Франк каменецкий самая главная молекула. От новой физики к новой биологии


Максим Франк-Каменецкий

Самая главная молекула. От структуры ДНК к биомедицине XXI века

Дизайн обложки А. Стельмашук

© Франк-Каменецкий М., 2017

© НП «Редакционно-издательский дом «ПостНаука», 2017

© ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

Предисловие

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь, из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других книг, посвященных ДНК.

У этой книги своя собственная биография. Первая ее версия под названием «Самая главная молекула» была напечатана издательством «Наука» в популярной серии «Библиотечка "Квант"» более 30 лет назад. Тиражи научно-популярной литературы в советское время были громадными, и 150 000 экземпляров книги быстро разошлись. Ее прочли многие школьники и студенты. Но и маститые ученые, в особенности физики и математики, нашли книгу полезной и интересной. Второе, существенно переработанное и дополненное, издание было выпущено «Библиотечкой "Квант"» в 1988 году опять громадным тиражом (130 000). Тогда же стали появляться переводы книги на иностранные языки под разными названиями. Первое англоязычное издание (для которого она была вновь существенно переработана и дополнена) было осуществлено в 1993 году нью-йоркским отделением немецкого издательства VCH. Под новым, непереводимым на русский язык названием Unraveling DNA книга стала широко известна в читающем по-английски мире, в особенности после того, как в 1997 году американское издательство Addison-Wesley опубликовало второе, вновь переработанное и дополненное, издание в мягкой обложке, которое до сих пор регулярно допечатывается и распространяется издательством Perseus Books Publishing. Вышедшее в 2004 году в издательстве КДУ («Книжный дом "Университет"») третье русское издание книги под новым заглавием «Век ДНК» и опубликованное в 2010 году издательством «АСТ Пресс» под заголовком «Королева живой клетки» четвертое издание в значительной степени представляют собой авторский перевод на русский язык второго издания книги Unraveling DNA, причем в ходе их подготовки она была вновь существенно переработана и дополнена. Автор постепенно не только дополнял ее новым материалом, но и что-то выбрасывал, чтобы она не распухала.

Там, где это возможно, он избегал применения научных терминов. Но совсем без них обойтись невозможно. Основу жизни составляет большое число достаточно сложных молекул, и, не называя их, ни о чем рассказать было бы нельзя. Помощь в освоении терминологии призван оказать «Словарь терминов», помещенный в конце книги.

Она написана с таким расчетом, что ее не обязательно читать подряд. Главы в значительной степени независимы друг от друга. Читатель, которому не терпится познакомиться с биологическими и медицинскими аспектами молекулы ДНК, может опустить при первом чтении главы 3, 7, 8 и 9.

В течение прошедших со времени издания первой версии книги 30 с лишним лет она подвергалась существенной переработке приблизительно каждые 5 лет. И все же последняя переработка потребовала наибольших изменений. Внося многочисленные правки и дополнения по сравнению с предыдущими изданиями, автор особенно остро ощутил, насколько ускорился в XXI веке темп развития науки о ДНК и в еще большей степени – темп проникновения этой науки и основанных на ней новых технологий в повседневную жизнь. В результате СПИД перестал означать смертный приговор, огромные успехи достигнуты в области профилактики сердечно-сосудистых заболеваний. ДНК произвела подлинную революцию в криминалистике. С расшифровкой генома человека мы вступили в постгеномную эру.

Дизайн обложки А. Стельмашук

© Франк-Каменецкий М., 2017

© НП «Редакционно-издательский дом «ПостНаука», 2017

© ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

Предисловие

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь, из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других книг, посвященных ДНК.

