятичные дроби на 0,1 , 0,01 и так далее. Поэтому целесообразно сформулировать правило умножения десятичной дроби на эти числа, которое следует из рассмотренных выше принципов умножения десятичных дробей.

Итак, умножение данной десятичной дроби на 0,1 , 0,01 , 0,001 и так далее дает дробь, которая получается из исходной, если в ее записи перенести запятую влево на 1 , 2 , 3 и так далее цифр соответственно, при этом если не хватает цифр для переноса запятой, то нужно слева дописать необходимое количество нулей.

Например, чтобы умножить десятичную дробь 54,34 на 0,1 , надо в дроби 54,34 перенести запятую влево на 1 цифру, при этом получится дробь 5,434 , то есть, 54,34·0,1=5,434 . Приведем еще один пример. Умножим десятичную дробь 9,3 на 0,0001 . Для этого нам нужно в умножаемой десятичной дроби 9,3 перенести запятую на 4 цифры влево, но запись дроби 9,3 не содержит такого количества знаков. Поэтому нам нужно в записи дроби 9,3 слева приписать столько нулей, чтобы можно было беспрепятственно осуществить перенос запятой на 4 цифры, имеем 9,3·0,0001=0,00093 .

Заметим, что озвученное правило умножения десятичной дроби на 0,1, 0,01, … справедливо и для бесконечных десятичных дробей. К примеру, 0,(18)·0,01=0,00(18) или 93,938…·0,1=9,3938… .

Умножение десятичной дроби на натуральное число

По своей сути умножение десятичных дробей на натуральные числа ничем не отличается от умножения десятичной дроби на десятичную дробь.

Конечную десятичную дробь умножать на натуральное число удобнее всего столбиком, при этом следует придерживаться правил умножения столбиком десятичных дробей, рассмотренных в одном из предыдущих пунктов.

Вычислите произведение 15·2,27 .

Проведем умножение натурального числа на десятичную дробь столбиком:

При умножении периодической десятичной дроби на натуральное число, периодическую дробь следует заменить обыкновенной дробью.

Умножьте десятичную дробь 0,(42) на натуральное число 22 .

Сначала переведем периодическую десятичную дробь в обыкновенную дробь:

Теперь выполним умножение: . Этот результат в виде десятичной дроби имеет вид 9,(3) .

А при умножении бесконечной непериодической десятичной дроби на натуральное число нужно предварительно провести округление.

Выполните умножение 4·2,145… .

Округлив до сотых исходную бесконечную десятичную дробь, мы придем к умножению натурального числа и конечной десятичной дроби. Имеем 4·2,145…≈4·2,15=8,60 .

Умножение десятичной дроби на 10, 100, …

Довольно часто приходится умножать десятичные дроби на 10, 100, … Поэтому целесообразно подробно остановиться на этих случаях.

Озвучим правило умножения десятичной дроби на 10, 100, 1 000 и т.д. При умножении десятичной дроби на 10, 100, … в ее записи нужно перенести запятую вправо на 1, 2, 3, … цифры соответственно и отбросить лишние нули слева; если в записи умножаемой дроби не хватает цифр для переноса запятой, то нужно дописать необходимое количество нулей справа.

Умножьте десятичную дробь 0,0783 на 100 .

Перенесем в записи дроби 0,0783 на две цифры вправо, при этом получим 007,83 . Отбросив два нуля слева, получаем десятичную дробь 7,38 . Таким образом, 0,0783·100=7,83 .

Выполните умножение десятичной дроби 0,02 на 10 000 .

Чтобы умножить 0,02 на 10 000 , нам нужно перенести запятую на 4 цифры вправо. Очевидно, в записи дроби 0,02 не хватает цифр для переноса запятой на 4 цифры, поэтому допишем несколько нулей справа, чтобы можно было осуществить перенос запятой. В нашем примере достаточно дописать три нуля, имеем 0,02000 . После переноса запятой получим запись 00200,0 . Отбросив нули слева, имеем число 200,0 , которое равно натуральному числу 200 , оно и является результатом умножения десятичной дроби 0,02 на 10 000 .

Озвученное правило справедливо и для умножения бесконечных десятичных дробей на 10, 100, … При умножении периодических десятичных дробей нужно быть аккуратными с периодом дроби, которая является результатом умножения.

Умножьте периодическую десятичную дробь 5,32(672) на 1 000 .

Перед умножением распишем периодическую десятичную дробь как 5,32672672672… , это нам позволит не допустить ошибки. Теперь перенесем запятую вправо на 3 знака, имеем 5 326,726726… . Таким образом, после умножения получается периодическая десятичная дробь 5 326,(726) .

5,32(672)·1 000=5 326,(726) .

При умножении бесконечных непериодических дробей на 10, 100, … нужно предварительно провести округление бесконечной дроби до некоторого разряда, после чего проводить умножение.

