Материалы лекций «Фундаментальные основы нанотехнологий. Нанотехнологии в искусстве. Будущие нанотехнологи: требования



Добавить свою цену в базу

Комментарий

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.

С наступлением нового тысячелетия началась эра нанотехнологии. Стремительное развитие компьютерной техники, с одной стороны, будет стимулировать исследования в области нанотехнологий, с другой стороны, облегчит конструирование наномашин. Таким образом, нанотехнология будет быстро развиваться в течение последующих десятилетий.

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана “Там внизу много места”, сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предложил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Впервые термин “нанотехнология” употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах “Машины создания: грядет эра нанотехнологии” и “Nanosystems: Molekular Machinery, Manufacturing, and Computation”. Центральное место в его исследованиях играли математические расчеты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

Фактически американцы ввели в обиход термин - нанотехнологии, обобщивший уже ведущиеся в то время широким фронтом научные исследования, вызванные появлением соответствующего инструментария, в частности, сканирующих зондовых микроскопов.

Невольно новый термин оказался и удачным пиаровским ходом, ибо он не формулирует конкретной задачи, а предлагает с применением единого инструментария решения широкого спектра задач в самых разных областях человеческой деятельности.

Нанотехнология и, в особенности, молекулярная технология - новые области, очень мало исследованные. Развитие современной электроники идет по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология - следующий логический шаг развития электроники и других наукоемких производств.

Как показывает обзор литературы, нанотехнологии рассматриваются сегодня и как область исследований, и как направление технологического развития. С одной стороны, это отражает современные тенденции взаимосвязи науки и технологии, а с другой - порождает серьезную терминологическую путаницу. Противоречия начинаются уже в попытках обозначить область исследований в целом и дать определение понятия «нанотехнологии». Так, некоторые авторы выделяют «нанонауку» (nanoscience), занимающуюся познанием свойств наноразмерных объектов и анализом их влияния на свойства материалов, и «нанотехнологию» (nanotechnology), имеющую своей целью развитие этих свойств для производства структур, устройств и систем с характеристиками, заданными на молекулярном уровне. Иногда такое разделение имеет под собой сугубо методическую основу, когда речь идет об анализе научных публикаций (и тогда говорится о «нанонауке») либо патентов (в этом случае используется понятие «нанотехнологии»). На практике же провести различие между нанонаукой и нанотехнологией оказывается практически невозможным, поэтому во избежание путаницы отдельные исследователи предлагают ограничиться только одним термином - «нанотехнологии», объединив в нем обе составляющие. Принимая такой подход, важно предложить согласованное определение нанотехнологий, которое, в частности, призвано обозначить общие границы рассматриваемой области, исключив из нее лишнее.

Заметим, что, несмотря на наличие различных определений нанотехнологий, единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

На международном уровне из всего многообразия подходов, встречающихся в научных публикациях, аналитических обзорах и политических документах разных стран, выделяются пять определений, пользующихся наибольшим влиянием (табл. 1).

Таблица 1 - Общие определения нанотехнологий

Определение

VII Рамочная программа ЕС (2007-2013)

Получение новых знаний о феноменах, свойства которых зависят от интерфейса и размера; управление свойствами материалов на наноуровне для получения новых возможностей их практического применения; интеграция технологий на наноуровне; способность к самосборке; наномоторы; машины и системы; методы и инструменты для описания и манипулирования на наноуровне; химические технологии нанометровой точности для производства базовых материалов и компонентов; эффект в отношении безопасности человека, здравоохранения и охраны окружающей среды; метрология, мониторинг и считывание, номенклатура и стандарты; исследование новых концепций и подходов для практического применения в различных отраслях, включая интеграцию и конвергенцию с новыми технологиями.

Рабочий план Международной организации по стандартизации (ISO) от 23/04/2007

1) Понимание механизмов управления материей и процессами на наношкале (как правило, но не исключительно, менее 100 нанометров по одному или нескольким измерениям), где феномены, связанные со столь малыми размерами, обычно открывают новые возможности практического применения.

