Статистическая физика и термодинамика основные понятия. Статистическая физика и термодинамика

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело - твердое, жидкое или газообразное - состоит из большого количества весьма малых обособленных частиц - молекул. Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении. Его интенсивность зависит от температуры вещества.

Непосредственным доказательством существования хаотического движения молекул служит броуновское движение. Это явление заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, которое не зависит от внешних причин и оказывается проявлением внутреннего движения вещества. Броуновские частицы совершают движение под влиянием беспорядочных ударов молекул.

Молекулярно-кинетическая теория ставит себе целью истолковать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т. п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название - статистическая физика.

Изучением различных свойств тел и изменений состояния вещества занимается также термодинамика.

Однако в отличие от молекулярно-кинетической теории термодинамики изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение молекулы и атомы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.

В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. В силу этого выводы термодинамики имеют весьма общий характер.

Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу одно целое.

Обращаясь к истории развития молекулярно-кинетических представлений, следует прежде всего отметить, что представления об атомистическом строении вещества были высказаны еще древними греками. Однако у древних греков эти идеи были не более чем гениальной догадкой. В XVII в. атомистика возрождается вновь, но уже не как догадка, а как научная гипотеза. Особенное развитие эта гипотеза получила в трудах гениального русского ученого и мыслителя М. В. Ломоносова (1711-1765), который предпринял попытку дать единую картину всех известных в его время физических и химических явлений. При этом он исходил из корпускулярного (по современной терминологии - молекулярного) представления о строении материи. Восставая против господствовавшей в его время теории теплорода (гипотетической тепловой жидкости, содержание которой в теле определяет степень егонагретости), Ломоносов «причину тепла» видит во вращательном движении частиц тела. Таким образом, Ломоносовым были по существу сформулированы молекулярно-кинетические представления.

Во второй половине XIX в. и в начале XX в. благодаря трудам ряда ученых атомистика превратилась в научную теорию.

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

  • температуру физического тела;
  • объем взаимодействующих элементов;
  • число элементарных частиц.

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

где N -число молекул газа; N A - число Авогадро; m -масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

,

где i , N i , m i , i - соответственно количество вещества, число молекул, масса, молярная масса i -й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T -термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

    закон Бойля-Мариотта

(изотермический процесс - Т =const; m=const):

или для двух состояний газа:

где p 1 и V 1 - давление и объем газа в начальном состоянии; p 2 и V 2

    закон Гей-Люссака (изобарический процесс - p=const, m=const ):

или для двух состояний:

где V 1 и Т 1 - объем и температура газа в начальном состоянии; V 2 и Т 2 - те же величины в конечном состоянии;

    закон Шарля (изохорический процесс - V=const, m=const ):

или для двух состояний:

где р 1 и Т 1 - давление и температура газа в начальном состоянии; р 2 и Т 2 - те же величины в конечном состоянии;

    объединенный газовый закон (m=const ):

где р 1 , V 1 , Т 1 - давление, объем и температура газа в начальном состоянии; р 2 , V 2 , Т 2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р 1 + р 2 + ... +р n

где p i - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где m i - масса i -го компонента смеси; i = m i / i - количество вещества i -го компонента смеси; n - число компонентов смеси.

6. Массовая доля  i i -го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N -число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

10. Основные постулаты статистической термодинамики

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. В первом подходе, основанном на классической или квантовой механике, подробно характеризуется микросостояние системы, например, координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): 3N координат и 3N проекций импульса.

Макроскопический подход, который использует классическая термодинамика, характеризует только макросостояния системы и использует для этого небольшое число переменных, например, три: температуру, объем и число частиц. Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле, бесконечно много) микросостояний.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам (p , q , t ), которая определяется следующим образом:

(p , q , t ) dp dq - это вероятность того, что система ансамбля находится в элементе объема dp dq вблизи точки (p , q ) в момент времени t .

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостоянии.

Из определения следуют элементарные свойства функции распределения:

1. Нормировка

. (10.1)

2. Положительная определенность

(p , q , t ) і 0 (10.2)

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f (p , q ) по ансамблю :

Например, внутренняя энергия - это среднее значение функции Гамильтона H (p ,q ):

Существование функции распределения составляет суть основного постулата классической статистической механики :

Макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям (10.1) и (10.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: = (p ,q ). Явный вид функции распределения зависит от типа ансамбля. Различают три основных типа ансамблей:

1) Микроканонический ансамбль описывает изолированные системы и характеризуется переменными: E (энергия), V (объем), N (число частиц). В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности ):

2) Канонический ансамбль описывает системы, находящиеся в тепловом равновесии с окружающей средой. Тепловое равновесие характеризуется температурой T . Поэтому функция распределения также зависит от температуры:

(10.6)

(k = 1.38 10 -23 Дж/К - постоянная Больцмана). Значение константы в (10.6) определяется условием нормировки (см. (11.2)).