Умножение десятичной дроби на обыкновенную дробь или смешанное число

Для умножения конечной десятичной дроби или бесконечной периодической десятичной дроби на обыкновенную дробь или смешанное число, нужно десятичную дробь представить в виде обыкновенной дроби, после чего провести умножение.

Проведите умножение десятичной дроби 0,4 на смешанное число.

Так как 0,4=4/10=2/5 и, то. Полученное число можно записать в виде периодической десятичной дроби 1,5(3) .

При умножении бесконечной непериодической десятичной дроби на обыкновенную дробь или смешанное число, обыкновенную дробь или смешанное число следует заменить десятичной дробью, после чего провести округление умножаемых дробей и закончить вычисления.

Так как 2/3=0,6666… , то. После округления умножаемых дробей до тысячных, приходим к произведению двух конечных десятичных дробей 3,568 и 0,667 . Выполним умножение в столбик:

Полученный результат следует округлить до тысячных, так как умножаемые дроби были взяты с точностью до тысячных, имеем 2,379856≈2,380 .

www.cleverstudents.ru

Умножение обыкновенных дробей: правила, примеры, решения.

Продолжим изучать действия с обыкновенными дробями. Сейчас в центре внимания умножение обыкновенных дробей . В этой статье мы дадим правило умножения обыкновенных дробей, рассмотрим применение этого правила при решении примеров. Также остановимся на умножении обыкновенной дроби на натуральное число. В заключение рассмотрим, как проводится умножение трех и большего количества дробей.

Навигация по странице.

Умножение обыкновенной дроби на обыкновенную дробь

Начнем с формулировки правила умножения обыкновенных дробей : умножение дроби на дробь дает дробь, числитель которой равен произведению числителей умножаемых дробей, а знаменатель равен произведению знаменателей.

То есть, умножению обыкновенных дробей a/b и c/d отвечает формула .

Приведем пример, иллюстрирующий правило умножения обыкновенных дробей. Рассмотрим квадрат со стороной 1 ед. , при этом его площадь равна 1 ед 2 . Разделим этот квадрат на равные прямоугольники со сторонами 1/4 ед. и 1/8 ед. , при этом исходный квадрат будет состоять из 4·8=32 прямоугольников, следовательно, площадь каждого прямоугольника составляет 1/32 долю площади исходного квадрата, то есть, она равна 1/32 ед 2 . Теперь закрасим часть исходного квадрата. Все наши действия отражает рисунок ниже.

Стороны закрашенного прямоугольника равны 5/8 ед. и 3/4 ед. , значит, его площадь равна произведению дробей 5/8 и 3/4 , то есть, ед 2 . Но закрашенный прямоугольник состоит из 15 «маленьких» прямоугольников, значит, его площадь равна 15/32 ед 2 . Следовательно, . Так как 5·3=15 и 8·4=32 , то последнее равенство можно переписать как , что подтверждает формулу умножения обыкновенных дробей вида .

Заметим, что с помощью озвученного правила умножения можно умножать и правильные и неправильные дроби, и дроби с одинаковыми знаменателями, и дроби с разными знаменателями.

Рассмотрим примеры умножения обыкновенных дробей .

Выполните умножение обыкновенной дроби 7/11 на обыкновенную дробь 9/8 .

Произведение числителей умножаемых дробей 7 и 9 равно 63 , а произведение знаменателей 11 и 8 равно 88 . Таким образом, умножение обыкновенных дробей 7/11 и 9/8 дает дробь 63/88 .

Вот краткая запись решения: .

Не следует забывать про сокращение полученной дроби, если в результате умножения получается сократимая дробь, и про выделение целой части из неправильной дроби.

Выполните умножение дробей 4/15 и 55/6 .

Применим правило умножения обыкновенных дробей: .

Очевидно, полученная дробь сократима (признак делимости на 10 позволяет утверждать, что числитель и знаменатель дроби 220/90 имеют общий множитель 10). Выполним сокращение дроби 220/90: НОД(220, 90)=10 и . Осталось выделить целую часть из полученной неправильной дроби: .

Заметим, что сокращение дроби можно проводить до вычисления произведений числителей и произведений знаменателей умножаемых дробей, то есть, когда дробь имеет вид . Для этого числа a , b , c и d заменяются их разложениями на простые множители, после чего сокращаются одинаковые множители числителя и знаменателя.

Для пояснения, вернемся к предыдущему примеру.

Вычислите произведение дробей вида .

По формуле умножения обыкновенных дробей имеем .

Так как 4=2·2 , 55=5·11 , 15=3·5 и 6=2·3 , то . Теперь сокращаем общие простые множители: .

Остается лишь вычислить произведения в числителе и знаменателе, после чего выделить целую часть из неправильной дроби: .