2) Использование свойств материалов, проявляющихся на наношкале и отличных от свойств отдельных атомов, молекул и объемных веществ, для создания улучшенных материалов, устройств и систем, основанных на этих новых свойствах.

Европейское патентное ведомство (EPO)

Термин «нанотехнология» покрывает объекты, контролируемый геометрический размер хотя бы одного из функциональных компонентов которых в одном или нескольких измерениях не превышает 100 нанометров, сохраняя присущие им на этом уровне физические, химические, биологические эффекты. Он покрывает также оборудование и методы контролируемого анализа, манипуляции, обработки, производства или измерения с точностью менее 100 нанометров.

США: Национальная нанотехнологическая инициатива (2001- н.в.)

Нанотехнология - это понимание и управление материей на уровне примерно от 1 до 100 нанометров, когда уникальные явления создают возможности для необычного применения. Нанотехнология охватывает естественные, технические науки и технологию нанометровой шкалы, включая получение изображений, измерение, моделирование и манипулирование материей на этом уровне.

Япония: Второй общий план по науке и технологиям (2001-2005)

Нанотехнология - междисциплинарная область науки и техники, включающая информационные технологии, науки об окружающей среде, о жизни, материалах и др. Она служит для управления и использования атомов и молекул размером порядка нанометра (1/1.000.000.000), что дает возможность обнаруживать новые функции благодаря уникальным свойствам материалов, проявляющимся на наноуровне. В результате появляется возможность создания технологических инноваций в различных областях.

Все эти определения были идентифицированы Рабочей группой по нанотехнологиям (РГН) Организации экономического сотрудничества и развития (ОЭСР) в качестве базы для создания унифицированной методологической рамки, необходимой для организации гармонизированной в международном масштабе системы сбора и анализа статистической информации о сфере нанотехнологий. Отметим, что предлагаемые теми или иными международными либо национальными организациями определения носят характер рабочих, отражая специфику тех конкретных программ и проектов, применительно к которым они и сформулированы, и различаются в зависимости от сферы их применения, решаемых задач и уровня полномочий этих организаций. К примеру, в определении нанотехнологий в VII Рамочной программе ЕС подчеркивается их научно-технологическая составляющая; подходы, принятые Европейским и Японским патентными ведомствами, нацелены на работу в сфере охраны интеллектуальной собственности, а формулировка из Национальной нанотехнологической инициативы США охватывает естественные, технические науки и технологии. Тем не менее не следует забывать, что состав приведенного набора определений продиктован, прежде всего, их политической операциональностью (ориентацией на принятие политических решений) и принадлежностью к странам (регионам) с максимальными объемами государственного финансирования научно-технологической сферы (ЕС, США, Япония). Список дополняют так называемое «рамочное» определение ISO, составляющее основу документов РГН, и определение Европейского патентного ведомства (EPO) - пока еще единственного источника международно-сопоставимой информации о нанотехнологиях. Указанные определения объединяет ряд общих черт, относительно которых следует сделать несколько дополнительных замечаний.

Во-первых, каждое из приведенных определений обращает внимание на масштаб рассматриваемого явления. Как правило, указывается диапазон от 1 до 100 нм, внутри которого могут быть зафиксированы уникальные молекулярные процессы.

Во-вторых, подчеркивается принципиальная возможность управления процессами, происходящими, как правило, в границах обозначенного диапазона. Это позволяет отличить нанотехнологии от природных явлений подобного рода («случайных» нанотехнологий), а также обеспечить возможность придания создаваемым материалам и устройствам уникальных характеристик и функциональных возможностей, достижение которых в рамках предшествующей технологической волны было невозможно. В свою очередь это означает, что в средне- и долгосрочной перспективе нанотехнологии могут не только содействовать развитию существующих рынков, но и способствовать возникновению новых рынков (продуктов или услуг), способов организации производства, видов экономических и социальных отношений.

В-третьих, характерной особенностью определений является их экономико-статистическая операциональность. Нанотехнологии представлены как явление, поддающееся количественной оценке, - это техники, инструменты, материалы, устройства, системы. Это делает их важным элементом цепочек создания стоимости, однако вопросы оценки вклада нанотехнологий в стоимость конечного продукта и пределов диверсификации существующих секторов производства при их применении требуют дополнительного рассмотрения.