У этой книги своя собственная биография. Первая ее версия под названием «Самая главная молекула» была напечатана издательством «Наука» в популярной серии «Библиотечка "Квант"» более 30 лет назад. Тиражи научно-популярной литературы в советское время были громадными, и 150 000 экземпляров книги быстро разошлись. Ее прочли многие школьники и студенты. Но и маститые ученые, в особенности физики и математики, нашли книгу полезной и интересной. Второе, существенно переработанное и дополненное, издание было выпущено «Библиотечкой "Квант"» в 1988 году опять громадным тиражом (130 000). Тогда же стали появляться переводы книги на иностранные языки под разными названиями. Первое англоязычное издание (для которого она была вновь существенно переработана и дополнена) было осуществлено в 1993 году нью-йоркским отделением немецкого издательства VCH. Под новым, непереводимым на русский язык названием Unraveling DNA книга стала широко известна в читающем по-английски мире, в особенности после того, как в 1997 году американское издательство Addison-Wesley опубликовало второе, вновь переработанное и дополненное, издание в мягкой обложке, которое до сих пор регулярно допечатывается и распространяется издательством Perseus Books Publishing. Вышедшее в 2004 году в издательстве КДУ («Книжный дом "Университет"») третье русское издание книги под новым заглавием «Век ДНК» и опубликованное в 2010 году издательством «АСТ Пресс» под заголовком «Королева живой клетки» четвертое издание в значительной степени представляют собой авторский перевод на русский язык второго издания книги Unraveling DNA, причем в ходе их подготовки она была вновь существенно переработана и дополнена. Автор постепенно не только дополнял ее новым материалом, но и что-то выбрасывал, чтобы она не распухала.

Там, где это возможно, он избегал применения научных терминов. Но совсем без них обойтись невозможно. Основу жизни составляет большое число достаточно сложных молекул, и, не называя их, ни о чем рассказать было бы нельзя. Помощь в освоении терминологии призван оказать «Словарь терминов», помещенный в конце книги.

Она написана с таким расчетом, что ее не обязательно читать подряд. Главы в значительной степени независимы друг от друга. Читатель, которому не терпится познакомиться с биологическими и медицинскими аспектами молекулы ДНК, может опустить при первом чтении главы 3, 7, 8 и 9.

В течение прошедших со времени издания первой версии книги 30 с лишним лет она подвергалась существенной переработке приблизительно каждые 5 лет. И все же последняя переработка потребовала наибольших изменений. Внося многочисленные правки и дополнения по сравнению с предыдущими изданиями, автор особенно остро ощутил, насколько ускорился в XXI веке темп развития науки о ДНК и в еще большей степени – темп проникновения этой науки и основанных на ней новых технологий в повседневную жизнь. В результате СПИД перестал означать смертный приговор, огромные успехи достигнуты в области профилактики сердечно-сосудистых заболеваний. ДНК произвела подлинную революцию в криминалистике. С расшифровкой генома человека мы вступили в постгеномную эру.

Совсем недавно появилась подлинно революционная технология редактирования генома в живой клетке, сулящая как возможность полного искоренения многих заболеваний, уносящих множество жизней, таких как малярия, но и грозящая человечеству многими опасностями. Невероятный прогресс происходит на наших глазах в области методов терапии рака, в особенности в сфере иммунотерапии. Обо всем этом и о многом другом рассказано в новом издании книги.

Эта книга не могла бы быть написана без постоянной помощи и поддержки, которую я ощущал со стороны моей ныне покойной жены Аллы Воскобойник (1940–1985) в период подготовки первой версии книги, послужившей основой для последующих вариантов. Особой благодарности заслуживает В. К. Черникова, которая была редактором исходной версии и которая обучила меня секретам популяризации науки. Редактор издательства «Наука» Л. А. Панюшкина сделала очень много для публикации первых двух версий книги по-русски. Английские издания книги были бы невозможны, если бы мой друг Лев Ляпин не вложил свою душу в работу над переводом. Я глубоко признателен Чарлзу Дорингу, Эду Иммергуту и Кристине Иризарри за помощь в подготовке первого английского издания нью-йоркским отделением VCH. Лиза Адамс (книжное агентство Garamond, Ньютон, Массачусетс) взяла на себя труд быть моим книжным агентом и обеспечила успех второго английского издания. Я благодарен «ПостНауке» и ее лидеру Ивару Максутову за упорство и терпение, проявленное при переговорах со мной и с издательством «Альпина нон-фикшн», приведших к настоящему изданию.

M. Д. Франк-Каменецкий,

сентябрь 2016 года,

Бостон, США

От новой физики к новой биологии

Потрясающие вещи происходят в биологии. Мне кажется, Джим Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году.

