Записываем дроби знаменателями равные. Взаимно обратные числа. Правильные и неправильные дроби, определения, примеры

Долей единицы и представляется в виде \frac{a}{b} .

Числитель дроби (a) — число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) — число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

Скрыть Показать

Основное свойство дроби

Если ad=bc , то две дроби \frac{a}{b} и \frac{c}{d} считаются равными. К примеру, равными будут дроби \frac35 и \frac{9}{15} , так как 3 \cdot 15 = 15 \cdot 9 , \frac{12}{7} и \frac{24}{14} , так как 12 \cdot 14 = 7 \cdot 24 .

Из определения равенства дробей следует, что равными будут дроби \frac{a}{b} и \frac{am}{bm} , так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит \frac{a}{b} = \frac{am}{bm} — так выглядит основное свойство дроби .

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, \frac{45}{60}=\frac{15}{20} (числитель и знаменатель делится на число 3 ); полученную дробь снова можно сократить, разделив на 5 , то есть \frac{15}{20}=\frac 34 .

Несократимая дробь — это дробь вида \frac 34 , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: \frac{2}{3} и \frac{5}{8} с разными знаменателями 3 и 8 . Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби \frac{2}{3} на 8 . Получаем следующий результат: \frac{2 \cdot 8}{3 \cdot 8} = \frac{16}{24} . Затем умножаем числитель и знаменатель дроби \frac{5}{8} на 3 . Получаем в итоге: \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24} . Итак, исходные дроби приведены к общему знаменателю 24 .

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

\frac{7}{3}+\frac{1}{4}=\frac{7 \cdot 4}{3}+\frac{1 \cdot 3}{4}=\frac{28}{12}+\frac{3}{12}=\frac{31}{12} .

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b} ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ,

то есть перемножают отдельно числители и знаменатели.

Например:

\frac{3}{5} \cdot \frac{4}{8} = \frac{3 \cdot 4}{5 \cdot 8}=\frac{12}{40} .

Деление обыкновенных дробей

Деление дробей производят следующим способом:

\frac{a}{b} : \frac{c}{d}= \frac{ad}{bc} ,

то есть дробь \frac{a}{b} умножается на дробь \frac{d}{c} .

Пример: \frac{7}{2} : \frac{1}{8}=\frac{7}{2} \cdot \frac{8}{1}=\frac{7 \cdot 8}{2 \cdot 1}=\frac{56}{2} .

Взаимно обратные числа

Если ab=1 , то число b является обратным числом для числа a .

Пример: для числа 9 обратным является \frac{1}{9} , так как 9 \cdot \frac{1}{9}=1 , для числа 5 — \frac{1}{5} , так как 5 \cdot \frac{1}{5}=1 .

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10\,000, ..., 10^n .

Например: \frac{6}{10}=0,6;\enspace \frac{44}{1000}=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5\frac{1}{10}=5,1;\enspace \frac{763}{100}=7\frac{63}{100}=7,63 .

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

Пример: 5 — делитель числа 100 , поэтому дробь \frac{1}{5}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{20}{100}=0,2 .

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Вычитание десятичных дробей

Выполняется аналогично сложению.

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 . Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2 ). В итоге получаем 2,7 \cdot 1,3=3,51 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10\,000 = 14 700 .

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8: 0,09= \frac{28}{10} : \frac {9}{100}= \frac{28 \cdot 100}{10 \cdot 9}=\frac{280}{9}=31 \frac{1}{9} .

Энциклопедичный YouTube

  • 1 / 5

    Обыкновенная (или простая ) дробь - запись рационального числа в виде ± m n {\displaystyle \pm {\frac {m}{n}}} или ± m / n , {\displaystyle \pm m/n,} где n ≠ 0. {\displaystyle n\neq 0.} Горизонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель - знаменателем .

    Обозначения обыкновенных дробей

    Есть несколько видов записи обыкновенных дробей в печатном виде:

    Правильные и неправильные дроби

    Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной , и представляет рациональное число, по модулю большее или равное единице.