В то же время обращают на себя внимание некоторые различия в указанных определениях. Прежде всего они касаются степени конвергентности и целевого назначения нанотехнологий. Так, в европейском варианте отмечается как интеграция различных технологий в границах наношкалы, так и их конвергенция с другими технологиями; выделяются отдельные сферы их применения. Японская версия подчеркивает инновационную природу нанотехнологии. К тому же европейское и японское определения со всей очевидностью отражают распространенное убеждение, что использование схожих «строительных элементов» (например, атомов и молекул) и инструментов анализа (микроскопы, компьютеры высокой мощности и др.) в различных научных дисциплинах может привести в будущем к синтезу информационных, био- и нанотехнологий.

Интересно также, что среди приведенных определений встречаются не только общие (базовые), но и так называемые «списочные», в том числе принятое в VII Рамочной программе ЕС. Обычно они формируются путем перечисления научно-технологических областей (направлений), которые относятся к соответствующей сфере. Как показывает случай с биотехнологиями, использование общего и списочного определений способствует эффективному решению различных задач в области статистики, анализа, научно-технической и инновационной политики. Так, базовые определения хорошо подходят для научных дискуссий, достижения консенсуса по общим вопросам, принятия рамочных политических решений. Списочные определения позволяют наладить коммуникацию с технологическими и производственными областями, где новые технологии могут иметь прикладное значение (например, для исследования рынков и компаний), а также обеспечить создание более строгой системы отбора и экспертизы проектов. В конечном итоге это позволяет повысить точность и достоверность получаемой информации.

В официальной российской практике вплоть до последнего времени действовали два различных базовых определения нанотехнологий, которые представлены, соответственно, в «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» и «Программе развития наноиндустрии в Российской Федерации до 2015 года» (табл. 2).

Таблица 2 - Российские определения нанотехнологий

Документ

Определение

Концепция развития в Российской Федерации работ в области нанотехнологий на период до 2010 года

Нанотехнологии - это совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Программа развития наноиндустрии в Российской Федерации до 2015 года

Нанотехнологии - технологии, направленные на создание и эффективное практическое использование нанообъектов и наносистем с заданными свойствами и характеристиками.

Первая из этих двух версий фокусируется на изучении и создании объектов определенного (наноразмерного) масштаба, вторая - предлагает рассматривать процессы создания и использования нанотехнологий. В обоих случаях отсутствуют указания на особенности, связанные с уникальностью явлений и происходящие в пределах наношкалы. Кроме того, определение, представленное в Программе развития наноиндустрии, не несет новой информации о характеризуемом явлении и формулируется исходя из свойств и признаков одного порядка. Это делает его максимально абстрактным и лишает какого бы то ни было уровня операциональности.

С целью преодоления отмеченных выше проблем и выработки такого определения нанотехнологий, которое позволило бы отразить их специфический характер и могло бы быть использовано в сфере статистического наблюдения, а также научно-технологической и инновационной политики, нами была предпринята попытка синтеза эффективных элементов различных существующих подходов. Результатом соответствующих методических усилий стала новая версия базового определения нанотехнологий, которая прошла обсуждение в целом ряде представительных аудиторий, включая специализированные экспертные совещания и фокус-группы, рабочую группу Научно-координационного совета ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» по направлению «Индустрия наносистем и материалов», редколлегию журнала «Российские нанотехнологии», первый и второй Международные форумы по нанотехнологиям и т.п. Финальный вариант предлагаемого определения выглядит следующим образом…

Под нанотехнологиями предлагается понимать совокупность приемов и методов, применяемых при изучении, проектировании и производстве наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (около 1-100 нм), наличие которых приводит к улучшению либо к появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов.

Данное определение учитывает комплексный научно-технологический характер рассматриваемого явления, указывает на специфическую размерность и управляемость основных процессов, подчеркивает их определяющее влияние на свойства создаваемых продуктов и отношение к рыночной новизне. Оно может быть использовано для целей проведения научно-технической экспертизы, формулирования критериев отбора и оценки отдельных проектов, связанных с нанотехнологиями, организации статистического наблюдения в этой сфере.