1930-е годы

В первой трети ХХ века наиболее значительные, революционные преобразования происходили в физике. Создание теории относительности и квантовой механики до самого основания потрясло эту старую науку, дав ей новый, неслыханной силы импульс к дальнейшему развитию как вглубь, в поисках универсальных физических законов, так и вширь, в смежные области.

Одной из главных вех на пути создания новой физики было открытие Резерфордом в 1911 году атомного ядра. Само существование атома Резерфорда находилось в вопиющем противоречии с основными законами классической физики. На смену старой физике пришла новая, квантовая физика, которая призвана была объяснить устойчивость атомов и их удивительные линейчатые спектры.

Молекулярные биологи уже давно пришли к заключению, что центральное место в жизнедеятельности занимает молекула дезоксирибонуклеиновой кислоты (ДНК).

Действительно именно в ДНК записана генетическая информация о всех потенциальных возможностях организма, о программе, по которой эти возможности реализуются в процессе формирования клеток, тканей и органов. Осуществляется это специальными механизмами "переписывания" генетической информации с определенных участков ДНК (генов), кодирующих определенные рибонуклеиновые кислоты (РНК) и соответствующие им белки.

Конечно, в клетках образуется и функционирует множество и других, кроме ДНК, различных молекул, необходимых для жизнедеятельности. Но число молекул каждого типа (например, число молекул глюкозы или той или иной жирной кислоты) очень большое. Число же генов, кодирующих синтез отдельных белков в каждой клетке или определяющих тот или иной признак организма, может быть равным всего двум: один ген содержится в наборе хромосом, полученном из женской половой клетки (гаметы), другой - в наборе хромосом из мужской гаметы. (Клетка, образуемая при слиянии этих гамет - зигота, - служит началом развития организма.)

Таким образом, определяющая (кодирующая, контролирующая) роль генов в синтезе белков, а через них и в построении различных биологических структур, а также уникальность наборов многих (хотя и не всех) генов позволяют согласиться с мнением тех биологов, которые считают молекулу ДНК самой главной молекулой.

А какова роль ДНК в развитии патофизиологических процессов, хронических тяжелых болезней или старения? Этот общий вопрос можно разделить на более конкретные, имеющие прямое отношение к проблеме старения и механизмам (патогенезу) развития болезней, ассоциируемых со старением.

Нарушаются ли структура и функция ДНК с возрастом? Если да, то каким образом эти нарушения могут быть связаны с признаками старения? Не служат ли эти нарушения по крайней мере одной из причин увеличения предрасположенности организма к тяжелым, наиболее распространенным болезням пожилого и старческого возраста? И нельзя ли наметить новые пути профилактики таких болезней или даже замедления самого процесса старения с помощью средств, снижающих скорость возрастного нарушения структуры и функции ДНК? В книге освещен целый ряд интересных фактов, полученных при исследовании перечисленных вопросов в лабораториях.

Забегая вперед, подчеркну: изменения ДНК не единственный механизм старения. Изменения структуры и функции мембран клеток, ее белоксинтезирующего аппарата и систем энергообеспечения, нарушения гомеостаза организма на различных уровнях - вот другие биологические основы снижения жизнеспособности организма с возрастом, причины увеличения его предрасположенности к ряду заболеваний. Эти изменения мы также будем внимательно рассматривать, хотя и не так подробно, как изменения ДНК.

Не каждому читателю будет просто понять суть недавно открытых свойств ДНК, возрастных изменений ее структуры и функций, роль этих изменений в снижении и нарушении функций клеток и организма. Чтобы облегчить читателю-небиологу понимание такой информации, вкратце напомню о структуре и функции "самой главной молекулы".

ДНК построена из звеньев четырех типов: (Т) тиминового, (А) аденинового, (Г) гуанинового и (Ц) цитозинового (см. рис. 1, а). В последовательности расположения этих звеньев и закодирована генетическая информация. Причем пуриновые (А и Г) и пиримидиновые (Т и Ц) основания составляют две полимерные цепочки (нити) ДНК, и последовательность звеньев каждой из этих цепей однозначно определяется последовательностью звеньев в цепи-"партнерше" согласно принципу комплементарности, т. е. против А или Т в одной цепи в другой расположены соответственно Т или А, а против Г или Ц - соответственно Ц или Г.