    Например, дроби 3 5 {\displaystyle {\frac {3}{5}}} , 7 8 {\displaystyle {\frac {7}{8}}} и - правильные дроби, в то время как 8 3 {\displaystyle {\frac {8}{3}}} , 9 5 {\displaystyle {\frac {9}{5}}} , 2 1 {\displaystyle {\frac {2}{1}}} и 1 1 {\displaystyle {\frac {1}{1}}} - неправильные дроби. Всякое отличное от нуля целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

    Смешанные дроби

    Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой .

    Например, 2 3 7 = 2 + 3 7 = 14 7 + 3 7 = 17 7 {\displaystyle 2{\frac {3}{7}}=2+{\frac {3}{7}}={\frac {14}{7}}+{\frac {3}{7}}={\frac {17}{7}}} . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

    Составные дроби

    Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже - наклонных) черт:

    1 2 / 1 3 {\displaystyle {\frac {1}{2}}/{\frac {1}{3}}} или 1 / 2 1 / 3 {\displaystyle {\frac {1/2}{1/3}}} или 12 3 4 26 {\displaystyle {\frac {12{\frac {3}{4}}}{26}}}

    Десятичные дроби

    Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом:

    ± a 1 a 2 … a n , b 1 b 2 … {\displaystyle \pm a_{1}a_{2}\dots a_{n}{,}b_{1}b_{2}\dots }

    Пример: 3,141 5926 {\displaystyle 3{,}1415926} .

    Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой - дробной частью . Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью .

    Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

    Значение дроби и основное свойство дроби

    Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

    0 , 999... = 1 {\displaystyle 0,999...=1} - две разные дроби соответствуют одному числу.

    Действия с дробями

    В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь .

    Приведение к общему знаменателю

    Для сравнения, сложения и вычитания дробей их следует преобразовать (привести ) к виду с одним и тем же знаменателем. Пусть даны две дроби: a b {\displaystyle {\frac {a}{b}}} и c d {\displaystyle {\frac {c}{d}}} . Порядок действий:

    После этого знаменатели обеих дробей совпадают (равны M ). Вместо наименьшего общего кратного можно в простых случаях взять в качестве M любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

    Сравнение

    Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

    Пример. Сравниваем 3 4 {\displaystyle {\frac {3}{4}}} и 4 5 {\displaystyle {\frac {4}{5}}} . НОК(4, 5) = 20. Приводим дроби к знаменателю 20.

    3 4 = 15 20 ; 4 5 = 16 20 {\displaystyle {\frac {3}{4}}={\frac {15}{20}};\quad {\frac {4}{5}}={\frac {16}{20}}}

    Следовательно, 3 4 < 4 5 {\displaystyle {\frac {3}{4}}<{\frac {4}{5}}}

    Сложение и вычитание

    Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} + = + = 5 6 {\displaystyle {\frac {5}{6}}}

    НОК знаменателей (здесь 2 и 3) равно 6. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 6, для этого числитель и знаменатель надо умножить на 3.
    Получилось 3 6 {\displaystyle {\frac {3}{6}}} . Приводим дробь 1 3 {\displaystyle {\frac {1}{3}}} к тому же знаменателю, для этого числитель и знаменатель надо умножить на 2. Получилось 2 6 {\displaystyle {\frac {2}{6}}} .
    Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} - = - 1 4 {\displaystyle {\frac {1}{4}}} = 1 4 {\displaystyle {\frac {1}{4}}}

    НОК знаменателей (здесь 2 и 4) равно 4. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 4, для этого надо числитель и знаменатель умножить на 2. Получаем 2 4 {\displaystyle {\frac {2}{4}}} .

    Умножение и деление

    Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

    a b ⋅ c d = a c b d . {\displaystyle {\frac {a}{b}}\cdot {\frac {c}{d}}={\frac {ac}{bd}}.}

    В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

    2 3 ⋅ 3 = 6 3 = 2 {\displaystyle {\frac {2}{3}}\cdot 3={\frac {6}{3}}=2}

    В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

    5 8 ⋅ 2 5 = 10 40 = 1 4 . {\displaystyle {\frac {5}{8}}\cdot {\frac {2}{5}}={\frac {10}{40}}={\frac {1}{4}}.}

    Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

    a b: c d = a b ⋅ d c = a d b c , c ≠ 0. {\displaystyle {\frac {a}{b}}:{\frac {c}{d}}={\frac {a}{b}}\cdot {\frac {d}{c}}={\frac {ad}{bc}},\quad c\neq 0.}

    Например,

    1 2: 1 3 = 1 2 ⋅ 3 1 = 3 2 . {\displaystyle {\frac {1}{2}}:{\frac {1}{3}}={\frac {1}{2}}\cdot {\frac {3}{1}}={\frac {3}{2}}.}

    Преобразование между разными форматами записи

    Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной

    Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

    Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными .

    Дробь называют смешанной , если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

    Основное свойство дроби

    Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

    Приведение дробей к общему знаменателю

    Чтобы привести две дроби к общему знаменателю, нужно:

    1. Числитель первой дроби умножить на знаменатель второй
    2. Числитель второй дроби умножить на знаменатель первой
    3. Знаменатели обеих дробей заменить на их произведение

    Действия с дробями

    Сложение. Чтобы сложить две дроби, нужно

    1. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

    Пример:

    Вычитание. Чтобы вычесть одну дробь из другой, нужно

    1. Привести дроби к общему знаменателю
    2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

    Пример:

    Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

    Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

    Часть единицы или несколько ее частей называют простой или обыкновенной дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей - числителем. Дробь записывается в виде:

    В данном случае а - числитель, b - знаменатель.

    Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель больше знаменателя, то дробь больше 1, тогда дробь называется неправильной.

    Если числитель и знаменатель дроби равны, то дробь равна.

    1. Если числитель можно разделить на знаменатель, то эта дробь равна частному от деления:

    В случае если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом, например:

    Тогда 9 - неполное частное (целая часть смешанного числа),
    1 - остаток (числитель дробной части),
    5 - знаменатель.

    Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части.

    Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

    Действия с дробями

    Расширение дроби. Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля.
    Например :

    Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.
    Например :

    Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

    Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

    Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю. Рассмотрим, например, следующие дроби:

    Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того чтобы сложить дроби, необходимо сложить их числители, а для того чтобы вычесть дроби, надо вычесть их числители. Полученная сумма или разность будет числителем результата, а знаменатель останется прежним. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел сначала необходимо преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется к виду смешанного числа.

    Умножение дробей . Для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

    Деление дробей . Для того чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь.

    Десятичная дробь - это результат деления единицы на десять, сто, тысячу и т.д. частей. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая - число сотых, третья - число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

    Например:

    Свойства десятичных дробей

    Свойства:

    • Десятичная дробь не меняется, если справа добавить нули: 4,5 = 4,5000.
    • Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0,0560000 = 0,056.
    • Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции вправо: 4,5 45 (дробь возросла в 10 раз).
    • Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции влево: 4,5 0,45 (дробь уменьшилась в 10 раз).

    Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом: 0,321321321321…=0,(321)

    Действия с десятичными дробями

    Сложение и вычитание десятичных дробей выполняются так же, как и сложение и вычитание целых чисел, необходимо только записать соответствующие десятичные знаки один под другим.
    Например:

    Умножение десятичных дробей проводится в несколько этапов:

    • Перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку.
    • Применяется правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

    Например :

    Сумма чисел десятичных знаков в сомножителях равна: 2+1=3. Теперь необходимо с конца получившегося числа отсчитать 3 знака и поставить десятичную точку: 0,675.

    Деление десятичных дробей. Деление десятичной дроби на целое число: если делимое меньше делителя, тогда нужно записать ноль в целой части частного и поставить после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединить к его целой части следующую цифру дробной части и опять сравнить полученную целую часть делимого с делителем. Если новое число опять меньше делителя, надо повторить операцию. Этот процесс повторяется до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

    Деление одной десятичной дроби на другую: сначала переносятся десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом, и выполняются действия, описанные выше.

    Для того чтобы обратить десятичную дробь в обыкновенную, необходимо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять k-ую степень десяти (k - количество десятичных знаков). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается.
    Например:

    Для того чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

    Процент - это сотая часть единицы, например: 5% означает 0,05. Отношение - это частное от деления одного числа на другое. Пропорция - это равенство двух отношений.

    Например:

    Основное свойство пропорции: произведение крайних членов пропорции равно произведению ее средних членов, то есть 5х30=6х25. Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным (коэффициент пропорциональности).