Предложенное определение было рассмотрено правлением Государственной корпорации «Роснанотех» в сентябре 2009 г. и принято в качестве рабочего.

Как уже было отмечено выше, междисциплинарный характер нанотехнологий обусловливает целесообразность дополнения базового их определения списочным, которое охватывало бы научно-технологические направления, объединенные общим понятием «нанотехнологии». В ходе работы были выделены семь таких крупных направлений, которые составляют списочное определение и образуют основу проекта классификации направлений нанотехнологий.

Нанотехнология по своей специфике является междисциплинарной научной областью прикладной техники, занимающейся изучением и созданием новаторских и инновационных методов получения новейших материалов с определенными свойствами, которые в дальнейшем применяются в самых разнообразных отраслях жизнедеятельности современного человека.

Вообще нанотехнология работает со структурами, которые обладают значениями 100 нм и даже меньше, и при этом использует устройства, а также материалы, имеющие вышеуказанные размеры. На сегодняшний день нанотехнология чрезвычайно разнообразна и используется в самых различных исследованиях, начиная от создания новых технических устройств до новейших исследований связанных с изучением молекулярно-атомного уровня.

Фундаментальные основы нанотехнологий.

Метод атомно-силовой микроскопии.

Следует сказать, что одним из основных инструментов, которые используются для работы с микрочастицами, являются микроскопы, ведь без данного прибора нет возможности не только работать с микрочастицами, но и изучать микромир. Увеличение разрешающих особенностей современных микроскопов и получение всё новых и новых знаний об элементарных частицах на сегодняшний день взаимосвязаны друг с другом. На данный момент при помощи такого оборудования как атомно-силовые микроскопы или АСМ и сканирующие электронные микроскопы современные учёные получают возможность не только наблюдать за отдельными атомами, но даже находить способы воздействия на них, например, переметывая атомы по поверхности. При этом современным учёным уже удалось создать так называемые двухмерные наноструктуры на поверхностях при помощи вышеприведённого метода воздействия. Так, например, в исследовательских центрах всем известной компании IBM учёные путём последовательного перемешивания атомов ксенона на поверхности нанокристалов никеля смогли создать логотип компании, состоящий из 35 атомов вещества.

Выполняя указанные действия, связанные со смешиванием веществ, а также по их разъединению и соединению, ученые столкнулись с некоторыми техническими трудностями. Для преодоления которых необходимо создавать условия сверхзвукового вакуума (10?11 тор), для этого необходимо охладить подножку и микроскоп до сверхнизкой температуры равной от 4 до 10 К, при этом поверхность данной подложки должна быть гладкой и чистой на уровне атомов. Для этого используются специализированные технологии по механико-химической обработке изделий, причём целью данной обработки является создание уменьшения поверхностных диффузий осаждаемых атомов, при помощи чего и производится охлаждение основания.

Наночастицы.

Главной отличительной особенностью новых материалов, которые получаются в процессе использования нанотехнологий , является непредсказуемое получение физикотехнических характеристик приобретаемых данными материалами. Благодаря этому современные учёные получают возможность получать новые квантовые физико-механические характеристики у веществ, в которых видоизменяются электронные структуры, что автоматически меняет и форму проявления данных соединений. Так, например, возможность уменьшить размер частиц далеко не во всех случаях поддаётся определению или проведению замеров с помощью макро или микро измерений. Однако проведение измерений может стать возможным в том случае, если размер частиц находится в диапазоне миллимикронов. Также следует отметить, что определённые физико-механические свойства изменяются в случае изменения размера элементов. На данный момент наличие у наноматериалов необычных механических свойств является предметом исследования у ученых, работающих в области наномеханники. При этом отдельное место в современных нанотехнологиях занимает получение новых веществ при помощи использования различных катализаторов, которые влияют на поведение наноматериалов при взаимодействии их с различными биоматериалами.