Рис. 1. Схема развития спонтанного (теплового) повреждения ДНК в клетке.

Обозначения: А , Г , Т , Ц - основания ДНК, соответственно аденин, гуанин (пуриновые основания), тимин и цитозин (пиримидиновые основания). Вертикальные линии - сахарофосфатный остов, горизонтальные - связи оснований с сахаром и друг с другом: а - нормальная (нативная) ДНК; б - ДНК, из которой произошло выщепление одного из оснований; в - ДНК, содержащая разрыв фосфодиэфирной связи; г - присоединение молекулы белка или другой молекулы, содержащейся в ядре, к поврежденному участку ДНК

Взаимодействие между этими комплементарными парами оснований определяется гораздо более слабыми связями, чем те ковалентные, которые объединяют отдельные звенья каждой полимерной цепи. Это существенное свойство ДНК, так как позволяет ей изменять характер взаимного расположения ее цепей (ее конформацию, вторичную структуру) без разрушения самих цепей (первичной структуры ДНК - хранилища генетической информации). Ведь чтобы произошло удвоение генетического вещества (редупликация ДНК) в материнской клетке, делящейся на 2, каждая из двух цепей должна стать матрицей, на которой синтезируется комплементарная ей цепь. (Отсюда и второе название процесса синтеза ДНК - репликация.) Очевидно, что это может осуществляться лишь в том случае, если в месте редупликации материнской ДНК, ее комплементарные цепи разойдутся.

Таким образом, каждый ген - своего рода молекулярная лестница, перекладинами которой служат пары нуклеотидов АТ и ГЦ. Остов же этой лестницы составляют остатки молекулы дезоксирибозы и фосфорной кислоты, причем нуклеотиды присоединены к остову посредством ковалентной связи между азотами колец А, Т, Г или Ц и определенным атомом дезоксирибозы. Эта связь называется гликозильной (старое название, нередко еще встречающееся даже в специальных работах, - гликозидная связь). Запомнить название этой связи нужно обязательно хотя бы потому, что именно эта связь оказывается слабым местом в первичной структуре ДНК, и поэтому разрыв ее может быть одной из молекулярных основ старения всего организма и увеличения его предрасположенности к некоторым тяжелым заболеваниям.

ДНК организована не только в форме лестницы, эта лестница еще и завита в правую спираль. Такова структура знаменитой двойной спирали, открытой Уотсоном и Криком в 1953 году. Считается общепринятым, что в живой клетке ДНК, как правило, находится именно в такой (канонической) конформации.

Структура двойной спирали ДНК, находящейся в В-форме, организована согласно принципу "золотого сечения". Так шаг спирали ДНК равен 33,8 ?, а ее диаметр 21,1 ?, и, следовательно, диаметр составляет приблизительно 0,62 величины шага. Как известно, нахождение "золотого сечения" отрезка длиной "а" сводится к решению уравнения


Таким образом, ДНК построена еще и красиво. Ведь принципы "золотого сечения" легли в основу композиционного построения великих произведений мирового искусства, прежде всего произведений архитектуры античности и Возрождения (термин "золотое сечение" ввел Леонардо да Винчи).

Однако в последние годы было установлено, что определенные участки двойной спирали ДНК могут принимать и другую конформацию, в частности они могут находиться в форме левой спирали. Сначала была доказана потенциальная возможность существования такой неканонической формы ДНК и лишь в последние годы получено доказательство ее существования в клетке. Это свойство ДНК нужно тоже запомнить, чтобы понять нижеприводимые факты о том, что с возрастом отдельные участки ДНК могут изменять свою конформацию.

Кстати, одно из первых доказательств того, что ДНК в клетке (in vivo) может находиться в форме не только правой спирали, но и в левоспиральной конформации, было получено при исследовании ДНК, выделенной из тканей очень старых животных, и при сравнении ее с ДНК, выделенной из тех же тканей молодых животных. Следовательно, для понимания механизмов старения необходимо не только знание структуры ДНК, но и исследование возрастных изменений ДНК - один из подходов для обнаружения новых свойств ДНК.