Следует отметить, что для умножения дробей характерно переместительное свойство, то есть, умножаемые дроби можно менять местами: .

Умножение обыкновенной дроби на натуральное число

Начнем с формулировки правила умножения обыкновенной дроби на натуральное число : умножение дроби на натуральное число дает дробь, числитель которой равен произведению числителя умножаемой дроби на натуральное число, а знаменатель равен знаменателю умножаемой дроби.

С помощью букв правило умножения дроби a/b на натуральное число n имеет вид .

Формула следует из формулы умножения двух обыкновенных дробей вида . Действительно, представив натуральное число как дробь со знаменателем 1, получим .

Рассмотрим примеры умножения дроби на натуральное число.

Выполните умножение дроби 2/27 на 5 .

Умножение числителя 2 на число 5 дает 10 , поэтому в силу правила умножения дроби на натуральное число, произведение 2/27 на 5 равно дроби 10/27 .

Все решение удобно записывать так: .

При умножении дроби на натуральное число полученную дробь часто приходится сокращать, а если она еще и неправильная, то представлять ее в виде смешанного числа.

Умножьте дробь 5/12 на число 8 .

По формуле умножения дроби на натуральное число имеем . Очевидно, полученная дробь сократима (признак делимости на 2 указывает на общий делитель 2 числителя и знаменателя). Выполним сокращение дроби 40/12: так как НОК(40, 12)=4 , то . Осталось выделить целую часть: .

Вот все решение: .

Отметим, что сокращение можно было провести, заменив числа в числителе и знаменателе их разложениями на простые множители. В этом случае решение выглядело бы так: .

В заключение этого пункта заметим, что умножение дроби на натуральное число обладает переместительным свойством, то есть, произведение дроби на натуральное число равно произведению этого натурального числа на дробь: .

Умножение трех и большего количества дробей

То, как мы определили обыкновенные дроби и действие умножение с ними, позволяет утверждать, что все свойства умножения натуральных чисел распространяются и на умножение дробей.

Переместительное и сочетательное свойства умножения позволяют однозначно определить умножение трех и большего количества дробей и натуральных чисел . При этом все происходит по аналогии с умножением трех и большего количества натуральных чисел. В частности, дроби и натуральные числа в произведении можно для удобства вычисления переставлять местами, а при отсутствии скобок, указывающих порядок выполнения действий, мы можем сами расставить скобки любым из допустимых способов.

Рассмотрим примеры умножения нескольких дробей и натуральных чисел.

Выполните умножение трех обыкновенных дробей 1/20 , 12/5 , 3/7 и 5/8 .

Запишем произведение, которое нам нужно вычислить . В силу правила умножения дробей записанное произведение равно дроби, числитель которой равен произведению числителей всех дробей, а знаменатель – произведению знаменателей: .

Прежде чем вычислить произведения в числителе и знаменателе, целесообразно заменить все множители их разложениями на простые множители и провести сокращение (можно, конечно, сократить дробь и после умножения, но во многих случаях это требует больших вычислительных усилий): .

.

Выполните умножение пяти чисел .

В этом произведении удобно сгруппировать дробь 7/8 с числом 8 , а число 12 с дробью 5/36 , это позволит упростить вычисления, так как при такой группировке очевидно сокращение. Имеем
.

.

www.cleverstudents.ru

Популярное:

  • При обращении в районный суд Уважаемые посетители сайта! Управление Федерального казначейства по г. Санкт-Петербургу (Межрайонная ИФНС России №10 по Санкт-Петербургу) ИНН налогового органа Номер счета получателя СЕВЕРО-ЗАПАДНОЕ […]
  • Расчет госпошлины на снижение размера алиментов Суды придерживаются следующей позиции: Госпошлина рассчитывается от суммы, на которую уменьшается размер алиментов (от цены иска). Пример расчета размера госпошлины в суд при […]
  • Деление десятичных дробей, правила, примеры, решения. Продолжаем изучать действия с десятичными дробями, пришло время поговорить про деление десятичных дробей. Начнем с общих принципов деления десятичных дробей. Дальше […]
  • Статья 333.19 НК РФ. Размеры государственной пошлины по делам, рассматриваемым Верховным Судом Российской Федерации, судами общей юрисдикции, мировыми судьями СТ 333.19 НК РФ. 1. По делам, рассматриваемым Верховным Судом […]
  • Типовое положение о комиссии (уполномоченном) по социальному страхованию N 556а "Типовое положение о комиссии (уполномоченном) по социальному страхованию" УТВЕРЖДАЮ Председатель Фонда социального страхования Российской Федерации […]
  • Изменились реквизиты для оплаты госпошлины ВС РФ, а также АС г. Москвы и АС Московского округа Опубликованы новые банковские реквизиты для уплаты госпошлины по рассматриваемым делам в ВС РФ, Арбитражном суде города Москвы и […]
  • Коллектор в бурении-это Горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Основными классификационными признаками коллектора являются условия фильтрации и аккумуляции в них […]
  • Наша группа в ВК Получить Скидку на обучение. Успей получить скидку 1000 рублей! Запись в автошколу Заполните эту форму, мы свяжемся с Вами и пригласим Вас на занятия. Добро пожаловать! 1. Предупреждающие знаки Предупреждающие […]

В курсе средней и старшей школы учащиеся проходили тему «Дроби». Однако это понятие гораздо шире, чем дается в процессе обучения. Сегодня понятие дроби встречается достаточно часто, и не каждый может провести вычисления какого-либо выражения, к примеру, умножение дробей.