Как мы уже говорили ранее, частицы обладающие размерами от 1 до 100 нанометров называются наночастицами, при этом как показали исследования, наночастицы многих материалов обладают высокими абсорционными и каталическими свойствами. Другие материалы позволяют получить уникальные оптические свойства. Так, например, исследователям удалось получить керамические прозрачные материалы, основой для которых стали нанопорошки размером 2-28нм, обладающие более лучшими свойствами, чем, например, крон. Также учёные смогли получить взаимодействие искусственно полученных наночастиц с природными объектами обладающими наноразмером, например с белками, нуклеиновыми кислотами и др. Кроме того очищенные наночастицы благодаря своим уникальным свойствам имеют возможность встраиваться в различные структуры. Такие структуры, содержащие в себе наночастицы, получают ранее небывалые у них свойства и характеристики.

На сегодняшний день все нанообъекты делят на три класса:

К первому классу относятся трёхмерные частицы, которые получаются при взрыве проводников, путём плазменного синтеза или при помощи восстановления тонких плёнок.

Ко второму классу относятся так называемые двумерные объекты, являющиеся плёнками и получаемые при помощи методом молекулярного наслаивания, ALD, CVD и методами ионного наслаивания.

К третьему классу относятся вискеры или одномерные объекты, получаемые методами молекулярного наслаивания или введением различных веществ в цилиндрический микропорт.

Кроме того существуют ещё и нанокомпозиты, которые получаются путём введения наночастиц в специализированные матрицы. На сегодняшний день большое использование получил пока только метод микролитографии, который даёт возможность получать на поверхности матрицы островковые плоские объекты, имеющие размер от 50 нм, и используемые в современной электронике. Также необходимо отметить и методы молекулярного и ионного наслаивания, так как при помощи данных методов возможно получать реальные плёночные покрытия в виде монослоя.

Самоорганизация наночастиц.

Одной из важнейших задач, которая стоит перед нанотехнологией, является то, как заставить атомы и молекулы проводить группировку определённым образом, что позволило бы им саморемонтироваться и саморазвиваться, что в конечном итоге приводило бы к получению новых материалов или устройств. Решением данных задач занимаются учёные химики, работающие в области супрамолекулярной химии. При этом они проводят изучения не отдельных молекул, а взаимодействие между ними, а также то, как они организовываются при том или ином воздействии и имеют ли возможность образовывать новые вещества. Многие учёные считают, что природа по-настоящему обладает подобными системами и в ней протекают такие процессы. Так, например, уже известны биополимеры, которые могут организовываться в особые структуры. Также в качестве подобных примеров приводятся белки, которые благодаря своим свойствам не только могут сворачиваться и получать глобулярную форму, но и образовывать целые комплексы и структуры, которые содержат в себе сразу несколько молекул протеина. Уже сегодня учёные смогли создать метод синтеза, используемый специфические свойства, которыми обладают молекулы ДНК.

В настоящее время нанотехнологии - это весьма обширная область исследований, включающая в себя целый ряд направлений физики, химии, биологии, электроники, медицины и других наук.

Эра «нано» наступит в середине века

Однако, несмотря на значительные достижения, энтузиазм исследователей, все увеличивающееся финансирование этой области и довольно короткие сроки современного промышленного освоения научных разработок в развитых странах (10–15 лет), вряд ли можно рассчитывать, что эра нанотехнологий наступит раньше середины текущего века. Хотя отдельные разработки достаточно широкого использования, несомненно, будут появляться и уже имеются на рынке.

Если мы посмотрим на современный рынок нанопродукции, то увидим, что более 90% его занимают нанопорошки (начали применяться еще в 50-х годах прошлого века, правда, до нанобума они назывались ультрадисперсными), нанокатализаторы и нанопористые материалы (фильтры). Однако наиболее заманчивые и многообещающие приложения нанотехнологий, о которых обычно и идет речь, когда говорят о выдающихся перспективах этой области, находятся еще в стадии фундаментальных исследований.

Имеется в виду развитие и широкое использование нанотехнологий (хотя этого понятия тогда еще не было) в духе знаменитой фейнмановской лекции «Внизу полным-полно места: приглашение в новый мир физики» (декабрь 1959 г.).

