Значение r в термодинамике. Основы термодинамики основные понятия и определения. Цикл холодильной машины

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (термодинамику равновесных процессов, она же термодинамика квазистатических процессов, она же классическая термодинамика) и неравновесную (термодинамику неравновесных процессов, она же термодинамика необратимых процессов). Равновесная термодинамика вводит в рассмотрение новые (т. е. те, которым не даётся определения в других разделах физики) переменные, такие как внутренняя энергия, температура, энтропия, химический потенциал, а также комбинации перечисленных величин. Все они носят название термодинамических параметров (величин). Предметом рассмотрения классической термодинамики служат связи термодинамических параметров друг с другом и с физическими переменными, вводимыми в рассмотрение в других разделах физики (масса, давление, поверхностное натяжение, сила тока и т. д.). Химические и фазовые реакции (фазовые переходы первого рода) также есть предмет изучения классической термодинамики, поскольку в этом случае рассматриваются связи между массами компонентов системы и их химическими потенциалами. Классическая термодинамика рассматривает термодинамические переменные как локальные в пространстве величины (на любую систему всегда действует, как минимум, одно силовое поле - поле тяготения). Время в явном виде в формулы классической термодинамики не входит. Это, однако, вовсе не означает, что классическая термодинамика рассматривает только состояния системы и не рассматривает их изменения, т. е. процессы. Просто предметом её внимания служат такие относительно медленно протекающие (квазистатические) процессы, для которых в каждый данный момент времени систему можно считать находящейся в состоянии термодинамического равновесия (равновесные процессы). Процесс можно считать квазистатическим, если время его протекания много меньше времени релаксации рассматриваемой системы.

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, т. е. в её формулы время может входить в явном виде. Любопытно, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики как полноправного раздела науки (на столетие с лишним), но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Для энергии теорема Эйлера имеет вид:

Отсюда легко следует уравнение Гиббса - Дюгема :

Это уравнение показывает, что между интенсивными переменными существует одна связь, являющаяся следствием предположения об аддитивности свойств системы. В частности, непосредственным следствием соотношений Гиббса-Дюгема является выражение для термодинамического потенциала Гиббса через химические потенциалы компонент смеси:

Термодинамика сплошных сред

Приведённые выше формулировки аксиом термодинамики и соотношения для термодинамических потенциалов имеют место для простых моделей (сред) - для идеальных газов. Для более сложных моделей сред - упругих твердых сред, вязкоупругих сред, пластических сред, вязких жидкостей, сред с электромагнитными свойствами и других, законы термодинамики имеют более сложную формулировку, а термодинамические потенциалы формулируются в обобщенном виде с использованием тензоров . В физике сплошных сред (физике континуума) термодинамика рассматривается как её составная часть, вводящая в рассмотрение переменные, характеризующие тепловые (термические) и химические свойства среды, и их связь с другими физическими величинами, а аксиомы термодинамики включаются в общую систему аксиом.

Аксиоматика термодинамики

С аксиоматической точки зрения нулевое начало термодинамики, постулирующее существование абсолютной температуры, не является необходимым.

Первое начало вводит в рассмотрение новую физическую величину - внутреннюю энергию, и описывает (постулирует) свойства этой переменной, основное из которых состоит в том, что она необходима для соблюдения закона сохранения энергии; постулируется также экстенсивность внутренней энергии. Отсюда ясно, что корректно разбить изменение внутренней энергии в некотором процессе на теплоту и работу (тем более на теплоту, работу и работу переноса массы) невозможно без носящих достаточно произвольный характер дополнительных соглашений. К ним, в частности, принадлежат правила знаков для работы и теплоты. Другое соглашение состоит в том, что по формальным основаниям изменение внутренней энергии в химических реакциях (называемое в обиходе тепловым эффектом) мы вынуждены относить к работе (придуман даже специальный не используемый на практике термин «химическая работа»; в неравновесной термодинамике по формальной же причине теплоту трения причисляют к работе).