Что такое дробь?

Так исторически сложилось, что дробные числа появились из-за необходимости измерять. Как показывает практика, часто встречаются примеры на определение длины отрезка, объема прямоугольного прямоугольника.

Первоначально ученики знакомятся с таким понятием, как доля. К примеру, если разделить арбуз на 8 частей, то каждому достанется по одной восьмой арбуза. Вот эта одна часть из восьми и называется долей.

Доля, равная ½ от какой-либо величины, называется половиной; ⅓ - третью; ¼ - четвертью. Записи вида 5 / 8 , 4 / 5 , 2 / 4 называют обыкновенными дробями. Обыкновенная дробь разделяется на числитель и знаменатель. Между ними находится черта дроби, или дробная черта. Дробную черту можно нарисовать в виде как горизонтальной, так и наклонной линии. В данном случае она обозначает знак деления.

Знаменатель представляет, на сколько одинаковых долей разделяют величину, предмет; а числитель - сколько одинаковых долей взято. Числитель пишется над дробной чертой, знаменатель - под ней.

Удобнее всего показать обыкновенные дроби на координатном луче. Если единичный отрезок разделить на 4 равные доли, обозначить каждую долю латинской буквой, то в результате можно получить отличное наглядное пособие. Так, точка А показывает долю, равную 1 / 4 от всего единичного отрезка, а точка В отмечает 2 / 8 от данного отрезка.

Разновидности дробей

Дроби бывают обыкновенные, десятичные, а также смешанные числа. Кроме того, дроби можно разделить на правильные и неправильные. Эта классификация больше подходит для обыкновенных дробей.

Под правильной дробью понимают число, у которого числитель меньше знаменателя. Соответственно, неправильная дробь - число, у которого числитель больше знаменателя. Второй вид обычно записывают в виде смешанного числа. Такое выражение состоит из целой и дробной части. Например, 1½. 1 - целая часть, ½ - дробная. Однако если нужно провести какие-то манипуляции с выражением (деление или умножение дробей, их сокращение или преобразование), смешанное число переводится в неправильную дробь.

Правильное дробное выражение всегда меньше единицы, а неправильное - больше либо равно 1.

Что касается то под этим выражением понимают запись, в которой представлено любое число, знаменатель дробного выражения которого можно выразить через единицу с несколькими нулями. Если дробь правильная, то целая часть в десятичной записи будет равна нулю.

Чтобы записать десятичную дробь, нужно сначала написать целую часть, отделить ее от дробной с помощью запятой и потом уже записать дробное выражение. Необходимо помнить, что после запятой числитель должен содержать столько же цифровых символов, сколько нулей в знаменателе.

Пример . Представить дробь 7 21 / 1000 в десятичной записи.

Алгоритм перевода неправильной дроби в смешанное число и наоборот

Записывать в ответе задачи неправильную дробь некорректно, поэтому ее нужно перевести в смешанное число:

  • разделить числитель на имеющийся знаменатель;
  • в конкретном примере неполное частное - целое;
  • и остаток - числитель дробной части, причем знаменатель остается неизменным.

Пример . Перевести неправильную дробь в смешанное число: 47 / 5 .

Решение . 47: 5. Неполное частное равняется 9, остаток = 2. Значит, 47 / 5 = 9 2 / 5 .

Иногда нужно представить смешанное число в качестве неправильной дроби. Тогда нужно воспользоваться следующим алгоритмом:

  • целая часть умножается на знаменатель дробного выражения;
  • полученное произведение прибавляется к числителю;
  • результат записывается в числителе, знаменатель остается неизменным.

Пример . Представить число в смешанном виде в качестве неправильной дроби: 9 8 / 10 .

Решение . 9 х 10 + 8 = 90 + 8 = 98 - числитель.

Ответ : 98 / 10.

Умножение дробей обыкновенных

Над обыкновенными дробями можно совершать различные алгебраические операции. Чтобы перемножить два числа, нужно числитель перемножить с числителем, а знаменатель со знаменателем. Причем умножение дробей с разными знаменателямине отличается от произведения дробных чисел с одинаковыми знаменателями.