Хранение и передача генетической информации в ряду поколений организмов осуществляются половыми клетками, в которых содержание ДНК и хромосом в 2 раза меньше, чем в остальных (соматических) клетках организма. После оплодотворения генетические структуры мужской и женской половых клеток интегрируются, и вслед за этим начинается процесс деления и дифференцировки образующихся клеток.

Так как процессу деления клеток предшествуют удвоение содержания ДНК (ее дупликация) и строго равномерное распределение по дочерним клеткам, то обычно полагают, что все клетки содержат одну и ту же генетическую информацию. Реализуется же эта информация в различных клетках отнюдь не одинаково. Под реализацией генетической информации понимают синтез на ДНК, как на матрице (этот процесс называют транскрипцией), другой нуклеиновой кислоты - рибунуклеиновой (РНК). Специальные молекулы РНК - информационные - определяют, какие белки синтезируются в клетке, а от последних в конечном счете зависит характер ее жизнедеятельности. Следовательно, структура и функция клетки (ее фенотип) зависят от того, какие ее гены активны, а какие нет.

<<< Назад
Вперед >>>

Максим Франк-Каменецкий

Самая главная молекула. От структуры ДНК к биомедицине XXI века

Дизайн обложки А. Стельмашук

© Франк-Каменецкий М., 2017

© НП «Редакционно-издательский дом «ПостНаука», 2017

© ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

Предисловие

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь, из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других книг, посвященных ДНК.

У этой книги своя собственная биография. Первая ее версия под названием «Самая главная молекула» была напечатана издательством «Наука» в популярной серии «Библиотечка "Квант"» более 30 лет назад. Тиражи научно-популярной литературы в советское время были громадными, и 150 000 экземпляров книги быстро разошлись. Ее прочли многие школьники и студенты. Но и маститые ученые, в особенности физики и математики, нашли книгу полезной и интересной. Второе, существенно переработанное и дополненное, издание было выпущено «Библиотечкой "Квант"» в 1988 году опять громадным тиражом (130 000). Тогда же стали появляться переводы книги на иностранные языки под разными названиями. Первое англоязычное издание (для которого она была вновь существенно переработана и дополнена) было осуществлено в 1993 году нью-йоркским отделением немецкого издательства VCH. Под новым, непереводимым на русский язык названием Unraveling DNA книга стала широко известна в читающем по-английски мире, в особенности после того, как в 1997 году американское издательство Addison-Wesley опубликовало второе, вновь переработанное и дополненное, издание в мягкой обложке, которое до сих пор регулярно допечатывается и распространяется издательством Perseus Books Publishing. Вышедшее в 2004 году в издательстве КДУ («Книжный дом "Университет"») третье русское издание книги под новым заглавием «Век ДНК» и опубликованное в 2010 году издательством «АСТ Пресс» под заголовком «Королева живой клетки» четвертое издание в значительной степени представляют собой авторский перевод на русский язык второго издания книги Unraveling DNA, причем в ходе их подготовки она была вновь существенно переработана и дополнена. Автор постепенно не только дополнял ее новым материалом, но и что-то выбрасывал, чтобы она не распухала.

Там, где это возможно, он избегал применения научных терминов. Но совсем без них обойтись невозможно. Основу жизни составляет большое число достаточно сложных молекул, и, не называя их, ни о чем рассказать было бы нельзя. Помощь в освоении терминологии призван оказать «Словарь терминов», помещенный в конце книги.

Она написана с таким расчетом, что ее не обязательно читать подряд. Главы в значительной степени независимы друг от друга. Читатель, которому не терпится познакомиться с биологическими и медицинскими аспектами молекулы ДНК, может опустить при первом чтении главы 3, 7, 8 и 9.

В течение прошедших со времени издания первой версии книги 30 с лишним лет она подвергалась существенной переработке приблизительно каждые 5 лет. И все же последняя переработка потребовала наибольших изменений. Внося многочисленные правки и дополнения по сравнению с предыдущими изданиями, автор особенно остро ощутил, насколько ускорился в XXI веке темп развития науки о ДНК и в еще большей степени – темп проникновения этой науки и основанных на ней новых технологий в повседневную жизнь. В результате СПИД перестал означать смертный приговор, огромные успехи достигнуты в области профилактики сердечно-сосудистых заболеваний. ДНК произвела подлинную революцию в криминалистике. С расшифровкой генома человека мы вступили в постгеномную эру.