Подчеркнём, что математический аппарат термодинамики (да и любого другого раздела физики) зависит не только от законов природы, но и от разного рода соглашений (иногда формулируемых явно, иногда подразумеваемых), имеющих исторические корни и допускающих замену на другие соглашения, менее (а иногда и более) нам привычные. Степень произвола при формулировке соглашений обычно ограничена объективными либо субъективными факторами. Проиллюстрируем сказанное на примере замены реперных точек для температуры. Напрашивающийся вариант - переход к используемой в обыденной жизни температурной шкале Цельсия. Такая замена ведёт пусть к небольшому, но всё же усложнению привычных нам формул, да и выглядят они после этого менее изящно, хотя совершенно ясно, что расчёты как по новым, так и по старым формулам дают одинаковые результаты.

Изложенные соображения кажутся простыми и достаточно очевидными, если не банальными, но на практике о них частенько забывают. Применительно к первому началу игнорирование этих кажущихся избитыми истин привело к ситуации, которую Мёллер назвал «странным случаем в истории физики». А именно, модификация правила разбивки изменения внутренней энергии на теплоту и работу привела к изменению математического аппарата и послужила основанием для разгоревшегося во второй половине XX века спора о том, какая из двух логически безупречных версий СТО-релятивистской термодинамики с различными формулами преобразования для температуры - Планка (1907) или Отта (1963) - более правильна. Дискуссия теоретиков продолжалась несколько лет, пока де Бройль не показал, что расхождение между выводами Планка и Отта связано с произволом в определении теплоты, и их результаты не противоречат друг другу - просто авторы разговаривают на разных языках. В современных же вариантах релятивистской термодинамики вообще предпочитают иметь дело с лоренц-инвариантной абсолютной температурой (ван Кампен, Ландсберг, Шмутцер и др.). Почему же до публикации статьи Отта произвол в определениях понятий «работа» и «теплота» не бросался в глаза и никого не волновал? Да потому, что на практике, говоря о теплоте или работе некоего процесса, всегда имели в виду изменение в этом процессе одного из термодинамических потенциалов, обходя тем самым неопределённости в трактовке понятий «теплота» и «работа». То обстоятельство, что, например, совершаемую в химической реакции работу по традиции именовали «тепловым эффектом реакции», никого не смущало и не приводило ни к каким бросающимся в глаза парадоксальным или нежелательным последствиям.

Суть второго начала термодинамики с точки зрения аксиоматического подхода состоит в следующем. Для описания термических явлений переменной «внутренняя энергия» недостаточно, и для равновесных систем требуется ещё одна новая физическая величина в качестве независимой переменной. Таковой было бы логично выбрать температуру, но путь развития науки извилист, и второе начало в современной формулировке представляет собой набор постулатов о существовании энтропии и её свойствах; постулируется, например, экстенсивность энтропии. Один из важнейших постулатов гласит, что называемая термодинамической температурой функция внутренней энергии и энтропии имеет свойства абсолютной температуры. Такой подход позволяет обойти поминавшийся выше произвол в определениях понятий «работа» и «теплота», сводящий на нет кажущееся изящество классических формулировок второго начала. Отметим, что аксиоматику термодинамики можно строить, полагая независимой переменной не энтропию, а температуру. За это приходится приносить в жертву либо привычный нам математический аппарат термодинамики, к чему мы пока не готовы, либо стройность базовой системы аксиом.

Третье начало дополняет дополняет систему аксиом второго начала.

Аксиом (начал, постулатов), на которых базируется термодинамика, не три и даже не четыре (если считать нулевое начало), поэтому их уже не нумеруют. Наконец, помимо аксиом, соглашений и теорем в термодинамике есть еще и «принципы» (например, принцип термодинамической допустимости Путилова в равновесной термодинамике или принцип Кюри в неравновесной термодинамике), т. е. утверждения, не являющиеся соглашениями или теоремами, но и не претендующие на роль законов природы. Их не следует путать с аксиомами или теоремами термодинамики, в названиях которых по традиции используют слово «принцип» (принцип Нернста, принцип Ле-Шателье - Брауна).