    Таким образом, выявлены следующие арифметические действия.
    Например:

    Множество рациональных чисел включает в себя положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее: число называется рациональным, если оно может быть представлено в виде обыкновенной несократимой дроби вида:, где a и b целые числа.

    Для отрицательного числа абсолютная величина (модуль) - это положительное число, получаемое от перемены его знака с «-» на «+»; для положительного числа и нуля - само это число. Для обозначения модуля числа используются две прямые черты, внутри которых записывается это число, например: |–5|=5.

    Свойства абсолютной величины

    Пусть дан модуль числа , для которого справедливы свойства:

    Одночлен - это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы: 3 х a х b. Коэффициентом чаще всего называют лишь числовой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Степень одночлена - это сумма показателей степеней всех его букв. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду: 3 х a х b + 6 х a = 3 х a х (b + 2). Эта операция называется приведением подобных членов или вынесением за скобки.

    Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

    Существуют следующие формулы сокращенного умножения:

    Методы разложения на множители:

    Алгебраическая дробь - это выражение вида , где A и B могут быть числом, одночленом, многочленом.

    Если два выражения (числовые и буквенные) соединены знаком «=», то говорят, что они образуют равенство. Любое верное равенство, справедливое при всех допустимых числовых значениях входящих в него букв, называется тождеством.

    Уравнение - это буквенное равенство, которое справедливо при определенных значениях входящих в него букв. Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в тождество, - корнями уравнения.

    Решить уравнение - значит найти все его корни. Два или несколько уравнений называются равносильными, если они имеют одни и те же корни.

    • ноль являлся корнем уравнения;
    • уравнение имело только конечное число корней.

    Основные типы алгебраических уравнений:

    У линейного уравнения ax + b = 0:

    • если a х 0, имеется единственный корень x = -b/a;
    • если a = 0, b ≠ 0, нет корней;
    • если a = 0, b = 0, корнем является любое действительное число.

    Уравнение xn = a, n N:

    • если n - нечетное число, имеет при любом а действительный корень, равный a/n;
    • если n - четное число, то при a 0, то имеет два корня.

    Основные тождественные преобразования: замена одного выражения другим, тождественно равным ему; перенос членов уравнения из одной стороны в другую с обратными знаками; умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля.

    Линейным уравнением с одним неизвестным называется уравнение вида: ax+b=0, где a и b - известные числа, а x - неизвестная величина.

    Системы двух линейных уравнений с двумя неизвестными имеют вид:

    Где a, b, c, d, e, f - заданные числа; x, y - неизвестные.

    Числа a, b, c, d - коэффициенты при неизвестных; e, f - свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами: метод подстановки: из одного уравнения выражаем одно из неизвестных через коэффициенты и другое неизвестное, а затем подставляем во второе уравнение, решая последнее уравнение, находим сначала одно неизвестное, затем подставляем найденное значение в первое уравнение и находим второе неизвестное; метод сложения или вычитания одного уравнения из другого.

    Операции с корнями:

    Арифметическим корнем n-й степени из неотрицательного чис-ла a называется неотрицательное число, n-я степень которого рав-на a. Алгебраическим корнем n-й степени из данного числа называ-ется множество всех корней из этого числа.

    Иррациональные числа в отличие от рациональных не могут быть представлены в виде обыкновенной несократимой дроби вида m/n, где m и n - целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: отношение длины диагонали квадрата к длине его стороны равно.

    Квадратное уравнение есть алгебраическое уравнение второй степени ax2+bx+c=0, где a, b, c - заданные числовые или буквенные коэффициенты, x - неизвестное. Если разделить все члены этого уравнения на а, в результате получим x2+px+q=0 - приведенное уравнение p=b/a, q=c/a. Его корни находятся по формуле:

    Если b2-4ac>0, тогда имеются два различных корня, b2- 4ac=0, тогда имеются два равных корня; b2-4ac Уравнения, содержащие модули

    Основные типы уравнений, содержащие модули:
    1) |f(x)| = |g(x)|;
    2) |f(x)| = g(x);
    3) f1(x)|g1(x)| + f2(x)|g2(x)| + … + fn(x)|gn(x)| =0, n N, где f(x), g(x), fk(x), gk(x) - заданные функции.