Частным случаем канонического распределения (10.6) является распределение Максвелла по скоростям v, которое справедливо для газов:

(10.7)

(m - масса молекулы газа). Выражение (v)d v описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d v. Максимум функции (10.7) дает наиболее вероятную скорость молекул, а интеграл

Среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона H (p ,q ) используют оператор Гамильтона H , а вместо функции распределения - оператор матрицы плотности :

(10.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в i -ом энергетическом состоянии и имеет энергию E i :

(10.10)

Значение константы определяется условием нормировки: S i = 1:

(10.11)

Знаменатель этого выражения называют суммой по состояниям (см. гл. 11). Он имеет ключевое значение для статистической оценки термодинамических свойств системы Из (10.10) и (10.11) можно найти число частиц N i , имеющих энергию E i :

(10.12)

(N - общее число частиц). Распределение частиц (10.12) по уровням энергии называют распределением Больцмана , а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией E i , то их объединяют в одну группу путем суммирования больцмановских множителей:

(10.13)

(g i - число уровней с энергией E i , или статистический вес).

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

, (10.14)

3) Большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой T , а равновесие по числу частиц - химическим потенциалом . Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~ 10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

ПРИМЕРЫ

Пример 10-1. Молекула может находиться на двух уровнях с энергиями 0 и 300 см -1 . Какова вероятность того, что молекула будет находиться на верхнем уровне при 250 о С?

Решение . Надо применить распределение Больцмана, причем для перевода спектроскопической единицы энергии см -1 в джоули используют множитель hc (h = 6.63 10 -34 Дж. c, c = 3 10 10 см/с): 300 см -1 = 300 6.63 10 -34 3 10 10 = 5.97 10 -21 Дж.

Ответ . 0.304.

Пример 10-2. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . При какой температуре а) все молекулы будут находиться на нижнем уровне, б) число молекул на нижнем уровне будет равно числу молекул на верхних уровнях, в) число молекул на нижнем уровне будет в три раза меньше, чем число молекул на верхних уровнях?

Решение . Воспользуемся распределением Больцмана (10.13):

а) N 0 / N = 1; exp(-E /kT ) = 0; T = 0. При понижении температуры молекулы накапливаются на нижних уровнях.

б) N 0 / N = 1/2; exp(-E /kT ) = 1/3; T = E / [k ln(3)].

в) N 0 / N = 1/4; exp(-E /kT ) = 1; T = . При высоких температурах молекулы равномерно распределены по уровням энергии, т.к. все больцмановские множители почти одинаковы и равны 1.

Ответ . а) T = 0; б) T = E / [k ln(3)]; в) T = .

Пример 10-3. При нагревании любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с ростом температуры.

Решение . Заселенность - доля молекул, находящихся на определенном энергетическом уровне. По условию, производная от этой величины по температуре должна быть положительна:

Во второй строчке мы использовали определение средней энергии (10.14). Таким образом, заселенность возрастает с ростом температуры для всех уровней, превышающих среднюю энергию системы.

Ответ . .

ЗАДАЧИ

10-1. Молекула может находиться на двух уровнях с энергиями 0 и 100 см -1 . Какова вероятность того, что молекула будет находиться на низшем уровне при 25 о С?

10-2. Молекула может находиться на двух уровнях с энергиями 0 и 600 см -1 . При какой температуре на верхнем уровне будет в два раза меньше молекул, чем на нижнем?

10-3. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . Найдите среднюю энергию молекул: а) при очень низких температурах, б) при очень высоких температурах.

10-4. При охлаждении любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с уменьшением температуры.

10-5. Рассчитайте наиболее вероятную скорость молекул углекислого газа при температуре 300 К.

10-6. Рассчитайте среднюю скорость атомов гелия при нормальных условиях.

10-7. Рассчитайте наиболее вероятную скорость молекул озона при температуре -30 о С.

10-8. При какой температуре средняя скорость молекул кислорода равна 500 м/с?

10-9. При некоторых условиях средняя скорость молекул кислорода равна 400 м/с. Чему равна средняя скорость молекул водорода при этих же условиях?

10-10. Какова доля молекул массой m , имеющих скорость выше средней при температуре T ? Зависит ли эта доля от массы молекул и температуры?

10-11. Пользуясь распределением Максвелла, рассчитайте среднюю кинетическую энергию движения молекул массой m при температуре T . Равна ли эта энергия кинетической энергии при средней скорости?

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Поиск в библиотеке по авторам и ключевым словам из названия книги:

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006