Примечания

Парадоксы

См. также

Литература

  • Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
  • Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003. 120 с.
  • Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
  • Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
  • Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы) . - М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
  • Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
  • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
  • Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). - М.: Изд-во ЛКИ, 2007. - 312 с.
  • Квасников И. А.



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (термодинамику равновесных процессов, она же термодинамика квазистатических процессов, она же классическая термодинамика) и неравновесную (термодинамику неравновесных процессов, она же термодинамика необратимых процессов). Равновесная термодинамика вводит в рассмотрение новые (т. е. те, которым не даётся определения в других разделах физики) переменные, такие как внутренняя энергия, температура, энтропия, химический потенциал, а также комбинации перечисленных величин. Все они носят название термодинамических параметров (величин). Предметом рассмотрения классической термодинамики служат связи термодинамических параметров друг с другом и с физическими переменными, вводимыми в рассмотрение в других разделах физики (масса, давление, поверхностное натяжение, сила тока и т. д.). Химические и фазовые реакции (фазовые переходы первого рода) также есть предмет изучения классической термодинамики, поскольку в этом случае рассматриваются связи между массами компонентов системы и их химическими потенциалами. Классическая термодинамика рассматривает термодинамические переменные как локальные в пространстве величины (на любую систему всегда действует, как минимум, одно силовое поле - поле тяготения). Время в явном виде в формулы классической термодинамики не входит. Это, однако, вовсе не означает, что классическая термодинамика рассматривает только состояния системы и не рассматривает их изменения, т. е. процессы. Просто предметом её внимания служат такие относительно медленно протекающие (квазистатические) процессы, для которых в каждый данный момент времени систему можно считать находящейся в состоянии термодинамического равновесия (равновесные процессы). Процесс можно считать квазистатическим, если время его протекания много меньше времени релаксации рассматриваемой системы.

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, т. е. в её формулы время может входить в явном виде. Любопытно, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики как полноправного раздела науки (на столетие с лишним), но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Для энергии теорема Эйлера имеет вид:

Отсюда легко следует уравнение Гиббса - Дюгема :

Это уравнение показывает, что между интенсивными переменными существует одна связь, являющаяся следствием предположения об аддитивности свойств системы. В частности, непосредственным следствием соотношений Гиббса-Дюгема является выражение для термодинамического потенциала Гиббса через химические потенциалы компонент смеси:

Термодинамика сплошных сред

Приведённые выше формулировки аксиом термодинамики и соотношения для термодинамических потенциалов имеют место для простых моделей (сред) - для идеальных газов. Для более сложных моделей сред - упругих твердых сред, вязкоупругих сред, пластических сред, вязких жидкостей, сред с электромагнитными свойствами и других, законы термодинамики имеют более сложную формулировку, а термодинамические потенциалы формулируются в обобщенном виде с использованием тензоров . В физике сплошных сред (физике континуума) термодинамика рассматривается как её составная часть, вводящая в рассмотрение переменные, характеризующие тепловые (термические) и химические свойства среды, и их связь с другими физическими величинами, а аксиомы термодинамики включаются в общую систему аксиом.

Аксиоматика термодинамики

С аксиоматической точки зрения нулевое начало термодинамики, постулирующее существование абсолютной температуры, не является необходимым.