Как правильно «уложить» атомы

Элементарными кирпичиками для строительства любого вещества являются атомы и молекулы. «Изделие» с размерами наномасштаба может быть «собрано» из них, если уложить нужные атомы в правильном порядке. При этом, на наш взгляд, не так уж важна конкретная технология такой сборки (это может быть эпитаксиальное выращивание, самоорганизация, химические или биохимические реакции и пр.). Решающим здесь является умение конструировать «наноизделия» с определенными свойствами или функциями, обладание технологиями, которые позволяют с атомной точностью изготовить это «изделие», а также методами комплексной диагностики, включая контроль в процессе изготовления (in situ). И управление на его основе технологическим процессом.

Нанотехнологии такого уровня пока имеются, в основном, лишь в отдельных научных лабораториях. Они базируются на новейших результатах фундаментальных исследований. Более того, последние играют здесь ключевую роль. Исследования физико-химических процессов в нанотехнологиях, разработка методов конструирования, диагностики и исследования наноструктур, наноматериалов и наноустройств, изучение их свойств и новых явлений, возникающих на наноуровне, - по большей части являются и еще долгое время будут оставаться предметом фундаментальных или ориентированных фундаментальных исследований.

Поэтому, если мы хотим в области нанотехнологий и наноиндустрии двигаться в ногу с развитыми странами, то первостепенное внимание должны сосредоточить на фундаментальных исследованиях. Они должны иметь оснащение и выполняться на самом современном уровне. В противном случае мы рискуем не только оказаться на обочине длинной нанотехнологической дороги, но и в скором времени перестанем на должном уровне понимать мировые достижения в этой области.

Сказанное, однако, не означает, что усилия по организации производства и освоению рынка для продвинутых в практическом плане разработок должны быть ослаблены.

Будущие нанотехнологи: требования

Следует отметить еще одну важную проблему, которую придется решать для успешного развития наноиндустрии. Дело в том, что при переходе к системам нанометровoго масштаба начинают отчетливо проявляться квантовые эффекты. В результате возникает принципиально новая ситуация, когда квантовые явления (размерное квантование, туннелирование, интерференция электронных состояний и др.) играют ключевую роль в физических процессах в таких объектах и в функционировании приборов на их основе.

Проявляются они и в технологических процессах, в химических реакциях, поскольку межатомное взаимодействие имеет квантовый характер. Таким образом, от будущих нанотехнологов (а профессия эта должна стать массовой при развитии наноиндустрии) потребуется умение мыслить квантовомеханическими категориями, существенно отличающимися от обычных классических представлений. Это означает, что существенной перестройки потребует инженерное образование - его будут осваивать с упором на фундаментальные дисциплины.

Заблуждения от нанотехнологий

Фундаментальные исследования и их материальное обеспечение имеют принципиальное значение для развития нанотехнологий и наноиндустрии. Сейчас часто высказывается мнение, что в области нанотехнологий у нас одинаковые стартовые позиции с передовыми странами. Это - опасное заблуждение! Хотя мы и располагаем высококвалифицированными кадрами и занимаем передовые позиции на ряде направлений, необеспеченность современным технологическим, диагностическим и исследовательским оборудованием не позволяет в достаточной мере реализовать имеющиеся возможности.

В последний раз более или менее массовое обновление парка научного оборудования проводилось около 20 лет назад при реализации Государственной программы СССР «Высокотемпературная сверхпроводимость». К тому же, исследования на Западе на многих направлениях начаты раньше. И ведутся значительно более широким фронтом.

Казалось бы, сейчас не о чем беспокоиться. В последние годы руководство страны, осознавшее жизненную необходимость развития нанотехнологий, предпринимает значительные усилия по организации на государственном уровне работ в этой области. Созданы Правительственный совет по высоким технологиям и Госкорпорация «Роснанотех», выделяются значительные финансовые средства. Однако складывается впечатление, что роль фундаментальных исследований в развитии нанотехнологий государственными органами недооценивается.

Минобрнауки фундаментальные исследования практически не финансирует. Фундаментальные исследования в области нанотехнологий ведутся за счет средств соответствующих ведомств. Центральное место в развитии фундаментальных исследований в нашей стране традиционно принадлежит Российской академии наук.