Случается, что после нахождения результата нужно сократить дробь. В обязательном порядке нужно максимально упростить получившееся выражение. Конечно, нельзя сказать, что неправильная дробь в ответе - это ошибка, но и назвать верным ответом ее тоже затруднительно.

Пример . Найти произведение двух обыкновенных дробей: ½ и 20 / 18 .

Как видно из примера, после нахождения произведения получилась сократимая дробная запись. И числитель, и знаменатель в данном случае делится на 4, и результатом выступает ответ 5 / 9 .

Умножение дробей десятичных

Произведение десятичных дробей довольно сильно отличается от произведения обыкновенных по своему принципу. Итак, умножение дробей заключается в следующем:

  • две десятичные дроби нужно записать друг под другом так, чтобы крайние правые цифры оказались одна под другой;
  • нужно перемножить записанные числа, несмотря на запятые, то есть как натуральные;
  • подсчитать количество цифр после знака запятой в каждом из чисел;
  • в получившемся после перемножения результате нужно отсчитать справа столько цифровых символов, сколько содержится в сумме в обоих множителях после запятой, и поставить отделяющий знак;
  • если цифр в произведении оказалось меньше, тогда перед ними нужно написать столько нулей, чтобы покрыть это количество, поставить запятую и приписать целую часть, равную нулю.

Пример . Вычислить произведение двух десятичных дробей: 2,25 и 3,6.

Решение .

Умножение смешанных дробей

Чтобы вычислить произведение двух смешанных дробей, нужно использовать правило умножения дробей:

  • перевести числа в смешанном виде в неправильные дроби;
  • найти произведение числителей;
  • найти произведение знаменателей;
  • записать получившийся результат;
  • максимально упростить выражение.

Пример . Найти произведение 4½ и 6 2 / 5.

Умножение числа на дробь (дроби на число)

Помимо нахождения произведения двух дробей, смешанных чисел, встречаются задания, где нужно помножить на дробь.

Итак, чтобы найти произведение десятичной дроби и натурального числа, нужно:

  • записать число под дробью так, чтобы крайние правые цифры оказались одна над другой;
  • найти произведение, несмотря на запятую;
  • в полученном результате отделить целую часть от дробной с помощью запятой, отсчитав справа то количество знаков, которое находится после запятой в дроби.

Чтобы умножить обыкновенную дробь на число, следует найти произведение числителя и натурального множителя. Если в ответе получается сократимая дробь, ее следует преобразовать.

Пример . Вычислить произведение 5 / 8 и 12.

Решение . 5 / 8 * 12 = (5*12) / 8 = 60 / 8 = 30 / 4 = 15 / 2 = 7 1 / 2.

Ответ : 7 1 / 2.

Как видно из предыдущего примера, необходимо было сократить получившийся результат и преобразовать неправильное дробное выражение в смешанное число.

Также умножение дробей касается и нахождения произведения числа в смешанном виде и натурального множителя. Чтобы перемножить эти два числа, следует целую часть смешанного множителя умножить на число, числитель помножить на это же значение, а знаменатель оставить неизменным. Если требуется, нужно максимально упростить получившийся результат.

Пример . Найти произведение 9 5 / 6 и 9.

Решение . 9 5 / 6 х 9 = 9 х 9 + (5 х 9) / 6 = 81 + 45 / 6 = 81 + 7 3 / 6 = 88 1 / 2.

Ответ : 88 1 / 2.

Умножение на множители 10, 100, 1000 или 0,1; 0,01; 0,001

Из предыдущего пункта вытекает следующее правило. Для умножения дроби десятичной на 10, 100, 1000, 10000 и т. д. нужно передвинуть запятую вправо на столько символов цифр, сколько нулей во множителе после единицы.

Пример 1 . Найти произведение 0,065 и 1000.

Решение . 0,065 х 1000 = 0065 = 65.

Ответ : 65.

Пример 2 . Найти произведение 3,9 и 1000.

Решение . 3,9 х 1000 = 3,900 х 1000 = 3900.

Ответ : 3900.

Если нужно перемножить натуральное число и 0,1; 0,01; 0,001; 0,0001 и т. д., следует передвинуть влево запятую в получившемся произведении на столько символов цифр, сколько нулей находится до единицы. Если необходимо, перед натуральным числом записываются нули в достаточном количестве.

Пример 1 . Найти произведение 56 и 0,01.

Решение . 56 х 0,01 = 0056 = 0,56.

Ответ : 0,56.

Пример 2 . Найти произведение 4 и 0,001.

Решение . 4 х 0,001 = 0004 = 0,004.

Ответ : 0,004.

Итак, нахождение произведения различных дробей не должно вызывать затруднений, разве что подсчет результата; в таком случае без калькулятора просто не обойтись.

Умножение целого числа на дробь – несложная задача. Но есть тонкости, в которых вы, наверняка, разбирались в школе, но с тех пор забыли.