Первое начало вводит в рассмотрение новую физическую величину - внутреннюю энергию, и описывает (постулирует) свойства этой переменной, основное из которых состоит в том, что она необходима для соблюдения закона сохранения энергии; постулируется также экстенсивность внутренней энергии. Отсюда ясно, что корректно разбить изменение внутренней энергии в некотором процессе на теплоту и работу (тем более на теплоту, работу и работу переноса массы) невозможно без носящих достаточно произвольный характер дополнительных соглашений. К ним, в частности, принадлежат правила знаков для работы и теплоты. Другое соглашение состоит в том, что по формальным основаниям изменение внутренней энергии в химических реакциях (называемое в обиходе тепловым эффектом) мы вынуждены относить к работе (придуман даже специальный не используемый на практике термин «химическая работа»; в неравновесной термодинамике по формальной же причине теплоту трения причисляют к работе).

Подчеркнём, что математический аппарат термодинамики (да и любого другого раздела физики) зависит не только от законов природы, но и от разного рода соглашений (иногда формулируемых явно, иногда подразумеваемых), имеющих исторические корни и допускающих замену на другие соглашения, менее (а иногда и более) нам привычные. Степень произвола при формулировке соглашений обычно ограничена объективными либо субъективными факторами. Проиллюстрируем сказанное на примере замены реперных точек для температуры. Напрашивающийся вариант - переход к используемой в обыденной жизни температурной шкале Цельсия. Такая замена ведёт пусть к небольшому, но всё же усложнению привычных нам формул, да и выглядят они после этого менее изящно, хотя совершенно ясно, что расчёты как по новым, так и по старым формулам дают одинаковые результаты.

Изложенные соображения кажутся простыми и достаточно очевидными, если не банальными, но на практике о них частенько забывают. Применительно к первому началу игнорирование этих кажущихся избитыми истин привело к ситуации, которую Мёллер назвал «странным случаем в истории физики». А именно, модификация правила разбивки изменения внутренней энергии на теплоту и работу привела к изменению математического аппарата и послужила основанием для разгоревшегося во второй половине XX века спора о том, какая из двух логически безупречных версий СТО-релятивистской термодинамики с различными формулами преобразования для температуры - Планка (1907) или Отта (1963) - более правильна. Дискуссия теоретиков продолжалась несколько лет, пока де Бройль не показал, что расхождение между выводами Планка и Отта связано с произволом в определении теплоты, и их результаты не противоречат друг другу - просто авторы разговаривают на разных языках. В современных же вариантах релятивистской термодинамики вообще предпочитают иметь дело с лоренц-инвариантной абсолютной температурой (ван Кампен, Ландсберг, Шмутцер и др.). Почему же до публикации статьи Отта произвол в определениях понятий «работа» и «теплота» не бросался в глаза и никого не волновал? Да потому, что на практике, говоря о теплоте или работе некоего процесса, всегда имели в виду изменение в этом процессе одного из термодинамических потенциалов, обходя тем самым неопределённости в трактовке понятий «теплота» и «работа». То обстоятельство, что, например, совершаемую в химической реакции работу по традиции именовали «тепловым эффектом реакции», никого не смущало и не приводило ни к каким бросающимся в глаза парадоксальным или нежелательным последствиям.

Суть второго начала термодинамики с точки зрения аксиоматического подхода состоит в следующем. Для описания термических явлений переменной «внутренняя энергия» недостаточно, и для равновесных систем требуется ещё одна новая физическая величина в качестве независимой переменной. Таковой было бы логично выбрать температуру, но путь развития науки извилист, и второе начало в современной формулировке представляет собой набор постулатов о существовании энтропии и её свойствах; постулируется, например, экстенсивность энтропии. Один из важнейших постулатов гласит, что называемая термодинамической температурой функция внутренней энергии и энтропии имеет свойства абсолютной температуры. Такой подход позволяет обойти поминавшийся выше произвол в определениях понятий «работа» и «теплота», сводящий на нет кажущееся изящество классических формулировок второго начала. Отметим, что аксиоматику термодинамики можно строить, полагая независимой переменной не энтропию, а температуру. За это приходится приносить в жертву либо привычный нам математический аппарат термодинамики, к чему мы пока не готовы, либо стройность базовой системы аксиом.