Совсем недавно появилась подлинно революционная технология редактирования генома в живой клетке, сулящая как возможность полного искоренения многих заболеваний, уносящих множество жизней, таких как малярия, но и грозящая человечеству многими опасностями. Невероятный прогресс происходит на наших глазах в области методов терапии рака, в особенности в сфере иммунотерапии. Обо всем этом и о многом другом рассказано в новом издании книги.

Эта книга не могла бы быть написана без постоянной помощи и поддержки, которую я ощущал со стороны моей ныне покойной жены Аллы Воскобойник (1940–1985) в период подготовки первой версии книги, послужившей основой для последующих вариантов. Особой благодарности заслуживает В. К. Черникова, которая была редактором исходной версии и которая обучила меня секретам популяризации науки. Редактор издательства «Наука» Л. А. Панюшкина сделала очень много для публикации первых двух версий книги по-русски. Английские издания книги были бы невозможны, если бы мой друг Лев Ляпин не вложил свою душу в работу над переводом. Я глубоко признателен Чарлзу Дорингу, Эду Иммергуту и Кристине Иризарри за помощь в подготовке первого английского издания нью-йоркским отделением VCH. Лиза Адамс (книжное агентство Garamond, Ньютон, Массачусетс) взяла на себя труд быть моим книжным агентом и обеспечила успех второго английского издания. Я благодарен «ПостНауке» и ее лидеру Ивару Максутову за упорство и терпение, проявленное при переговорах со мной и с издательством «Альпина нон-фикшн», приведших к настоящему изданию.

M. Д. Франк-Каменецкий,

сентябрь 2016 года,

Бостон, США

От новой физики к новой биологии

Потрясающие вещи происходят в биологии. Мне кажется, Джим Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году.

1930-е годы

В первой трети ХХ века наиболее значительные, революционные преобразования происходили в физике. Создание теории относительности и квантовой механики до самого основания потрясло эту старую науку, дав ей новый, неслыханной силы импульс к дальнейшему развитию как вглубь, в поисках универсальных физических законов, так и вширь, в смежные области.

Одной из главных вех на пути создания новой физики было открытие Резерфордом в 1911 году атомного ядра. Само существование атома Резерфорда находилось в вопиющем противоречии с основными законами классической физики. На смену старой физике пришла новая, квантовая физика, которая призвана была объяснить устойчивость атомов и их удивительные линейчатые спектры.

Эта теория, разработка которой была начата Планком, Эйнштейном и Бором, нашла замечательно ясную формулировку в 1926 году в виде знаменитого уравнения Шрёдингера. Квантовая механика не только позволила физикам решить все головоломки, которые накопились в области атомных спектров. Она поставила на прочный теоретический фундамент всю химию. Наконец-то был понят сокровенный смысл атомного номера в таблице Менделеева! Стал ясен истинный смысл валентности, выяснена природа химической связи, скрепляющей атомы в молекулах.

К началу 1930-х годов у физиков появилось ощущение всемогущества. Итак, с атомами все ясно, с молекулами тоже, что там еще? Ага, непонятно, как устроено атомное ядро. Занялись ядром. «Ну, здесь вряд ли есть работа на всех, – считали лидеры. – Надо бы придумать что-нибудь покрупнее». И их взоры обратились к святая святых, к тому, о чем физики раньше не могли и помышлять, – к самой жизни. Не поможет ли новая физика разгадать тайну жизни? Или, может быть, наоборот, окажется, что жизнь противоречит квантовой механике, и тогда придется опять изобретать какие-то новые законы? Это было бы особенно интересно.

В то время молодой немецкий физик-теоретик Макс Дельбрюк искал себе занятие по вкусу. Он попробовал заняться квантовой химией, потом ядерной физикой. Интересно, конечно, но не очень. И вот, будучи на стажировке в Институте Бора в Копенгагене, он в августе 1932 года попал на лекцию Бора на международном конгрессе по световой терапии. Лекция называлась «Свет и жизнь». В ней Бор поделился своими мыслями о проблеме жизни в св...