Как умножить целое число на дробь – немного терминов

Если вы помните, что такое числитель, знаменатель и чем отличается правильная дробь от неправильной – пропустите этот абзац. Он для тех, кто совсем забыл теорию.

Числитель – это верхняя часть дроби – то, что делим. Знаменатель – нижняя. Это то, на что делим.
Правильная дробь та, у которой числитель меньше знаменателя. Неправильной называется дробь, у которой числитель больше или равен знаменателю.

Как умножить целое число на дробь

Правило умножения целого числа на дробь очень простое – умножаем числитель на целое, а знаменатель не трогаем. Например: два умножить на одну пятую – получаем две пятых. Четыре умножить на три шестнадцатых – получится двенадцать шестнадцатых.


Сокращение

Во втором примере полученную дробь можно сократить.
Что это значит? Обратите внимание – и числитель, и знаменатель этой дроби делятся на четыре. Разделить оба числа на общий делитель и называется – сократить дробь. Получим три четвертых.


Неправильные дроби

Но, предположим, мы умножили четыре на две пятых. Получилось восемь пятых. Это неправильная дробь.
Её обязательно нужно привести к правильному виду. Для это нужно выделить из нее целую часть.
Здесь нужно использовать деление с остатком. Получаем единицу и три в остатке.
Одна целая и три пятых и есть наша правильная дробь.

Привести к правильному виду тридцать пять восьмых – задача чуть посложнее.Самое близкое к тридцати семи число, которое делится на восемь – это тридцать два. При делении получим четыре. Отнимем от тридцати пяти тридцать два – получим три. Итог: четыре целых и три восьмых.


Равенство числителя и знаменателя. А тут все очень просто и красиво. При равенстве числителя и знаменателя получается просто единица.

Чтобы правильно умножить дробь на дробь или дробь на число, нужно знать простые правила. Эти правила сейчас разберем подробно.

Умножение обыкновенной дроби на дробь.

Чтобы умножить дробь на дробь необходимо посчитать произведение числителей и произведение знаменателей этих дробей.

\(\bf \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}\\\)

Рассмотрим пример:
Мы числитель первой дроби умножаем с числителем второй дроби, также и знаменатель первой дроби умножаем со знаменателем второй дроби.

\(\frac{6}{7} \times \frac{2}{3} = \frac{6 \times 2}{7 \times 3} = \frac{12}{21} = \frac{4 \times 3}{7 \times 3} = \frac{4}{7}\\\)

Дробь \(\frac{12}{21} = \frac{4 \times 3}{7 \times 3} = \frac{4}{7}\\\) сократили на 3.

Умножение дроби на число.

Для начала вспомним правило, любое число можно представить в виде дроби \(\bf n = \frac{n}{1}\) .

Воспользуемся этим правилом при умножении.

\(5 \times \frac{4}{7} = \frac{5}{1} \times \frac{4}{7} = \frac{5 \times 4}{1 \times 7} = \frac{20}{7} = 2\frac{6}{7}\\\)

Неправильную дробь \(\frac{20}{7} = \frac{14 + 6}{7} = \frac{14}{7} + \frac{6}{7} = 2 + \frac{6}{7}= 2\frac{6}{7}\\\) перевели в смешанную дробь.

Другими словами, при умножении числа на дробь, число умножаем на числитель, а знаменатель оставляем без изменения. Пример:

\(\frac{2}{5} \times 3 = \frac{2 \times 3}{5} = \frac{6}{5} = 1\frac{1}{5}\\\\\) \(\bf \frac{a}{b} \times c = \frac{a \times c}{b}\\\)

Умножение смешанных дробей.

Чтобы перемножить смешанные дроби, нужно сначала каждую смешанную дробь представить в виде неправильно дроби, а потом воспользоваться правилом умножения. Числитель умножаем с числителем, знаменатель умножаем со знаменателем.

Пример:
\(2\frac{1}{4} \times 3\frac{5}{6} = \frac{9}{4} \times \frac{23}{6} = \frac{9 \times 23}{4 \times 6} = \frac{3 \times \color{red} {3} \times 23}{4 \times 2 \times \color{red} {3}} = \frac{69}{8} = 8\frac{5}{8}\\\)

Умножение взаимно обратных дробей и чисел.

Дробь \(\bf \frac{a}{b}\) является обратной для дроби \(\bf \frac{b}{a}\), при условии a≠0,b≠0.
Дроби \(\bf \frac{a}{b}\) и \(\bf \frac{b}{a}\) называются взаимно обратными дробями. Произведение взаимно обратных дробей равно 1.
\(\bf \frac{a}{b} \times \frac{b}{a} = 1 \\\)

Пример:
\(\frac{5}{9} \times \frac{9}{5} = \frac{45}{45} = 1\\\)

Вопросы по теме:
Как умножить дробь на дробь?
Ответ: произведение обыкновенных дробей является умножение числитель с числителем, знаменатель со знаменателем. Чтобы получить произведение смешанных дробей нужно перевести их в неправильную дробь и перемножить по правилам.