Третье начало дополняет дополняет систему аксиом второго начала.

Аксиом (начал, постулатов), на которых базируется термодинамика, не три и даже не четыре (если считать нулевое начало), поэтому их уже не нумеруют. Наконец, помимо аксиом, соглашений и теорем в термодинамике есть еще и «принципы» (например, принцип термодинамической допустимости Путилова в равновесной термодинамике или принцип Кюри в неравновесной термодинамике), т. е. утверждения, не являющиеся соглашениями или теоремами, но и не претендующие на роль законов природы. Их не следует путать с аксиомами или теоремами термодинамики, в названиях которых по традиции используют слово «принцип» (принцип Нернста, принцип Ле-Шателье - Брауна).

Примечания

Парадоксы

См. также

Литература

  • Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
  • Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003. 120 с.
  • Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
  • Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
  • Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы) . - М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
  • Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
  • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
  • Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). - М.: Изд-во ЛКИ, 2007. - 312 с.
  • Квасников И. А.

Законы термодинамики называют также ее началами. На самом деле начало термодинамики представляет собой не что иное, как совокупность тех или иных постулатов, которые лежат в основе соответствующего раздела молекулярной физики. Данные положения устанавливали в течение научных исследований. В то же время они были доказаны экспериментальным путем. Почему же законы термодинамики принимают за постулаты? Все дело в том, что таким образом термодинамику можно строить аксиоматическим путем.

Основные законы термодинамики

Немного о структуризации. Законы термодинамики разделяются на четыре группы, каждая из которых имеет определенный смысл. Итак, что могут поведать нам начала термодинамики?

Первое и второе

Первое начало расскажет о том, как применяется закон сохранения энергии по отношению к той или иной термодинамической системе. Второе начало выдвигает некоторые ограничения, которые применяются к направлениям термодинамических процессов. Более конкретно, они запрещают самопроизвольную передачу тепла, совершаемую от менее нагретого к более нагретому телу. Есть у второго закона термодинамики и альтернативное название: закон возрастания энтропии.

Третье и четвертое

Третий закон описывает поведение энтропии вблизи абсолютного температурного нуля. Есть еще одно начало, последнее. Оно носит название “нулевой закон термодинамики”. Смысл его заключается в том, что любая замкнутая система придет к состоянию термодинамического равновесия и из него выйти уже самостоятельно не сможет. При этом ее начальное состояние может быть любым.

Зачем нужны начала термодинамики?

Законы термодинамики были изучены для того, чтобы описывать макроскопические параметры тех или иных систем. При этом конкретные предложения, имеющие связь с микроскопическим устройством, не выдвигаются. Этот вопрос изучается отдельно, но уже другим ответвлением науки - статистической физикой. Законы термодинамики независимы друг от друга. Что это может означать? Это нужно понимать так, что ни одно начало термодинамики из другого вывести невозможно.

Первое начало термодинамики

Как известно, термодинамическая система характеризуется несколькими параметрами, в числе которых есть и внутренняя энергия (обозначается буквой U). Последняя формируется из кинетической энергии, которую имеют все частицы. Это может быть энергия поступательного, а также колебательного и вращательного движения. На этом моменте вспомним о том, что энергия может быть не только кинетической, но и потенциальной. Так вот, в случае идеальных газов потенциальной энергией пренебрегают. Именно поэтому внутренняя энергия U будет складываться исключительно из кинетической энергии движения молекул и зависеть от температуры.

Эта величина - внутренняя энергия - называется иными словами функцией состояния, поскольку она определяется состоянием термодинамической системы. В нашем случае она определяется температурой газа. Следует отметить, что внутренняя энергия не зависит от того, каким был переход в состояние. Допустим, что термодинамическая система совершает круговой процесс (цикл, как его называют в молекулярной физике). Иными словами, система, выйдя из начального состояния, подвергается определенным процессам, но в результате возвращается в первичное состояние. Тогда нетрудно догадаться, что изменение внутренней энергии будет равно 0.