В 2008 г. по программам фундаментальных исследований Президиума и Отделений РАН финансирование нанотехнологических проектов составляло всего около 100 млн рублей (не считая базового финансирования на зарплату и коммунальные платежи). Финансирование также осуществлялось по проектам Российского фонда фундаментальных исследований (РФФИ) и международным проектам. Анализ показывает, что такое финансирование почти на два порядка меньше, чем требуется для того, чтобы обеспечить современный уровень фундаментальных исследований и их развитие, необходимое для становления отечественной наноиндустрии. Для справки: только в Федеральном бюджете США 2007 года на работы, выполняемые в рамках «Национальной нанотехнологической инициативы», выделено около 1,3 млрд долл. Из них 401 млн долл. (около 31 %) - на фундаментальные исследования явлений и процессов на наномасштабах, 250 млн долл. (20 %) - на работы по наноматериалам, 164 млн долл. (13 %) - на приобретение исследовательского оборудования.

Национальная программа фундаментальных исследований

Такое положение дел представляется совершенно недопустимым. На наш взгляд, должна быть создана Национальная программа фундаментальных исследований в области нанотехнологий с целевым финансированием из федерального бюджета, сопоставимым с финансированием соответствующих программ в развитых странах, и соответствующими капитальными вложениями. Только в этом случае мы сможем рассчитывать на успешное и конкурентоспособное развитие отечественной наноиндустрии.

К настоящему времени Комиссией РАН по нанотехнологиям разработана программа фундаментальных исследований Российской академии наук «Нанотехнологии», которая одобрена Общим собранием РАН. К разработке программы, помимо членов Комиссии, были привлечены ученые, активно работающие в области нанотехнологий. Рассмотрены около тысячи предложений, полученных из более 100 институтов РАН. Анализ полученных предложений показывает, что в РАН работы в области нанотехнологий охватывают широкий круг проблем. И их уровень, в целом, достаточно высок.

Разделы программы «Нанотехнологии»

Выбор основных направлений исследований при формировании программы основывался на современных достижениях и тенденциях развития мировой науки, значимости ожидаемых результатов и перспектив практического использования. А также с учетом задела, имеющегося в российских научных организациях. Программа включает в себя шесть таких разделов: «Физика наноструктур», «Наноэлектроника», «Наноматериалы», «Нанобиотехнологии», «Нанодиагностика» и «Образование».

К выполнению Программы фундаментальных исследований РАН предполагается привлечь в качестве соисполнителей около 60 неакадемических организаций, предприятий и вузов. По существу, разработанная Программа может служить основой Национальной программы фундаментальных исследовании в области нанотехнологий.

Экспертные оценки объемов финансирования, необходимого для успешной реализации Программы фундаментальных исследований РАН «Нанотехнологии», показывают, что на выполнение научно-исследовательских и опытно-конструкторских работ требуется около 12–13 млрд. руб. в год (или около 90 млрд. руб. на весь срок выполнения Программы по 2015 год). Требуемый объем капитальных вложений оценивается в 55 млрд. руб. Для Национальной программы эти суммы должны быть скорректированы.

ЦКП проблемы не решают

Следует подчеркнуть, что необходимым современным оборудованием должна быть обеспечена каждая эффективно работающая научная группа, выполняющая один из проектов программы, поскольку его использование для конкретных исследований часто имеет специфический характер. Центры коллективного пользования здесь проблему не решают, хотя они и полезны для выполнения более или менее стандартных измерений (например, для диагностики и тестирования). Или для работы на уникальных сверхдорогостоящих установках, созданных в единичных экземплярах.

Обычным же оборудованием исследователи, как принято и у нас, и в мировой практике, должны пользоваться на своем рабочем месте, хотя современное оборудование, как правило, стоит дорого. Другое дело, что оно должно использоваться максимально эффективно.

Госпрограммы и фундаментальные исследования

В этом году начала действовать весьма нужная Федеральная целевая программа «Развитие инфраструктуры наноиндустрии в РФ на 2008–2010 гг.» Хотя большая часть работ в области нанотехнологий и наноматериалов в нашей стране выполняется в РАН, эта программа разрабатывалась без участия РАН. И РАН не фигурирует в ней как государственный заказчик. Другие же ведомства, где ведутся подобные работы, в этой роли в ней представлены.

Причины, по которым исследовательские организации РАН исключены из инфраструктуры наноиндустрии России (в эту программу включен лишь Институт металлургии РАН), нам не известны. Однако такое решение организаторов программы выглядит, по меньшей мере, странным.

На современном этапе прикладные исследования и разработки часто (хотя и далеко не всегда) являются естественным продолжением фундаментальных исследований. Более того, далеко не всегда можно провести грань между первыми и последними. По образному выражению британского физика Д. Портера, все научные исследования - прикладные, только часть уже нашла приложения, а часть найдет их в будущем.

Разработанная Комиссией РАН по нанотехнологиям программа является, прежде всего, программой фундаментальных исследований. Вместе с тем, она включает в себя и работы прикладного характера, ряд из которых уже в ближайшее время может быть доведен до промышленного использования. В настоящее время Комиссия РАН по нанотехнологиям рассматривает несколько крупных «сквозных» проектов, включающих в себя все стадии работ - от фундаментальных исследований до организации опытного производства.

Для реализации таких проектов предполагается создать распределенные (виртуальные) лаборатории, работа каждой из которых подчинена единой цели и охватывает всю цепочку исследований и разработок по проекту (от фундаментальных исследований до организации производства). При этом научные группы, входящие в такие лаборатории и выполняющие конкретные задачи, продолжают работать в своих организациях. Лаборатории такого рода также предполагается создавать для решения крупных научных задач и выполнения междисциплинарных исследований в рамках Программы РАН «Нанотехнологии».

«Принц-технология» и светодиоды

В заключение - несколько примеров результатов фундаментального и прикладного характера, полученных российскими учеными и разработчиками за последние годы. В области физики наноструктур и наноэлектроники отметим получение листов графена (монослой графита) и исследование его электронных свойств, показавшее, что носители заряда в графене обладают нейтриноподобным электронным спектром (ИПТМ РАН).

Осуществлено первое надежное наблюдение бозе-эйнштейновской конденсации пространственно непрямых экситонов в двухъямных наноструктурах (ИФП РАН), разработка так называемой «принц-технологии» и создание нового класса периодических наноструктур для квантовых приборов (ИФП СО РАН), беспороговых полупроводниковых инжекционных лазеров на квантовых точках, полупроводниковых лазеров рекордной мощности на основе асимметричных гетероструктур и светодиодов белого света (ФТИ им. А. Ф. Иоффе РАН), матричных фотоприемников ИК излучения и микроволновых полевых транзисторов (ИФП СО РАН), широкодиапазонных магниторезистивных сенсоров (ИФМ УрО РАН).

В области наноматериалов можно назвать разработку высокоресурсных углепластиков со специальными свойствами, содержащих функциализированные наночастицы фуллерена и астралена, использование которых в истребителях пятого поколения повысит различные эксплуатационные характеристики на 20-100 % (ВИАМ, ИПХФ РАН, ИНХ СО РАН). Выполнена разработка катализаторов на основе наночастиц золота, нанесенных на оксид алюминия, для решения проблемы «холодного старта» дожигания выхлопных газов автомобильных двигателей (ИК СО РАН).

В области нанобиотехнологий и медицинской диагностики осуществлены разработка и создание гриппозной нановакцины «гриппол» (ИБХ РАН, ГНЦ Институт иммунологии ФМБА, НПО «Петровакс», ГУП «Микроген»), которая за 2004-2007 гг. привита 70-ти млн человек. Разработаны методики получения рентгеновских рефракционных изображений мягких тканей человека (РНЦ «Курчатовский институт»).

Заметим, что в основе многих современных научно-технологических достижений лежат результаты исследований, начатых тридцать или даже более лет назад. Будем надеяться, что государственные органы оценят, наконец, должным образом определяющую роль фундаментальных исследований для развития в стране наноиндустрии. И в этой области мы будем двигаться в ногу с развитыми странами.

Академик Жорес Алферов,
лауреат Нобелевской премии, вице-президент РАН,
председатель Комиссии РАН по нанотехнологиям.