Как выполнить умножение дробей с разными знаменателями?
Ответ: не важно одинаковые или разные знаменатели у дробей, умножение происходит по правилу нахождения произведения числитель с числителем, знаменатель со знаменателем.

Как умножать смешанные дроби?
Ответ: в первую очередь надо перевести смешанную дробь в неправильную дробь и далее находить произведение по правилам умножения.

Как умножить число на дробь?
Ответ: число умножаем с числителем, а знаменатель оставляем тот же.

Пример №1:
Вычислите произведение: а) \(\frac{8}{9} \times \frac{7}{11}\) б) \(\frac{2}{15} \times \frac{10}{13}\)

Решение:
а) \(\frac{8}{9} \times \frac{7}{11} = \frac{8 \times 7}{9 \times 11} = \frac{56}{99}\\\\\)
б) \(\frac{2}{15} \times \frac{10}{13} = \frac{2 \times 10}{15 \times 13} = \frac{2 \times 2 \times \color{red} {5}}{3 \times \color{red} {5} \times 13} = \frac{4}{39}\)

Пример №2:
Вычислите произведения числа и дроби: а) \(3 \times \frac{17}{23}\) б) \(\frac{2}{3} \times 11\)

Решение:
а) \(3 \times \frac{17}{23} = \frac{3}{1} \times \frac{17}{23} = \frac{3 \times 17}{1 \times 23} = \frac{51}{23} = 2\frac{5}{23}\\\\\)
б) \(\frac{2}{3} \times 11 = \frac{2}{3} \times \frac{11}{1} = \frac{2 \times 11}{3 \times 1} = \frac{22}{3} = 7\frac{1}{3}\)

Пример №3:
Напишите число обратное дроби \(\frac{1}{3}\)?
Ответ: \(\frac{3}{1} = 3\)

Пример №4:
Вычислите произведение двух взаимно обратных дробей: а) \(\frac{104}{215} \times \frac{215}{104}\)

Решение:
а) \(\frac{104}{215} \times \frac{215}{104} = 1\)

Пример №5:
Могут ли взаимно обратные дроби быть:
а) одновременно правильными дробями;
б) одновременно неправильными дробями;
в) одновременно натуральными числами?

Решение:
а) чтобы ответить на первый вопрос приведем пример. Дробь \(\frac{2}{3}\) правильная, обратная ей дробь будет равна \(\frac{3}{2}\) – неправильная дробь. Ответ: нет.

б) практически при всех переборах дробей это условие не выполняется, но существуют некоторые числа, которые выполняют условие быть одновременно неправильной дробью. Например неправильная дробь \(\frac{3}{3}\) , обратная ей дробь равна \(\frac{3}{3}\). Получаем две неправильные дроби. Ответ: не всегда при определённых условиях, когда числитель и знаменатель равны.

в) натуральные числа – это числа которые мы используем при счете, например, 1, 2, 3, …. Если возьмем число \(3 = \frac{3}{1}\), то обратная ей дробь будет \(\frac{1}{3}\). Дробь \(\frac{1}{3}\) не является натуральным числом. Если мы переберем все числа, получать обратное число всегда дробь, кроме 1. Если возьмем число 1, то обратная ей дробь будет \(\frac{1}{1} = \frac{1}{1} = 1\). Число 1 натуральное число. Ответ: могут быть одновременно натуральными числами только в одном случае, если это число 1.

Пример №6:
Выполните произведение смешанных дробей: а) \(4 \times 2\frac{4}{5}\) б) \(1\frac{1}{4} \times 3\frac{2}{7}\)

Решение:
а) \(4 \times 2\frac{4}{5} = \frac{4}{1} \times \frac{14}{5} = \frac{56}{5} = 11\frac{1}{5}\\\\ \)
б) \(1\frac{1}{4} \times 3\frac{2}{7} = \frac{5}{4} \times \frac{23}{7} = \frac{115}{28} = 4\frac{3}{7}\)

Пример №7:
Могут ли два взаимно обратных числа быть одновременно смешанными числами?

Рассмотрим на примере. Возьмем смешанную дробь \(1\frac{1}{2}\), найдем для нее обратную дробь, для этого переведем ее в неправильную дробь \(1\frac{1}{2} = \frac{3}{2}\) . Обратная ей дробь будет равна \(\frac{2}{3}\) . Дробь \(\frac{2}{3}\) является правильной дробью. Ответ: взаимно обратные две дроби одновременно смешанными числами быть не могут.

Не следует спешить переходить к записи общего знаменателя |вод одной чертой; учащиеся часто не осознают, что производится рамена данных дробей им равными дробями с общим знаменателем.

Умножение дроби на целое число

Следующим действием изучается умножение дроби на целое число. Умножение дроби на целое число определяется так же, как умножение целых чисел.

При изучении умножения дроби на целое число необходимо установить с учащимися определение действия умножения дроби на целое число как сложения равных слагаемых, из которых каждое равно множимому; показать тождественность умножения дроби на целое увеличению дроби в несколько раз, дать определение умно­жения дроби на 1; показать рациональный прием сокращения дроби, числитель которой представляет произведение, с которым учащиеся встречаются впервые при умножении дроби на целое; научить применять это действие к задачам; рассмотреть частные случаи умножения, например, умножение дроби на число, равное знаменателю; умножение смешанного числа на целое число. Приведенный перечень задач, стоящих при изучении умножения дроби на целое число, показывает, что каждый вопрос, кажущийся простым, требует тщательного изучения и как много возникает дополнительных задач в связи с данным вопросом.

Приведем пример плана урока на эту тему,

1) Проверка домашнего задания.

2) Устные упражнения на сложение и вычитание дробей.

3) Устные примеры на деление произведения на число:

4) Сокращение дробей:

5) Повторение определения умножения на целое число:

6) Определение умножения дроби на целое число:

7) Решение задач в одно действие на умножение дроби на целое »»

число. Например: 1 м3 сосновых дров весит т. Найти вес 2м3 этих

дров (в тоннах), 7 м3.

8) Сформулировать правило умножения дроби на целое число:

чтобы умножить дробь на целое число, достаточно числитель дроби умножить на это число, оставив прежний знаменатель.

9) Решение примеров на умножение дроби на целое число:

10) Составить задачи, при решении которых требовалось бы умножить.

11) Домашнее задание.

Приведенные в этом плане устные упражнения на деление про­изведения на число и сокращение дробей имеют цель подготовить учащихся к обоснованию сокращения дробей, в числителе которых стоит произведение. Учащиеся вспоминают, как разделить произве­дение на число и при сокращении дробей ведут следующие рассуждения: чтобы сократить дробь, надо числитель и знаменатель разделить на одно и то же число; в числителе стоит произведение; чтобы произведение разделить на число, достаточно один из мно­жителей разделить на это число. Поэтому при сокращении дроби делим 10 и 25 на 5.

На следующем уроке следует предложить учащимся на несколь­ких примерах умножения дроби на целое число сравнить множимое и произведение по величине. Установить, что для дробей, как и для целых чисел, увеличить дробь в несколько раз - значит умножить ее на целое число. На основании рассмотрения примеров вида

делается вывод об изменении величины дроби с увеличением чис­лителя или уменьшением знаменателя в данное число раз и дается частный прием умножения дроби на целое число, годный для слу­чая, когда знаменатель дроби делится на данное целое число:

При изучении умножения смешанного числа на целое вначале рассматриваются два способа. Например:

Последние рассуждения показывают справедливость распредели­тельного закона умножения относительно суммы, когда одно из слагаемых дробь. Рассматривается пример вида

и делается вывод, что при умножении смешанного числа на целое в большинстве случаев проще отдельно умножить целое и дробь на целое число.

Деление дроби на целое число

После умножения дроби на целое число следует перейти к делению целого числа и дроби на целое число, так как нахождение дроби числа, предшествующее умножению на дробь, требует деле­ния на знаменатель. На это указывается в большей части методической литературы. Определение действия деления дается как действия, обратного умножению.

Рассмотрим пример: 4: 5.

Сначала проводятся рассуждения: чтобы разделить 4 на 5, представим мысленно каждую единицу разделенной на пять равных частей, тогда 4 единицы будут содержать 20 пятых частей, разделив 20 пятых частей на 5 получим ,что проверяется:

Мы нашли дробь, которая, будучи умноженной на 5, даст 4. Следовательно, деление произведено верно. Запишем:

Вывод. От деления целого числа на целое получается дробь, числитель которой равен делимому, а знаменатель - делителю. Об­ратно: всякую дробь можно считать за частное от деления ее чис­лителя на знаменатель.

Например, равно частному от деления 3 на 7, так как ·7=3.

Изучение деления дроби на целое число начинается с рассмотре­ния примера умножения дроби на целое число, для которого соста­вляется обратная задача. Например:

обратная задача:

требуется найти такую дробь, которая, будучи умножена на 4, даст в произведении . Такая дробь будет , запишем:

В результате рассмотрения ряда подобных примеров учащиеся приходят к выводу, что при делении дроби на целое число доста­точно числитель разделить на целое число, оставив прежний знаме­натель. После этого ставится вопрос, как поступать в том случае, когда числитель данной дроби не делится на целое число. Рассматривается второй прием умножения: , отсюда .