Как изменяется внутренняя энергия?

Изменить внутреннюю энергию идеального газа можно двумя способами. Первый вариант - совершить работу. Второй - сообщить системе то или иное количество теплоты. Логично, что второй способ подразумевает не только сообщение теплоты, но и ее отнятие.

Формулировка первого начала термодинамики

Их (формулировок) может быть несколько, так как все любят говорить по-разному. Но на самом деле суть остается той же. Она сводится к тому, что количество теплоты, которое было подведено к термодинамической системе, расходуется на совершение идеальным газом механической работы и изменение внутренней энергии. Если говорить о формуле или математической записи первого начала термодинамики, то она выглядит следующим образом: dQ = dU + dA.

Все величины, которые входят в состав формулы, могут иметь разные знаки. Ничто не запрещает им быть отрицательными. Допустим, что к системе подводится количество теплоты Q. Тогда газ будет нагреваться. Возрастает температура, а значит, увеличивается и внутренняя энергия газа. То есть и Q, и U будут иметь положительные значения. Но если внутренняя энергия газа увеличивается, он начинает вести себя активнее, расширяться. Следовательно, работа также будет положительной. Можно сказать, что работу совершает сама система, газ.

В случае если у системы забирают определенное количество теплоты, внутренняя энергия уменьшается, а газ сжимается. В таком случае можно говорить уже о том, что работу совершают над системой, а не она сама. Предположим опять, что некоторая термодинамическая система совершает цикл. В таком случае (как уже было сказано ранее) изменение внутренней энергии будет равно 0. Значит, работа, совершаемая газом или над ним, будет численно равна подведенной или отведенной к системе теплоте.

Математическую запись этого следствия называют еще одной формулировкой первого начала термодинамики. Примерно она звучит следующим образом: “В природе невозможно существование двигателя первого рода, то есть, двигателя, который совершал бы работу, превосходящую полученную извне теплоту”.

Второе начало термодинамики

Нетрудно догадаться, что термодинамическое равновесие характерно для системы, в которой макроскопические величины остаются неизменными во времени. Это, конечно же, давление, объем и температура газа. Их неизменность может быть построена на нескольких условиях: на отсутствии теплопроводности, химических реакций, диффузии и других процессов. Если под действием внешних факторов система была выведена из термодинамического равновесия, она к нему со временем вернется. Но если эти факторы будут отсутствовать. Причем произойдет это самопроизвольно.

Мы пойдем немного другим путем, отличным от того, что рекомендуют многие учебники. Для начала ознакомимся со вторым началом термодинамики, а уже потом разберемся, что за величины в него входят, и что они обозначают. Итак, в замкнутой системе при наличии любых протекающих в ней процессов энтропия не убывает. Записывается второе начало термодинамики следующим образом: dS >(=) 0. Здесь знак > будет связан с необратимым процессом, а знак = - с обратимым.

Что же называется в термодинамике обратимым процессом? А это такой процесс, при котором система возвращается (спустя череду каких-то процессов) к своему первоначальному состоянию. Причем в этом случае ни в системе, ни в окружающей среде никаких изменений не остается. Иными словами, обратимый процесс - это такой процесс, для которого возможно возвращение в начальное состояние через промежуточные состояния, идентичные прямому процессу. В молекулярной физике таких процессов очень мало. Например, переход количества теплоты от более нагретого тела к менее нагретому будет необратимым. Аналогично и в случае диффузии двух веществ, а также распространения газа на весь объем.

Энтропия

Энтропия, имеющая место во втором законе термодинамики, равна изменению количества теплоты, деленному на температуру. Формула: dS = dQ/T. Она имеет определенные свойства.

Определение: Термодинамика - наука о закономерностях превращения энергии .