Самая главная молекула

Молекулярные биологи уже давно пришли к заключению, что центральное место в жизнедеятельности занимает молекула дезоксирибонуклеиновой кислоты (ДНК).

Действительно именно в ДНК записана генетическая информация о всех потенциальных возможностях организма, о программе, по которой эти возможности реализуются в процессе формирования клеток, тканей и органов. Осуществляется это специальными механизмами "переписывания" генетической информации с определенных участков ДНК (генов), кодирующих определенные рибонуклеиновые кислоты (РНК) и соответствующие им белки.

Конечно, в клетках образуется и функционирует множество и других, кроме ДНК, различных молекул, необходимых для жизнедеятельности. Но число молекул каждого типа (например, число молекул глюкозы или той или иной жирной кислоты) очень большое. Число же генов, кодирующих синтез отдельных белков в каждой клетке или определяющих тот или иной признак организма, может быть равным всего двум: один ген содержится в наборе хромосом, полученном из женской половой клетки (гаметы), другой - в наборе хромосом из мужской гаметы. (Клетка, образуемая при слиянии этих гамет - зигота, - служит началом развития организма.)

Таким образом, определяющая (кодирующая, контролирующая) роль генов в синтезе белков, а через них и в построении различных биологических структур, а также уникальность наборов многих (хотя и не всех) генов позволяют согласиться с мнением тех биологов, которые считают молекулу ДНК самой главной молекулой.

А какова роль ДНК в развитии патофизиологических процессов, хронических тяжелых болезней или старения? Этот общий вопрос можно разделить на более конкретные, имеющие прямое отношение к проблеме старения и механизмам (патогенезу) развития болезней, ассоциируемых со старением.

Нарушаются ли структура и функция ДНК с возрастом? Если да, то каким образом эти нарушения могут быть связаны с признаками старения? Не служат ли эти нарушения по крайней мере одной из причин увеличения предрасположенности организма к тяжелым, наиболее распространенным болезням пожилого и старческого возраста? И нельзя ли наметить новые пути профилактики таких болезней или даже замедления самого процесса старения с помощью средств, снижающих скорость возрастного нарушения структуры и функции ДНК? В книге освещен целый ряд интересных фактов, полученных при исследовании перечисленных вопросов в лабораториях.

Забегая вперед, подчеркну: изменения ДНК не единственный механизм старения. Изменения структуры и функции мембран клеток, ее белоксинтезирующего аппарата и систем энергообеспечения, нарушения гомеостаза организма на различных уровнях - вот другие биологические основы снижения жизнеспособности организма с возрастом, причины увеличения его предрасположенности к ряду заболеваний. Эти изменения мы также будем внимательно рассматривать, хотя и не так подробно, как изменения ДНК.

Не каждому читателю будет просто понять суть недавно открытых свойств ДНК, возрастных изменений ее структуры и функций, роль этих изменений в снижении и нарушении функций клеток и организма. Чтобы облегчить читателю-небиологу понимание такой информации, вкратце напомню о структуре и функции "самой главной молекулы".

ДНК построена из звеньев четырех типов: (Т) тиминового, (А) аденинового, (Г) гуанинового и (Ц) цитозинового (см. рис. 1, а). В последовательности расположения этих звеньев и закодирована генетическая информация. Причем пуриновые (Л и Г) и пиримидиновые (Т и Ц) основания составляют две полимерные цепочки (нити) ДНК, и последовательность звеньев каждой из этих цепей однозначно определяется последовательностью звеньев в цепи-"партнерше" согласно принципу комплементарности, т. е. против А или Т в одной цепи в другой расположены соответственно Т или Л, а против Г или Ц - соответственно Ц или Г.

Взаимодействие между этими комплементарными парами оснований определяется гораздо более слабыми связями, чем те ковалентные, которые объединяют отдельные звенья каждой полимерной цепи. Это существенное свойство ДНК, так как позволяет ей изменять характер взаимного расположения ее цепей (ее конформацию, вторичную структуру) без разрушения самих цепей (первичной структуры ДНК - хранилища генетической информации). Ведь чтобы произошло удвоение генетического вещества (редупликация ДНК) в материнской клетке, делящейся на 2, каждая из двух цепей должна стать матрицей, на которой синтезируется комплементарная ей цепь. (Отсюда и второе название процесса синтеза ДНК - репликация.) Очевидно, что это может осуществляться лишь в том случае, если в месте редупликации материнской ДНК, ее комплементарные цепи разойдутся.

Таким образом, каждый ген - своего рода молекулярная лестница, перекладинами которой служат пары нуклеотидов АТ и ГЦ. Остов же этой лестницы составляют остатки молекулы дезоксирибозы и фосфорной кислоты, причем нуклеотиды присоединены к остову посредством ковалентной связи между азотами колец Л, Т, Г или Ц и определенным атомом дезоксирибозы. Эта связь называется гликозильной (старое название, нередко еще встречающееся даже в специальных работах, - гликозидная связь). Запомнить название этой связи нужно обязательно хотя бы потому, что именно эта связь оказывается слабым местом в первичной структуре ДНК, и поэтому разрыв ее может быть одной из молекулярных основ старения всего организма и увеличения его предрасположенности к некоторым тяжелым заболеваниям.

ДНК организована не только в форме лестницы, эта лестница еще и завита в правую спираль. Такова структура знаменитой двойной спирали, открытой Уотсоном и Криком в 1953 году. Считается общепринятым, что в живой клетке ДНК, как правило, находится именно в такой (канонической) конформации.

Структура двойной спирали ДНК, находящейся в В-форме, организована согласно принципу "золотого сечения". Так шаг спирали ДНК равен 33,8 Å, а ее диаметр 21,1 Å, и, следовательно, диаметр составляет приблизительно 0,62 величины шага. Как известно, нахождение "золотого сечения" отрезка длиной "а" сводится к решению уравнения

X= α(√5-1) ≈0,615α
2

Таким образом, ДНК построена еще и красиво. Ведь принципы "золотого сечения" легли в основу композиционного построения великих произведений мирового искусства, прежде всего произведений архитектуры античности и Возрождения (термин "золотое сечение" ввел Леонардо да Винчи).

Однако в последние годы было установлено, что определенные участки двойной спирали ДНК могут принимать и другую конформацию, в частности они могут находиться в форме левой спирали. Сначала была доказана потенциальная возможность существования такой неканонической формы ДНК и лишь в последние годы получено доказательство ее существования в клетке. Это свойство ДНК нужно тоже запомнить, чтобы понять нижеприводимые факты о том, что с возрастом отдельные участки ДНК могут изменять свою конформацию.

Кстати, одно из первых доказательств того, что ДНК в клетке (in vivo) может находиться в форме не только правой спирали, но и в левоспиральной конформации, было получено при исследовании ДНК, выделенной из тканей очень старых животных, и при сравнении ее с ДНК, выделенной из тех же тканей молодых животных. Следовательно, для понимания механизмов старения необходимо не только знание структуры ДНК, но и исследование возрастных изменений ДНК - один из подходов для обнаружения новых свойств ДНК.

Хранение и передача генетической информации в ряду поколений организмов осуществляются половыми клетками, в которых содержание ДНК и хромосом в 2 раза меньше, чем в остальных (соматических) клетках организма. После оплодотворения генетические структуры мужской и женской половых клеток интегрируются, и вслед за этим начинается процесс деления и дифференцировки образующихся клеток.

Так как процессу деления клеток предшествуют удвоение содержания ДНК (ее дупликация) и строго равномерное распределение по дочерним клеткам, то обычно полагают, что все клетки содержат одну и ту же генетическую информацию. Реализуется же эта информация в различных клетках отнюдь не одинаково. Под реализацией генетической информации понимают синтез на ДНК, как на матрице (этот процесс называют транскрипцией), другой нуклеиновой кислоты - рибунуклеиновой (РНК). Специальные молекулы РНК - информационные - определяют, какие белки синтезируются в клетке, а от последних в конечном счете зависит характер ее жизнедеятельности. Следовательно, структура и функция клетки (ее фенотип) зависят от того, какие ее гены активны, а какие нет.