В термодинамике широко используется понятие термодинамической системы .

Определение: термодинамической системой называется совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой . Все тела находящиеся за пределами границ рассматриваемой системы называются окружающей средой .

Поскольку одно и тоже тело, одно и тоже вещество при разных условиях может находиться в разных состояниях, (пример: ледvводаvпар, одно вещество при разной температуре) вводятся, для удобства, характеристики состояния вещества - так называемые параметры состояния .

Перечислим основные параметры состояния вещества:

Температура тел - определяет направление возможного самопроизвольного перехода тепла между телами .

В настоящее время в мире существует несколько температурных шкал и единиц измерения температуры. Наиболее распространенная в Европе шкала Цельсия где нулевая температура v температура замерзания воды при атмосферном давлении, а температура кипения воды при атмосферном давлении принята за 100 градусов Цельсия (ºС). В Северной Америке используется шкала Фаренгейта. Для термодинамических расчетов очень удобна абсолютная шкала или шкала Кельвина. За ноль в этой шкале принята температура абсолютного нуля, при этой температуре прекращается всякое тепловое движение в веществе. Численно один градус шкалы Кельвина равен одному градусу шкалы Цельсия.

Температура, выраженная по абсолютной шкале, называется абсолютной температурой .

Соотношение для перехода от градусов Цельсия к градусам Кельвина:

T [K] = t [º C] + 273.15

T-температура в Кельвинах;

t v температура в градусах Цельсия.

Давление - представляет собой силу, действующею по нормали к поверхности тела и отнесенную к единице площади этой поверхности .

Для измерения давления применяются различные единицы измерения. В стандартной системе измерения СИ единицей служит Паскаль (Па).

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.806710 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р)

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела v какого либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой. Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая:

1) Если поршень зафиксирован и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v=const), идущий при постоянном объеме;

Изохорные процессы в P - T координатах:

v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P=const), идущим при постоянном давлении.

Изобарные процессы в v - T координатах

P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т=const).

Изотермические процессы в P-v координатах

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q=const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Примерный график адиабатного процесса в P - v координатах

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на паро-водяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Теплота и работа .

Тела, участвующие в процессе, обмениваются между собой энергией. Энергия одних тел увеличивается, других - уменьшается. Передача энергии от одного тела к другому происходит 2-мя способами:

Первый способ передачи энергии при непосредственном контакте тел, имеющих различную температуру, путем обмена кинетической энергии между молекулами соприкасающихся тел (или лучистым переносом при помощи электромагнитных волн).

Энергия передается от более нагретого тела к менее нагретому.

Энергия кинетического движения молекул называется тепловой, поэтому такой способ передачи энергии называется передача энергии в форме теплоты. Количество энергии, полученной телом в форме теплоты, называется подведенной теплотой (сообщенной), а количество энергии, отданное телом в форме теплоты - отведенной теплотой (отнятой).

Обычное обозначение теплоты Q, размерность Дж. В практических расчетах важное значение приобретает отношение теплоты к массе - удельная теплота обозначается q размерность Дж/кг.

Подведенная теплота - положительна, отведенная - отрицательна.

Второй способ передачи энергии связан с наличием силовых полей или внешнего давления. Для передачи энергии этим способом тело должно либо передвигаться в силовом поле, либо изменять свой объем под действием внешнего давления.

Этот способ называется передачей энергии в форме работы .

Если в качестве примера тела рассматривать газ в сосуде с поршнем то в случае приложения внешней силы к поршню происходит сжатие газа - работа совершается над телом, а в случае расширения газа в сосуде работу, перемещение поршня, совершает само тело (газ).

Количество энергии, полученное телом в форме работы называется совершенной над телом работой, а отданная - затраченной телом работой .

Количество энергии в форме работы обычно обозначается L размерность Дж. Удельная работа - отношение работы к массе тела обозначается l размерность - Дж/кг.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу .

Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .