Дыхание жидкостью при погружениях. «Жидкостное дыхание» пока годится только для собак. К погружению готов

Это уже, наверное, клише в научной фантастике: в костюм или капсулу очень быстро поступает некое вязкое вещество, и главный герой внезапно для себя обнаруживает, как быстро он теряет остатки воздуха из собственных лёгких, а его внутренности заполняются необычной жидкостью оттенка от лимфы до крови. В конце концов он даже паникует, но делает несколько инстинктивных глотков или, скорее, вздохов и с удивлением обнаруживает - он может дышать этой экзотической смесью так, словно он дышит обычным воздухом.

Так ли мы далеки от реализации идеи жидкостного дыхания? Возможно ли дышать жидкой смесью, и есть ли в этом реальная необходимость?
Существует три перспективных пути использования этой технологии: это медицина, ныряние на большие глубины и космонавтика.

Давление на тело ныряльщика растёт с каждыми десятью метрами на одну атмосферу. Из-за резкого понижения давления может начаться кессонная болезнь, при проявлениях которой растворённые в крови газы начинают закипать пузырьками. Также при высоком давлении возможны кислородное и наркотическое азотное отравление. Со всем этим борются применением специальных дыхательных смесей, но и они не дают никаких гарантий, а лишь снижают вероятность неприятных последствий. Конечно, можно использовать водолазные скафандры, которые поддерживают давление на тело ныряльщика и его дыхательной смеси ровно в одну атмосферу, но они в свою очередь крупногабаритны, громоздки, затрудняют движение, а также очень дороги.

Жидкостное дыхание могло бы предоставить третье решение этой проблемы с сохранением мобильности эластичных гидрокомбинезонов и низких рисков жёстких скафандров. Дыхательная жидкость в отличие от дорогих дыхательных смесей не насыщает тело гелием или азотом, поэтому также отпадает необходимость в медленной декомпрессии для избежания кессонной болезни.

В медицине жидкостное дыхание можно использовать при лечении недоношенных детей, чтобы избежать повреждения недоразвитых бронхов лёгких давлением, объёмом и концентрацией кислорода воздуха аппаратов искусственной вентиляции лёгких. Подбирать и пробовать различные смеси для обеспечения выживания недоношенного плода начали уже в 90-х. Возможно использование жидкой смеси при полных остановках или частичных недостаточностях дыхания.

Космический полёт сопряжён с большими перегрузками, а жидкости распространяют давление равномерно. Если человека погрузить в жидкость, то при перегрузках давление будет идти на всё его тело, а не конкретные опоры (спинки кресла, ремни безопасности). Такой принцип использовался при создании костюма для перегрузок Libelle, который представляет из себя жёсткий скафандр, наполненный водой, что позволяет пилоту сохранять сознание и работоспособность даже при перегрузках выше 10 g.

Этот метод ограничен разницей плотностей тканей тела человека и используемой жидкостью для погружения, поэтому предел составляет 15-20 g. Но можно пойти дальше и заполнить лёгкие жидкостью, близкой по плотности к воде. Полностью погруженный в жидкость и дышащий жидкостью космонавт будет относительно слабо ощущать эффект экстремально высоких перегрузок, поскольку силы в жидкости распределяются равномерно во всех направлениях, но эффект всё равно будет из-за различной плотности тканей его тела. Предел всё равно останется, но он будет высок.

Первые эксперименты по жидкостному дыханию проводились в 60-х годах прошлого века на лабораторных мышах и крысах, которых заставили вдыхать солевой раствор с высоким содержанием растворённого кислорода. Эта примитивная смесь давала животным возможность выжить некоторое количество времени, но она не могла удалять углекислый газ, поэтому лёгким животных наносился непоправимый вред.

Позже начались работы с перфторуглеродами, и их первые результаты были куда лучше результатов экспериментов с соляным раствором. Перфторуглероды - это органические вещества, в которых все атомы водорода замещены на атомы фтора. Перфторуглеродные соединения обладают способностью растворять как кислород, так и углекислый газ, они очень инертны, бесцветны, прозрачны, не могут нанести повреждения ткани лёгких и не усваиваются организмом.

С того момента жидкости для дыхания были улучшены, самое совершенное на данный момент решение называется перфлуброн или «Ликвивент» (коммерческое название). Эта маслоподобная прозрачная жидкость с плотностью в два раза выше плотности воды обладает множеством полезных качеств: она может нести в два раза больше кислорода, чем обычный воздух, имеет низкую температуру кипения, поэтому после использования окончательное её удаление из лёгких производится испарением. Альвеолы под воздействием этой жидкости лучше открываются, и вещество получает доступ к их содержимому, это улучшает обмен газами.

Лёгкие могут заполняться жидкостью полностью, это потребует мембранного оксигенатора, нагревающего элемента и принудительной вентиляции. Но в клинической практике чаще всего так не делают, а используют жидкостное дыхание в комбинации с обычной газовой вентиляцией, заполняя лёгкие перфлуброном лишь частично, примерно на 40% от всего объёма.


Кадр из фильма Бездна (The Abyss), 1989 год

Что же мешает нам использовать жидкостное дыхание? Жидкость для дыхания вязка и плохо выводит углекислый газ, поэтому понадобится принудительная вентиляция лёгких. Для удаления углекислого газа от обычного человека массой 70 килограммов потребуется поток 5 литров в минуту и выше, и это очень много с учётом высокой вязкости жидкостей. При физических нагрузках величина необходимого потока будет только расти, и вряд ли человек сможет двигать 10 литров жидкости в минуту. Наши лёгкие просто не созданы для дыхания жидкостью и сами прокачивать такие объёмы не в состоянии.

Использование положительных черт жидкости для дыхания в авиации и космонавтике тоже может навсегда остаться мечтой - жидкость в лёгких для костюма защиты от перегрузок должна обладать плотностью воды, а перфлуброн в два раза её тяжелей.

Да, наши лёгкие технически способны «дышать» определённой богатой кислородом смесью, но, к сожалению, пока мы можем это делать только на протяжении нескольких минут, поскольку наши лёгкие не настолько сильны, чтобы обеспечивать циркуляцию дыхательной смеси продолжительные периоды времени. Ситуация может измениться в будущем, остаётся лишь обратить наши надежды на исследователей в этой области.

Жизнь на нашей планете зародилась, по-видимому, в воде - в среде, где запасы кислорода весьма скудны. При атмосферном давлении содержание кислорода в воздухе на уровне моря составляет 200 миллилитров на литр, а в литре поверхностного слоя воды растворено меньше семи миллилитров кислорода.

Первые обитатели нашей планеты, приспособившись к водной среде, дышали жабрами, назначение которых — экстрагировать максимальное количество кислорода из воды.

В ходе эволюции животные освоили богатую кислородом атмосферу суши и начали дышать легкими. Функции дыхательных органов остались прежними.

Как в легких, так и в жабрах кислород через тонкие мембраны проникает из окружающей среды в кровеносные сосуды, а углекислый газ выбрасывается из крови в окружающую среду. Итак, и в жабрах и в легких протекают одни и те же процессы. Отсюда возникает вопрос: смогло бы животное с легкими дышать в водной среде, если бы в ней содержалось достаточное количество кислорода?

Ответ на этот вопрос заслуживает внимания по нескольким причинам. Во-первых, мы смогли бы узнать, почему дыхательные органы сухопутных животных так отличаются по строению от соответствующих органов водных животных.

Кроме того, ответ на этот вопрос имеет и чисто практический интерес. Если бы специально подготовленный человек смог дышать в водной среде, то это облегчило бы и освоение глубин океана и путешествия к далеким планетам. Все это и послужило основанием к постановке ряда экспериментов по изучению возможности дыхания сухопутных млекопитающих водой.

Проблемы при дыхании водой

Эксперименты проводились в лабораториях Нидерландов и США. Дыхание водой связано с двумя основными проблемами. Об одной уже говорилось: при обычном атмосферном давлении в воде растворено слишком мало кислорода.

Вторая проблема заключается в том, что вода и кровь — жидкости с очень различными физиологическими свойствами. При «вдохе» вода может повредить ткани легких и вызвать фатальные изменения объема и состава находящихся в организме жидкостей.

Предположим, мы приготовили специальный изотонический раствор, где состав солей такой же, как и в плазме крови. Под большим давлением раствор насыщают кислородом (его концентрация примерно такая же, как в воздухе). Сможет ли животное дышать таким раствором?

Первые подобные эксперименты были проведены в Лейденском университете. Через шлюз, подобный спасательному шлюпу подводной лодки, мышей вводили в камеру, заполненную специально подготовленным раствором, и который под давлением был введен кислород. Через прозрачные стенки камеры можно было наблюдать за поведением мышей.

В первые несколько мгновений животные пытались выбраться на поверхность, но им мешала проволочная сетка. После первых волнений мыши успокаивались и, казалось, не очень страдали в подобной ситуации. Они совершали медленные, ритмичные дыхательные движения, по-видимому, вдыхая и выдыхая жидкость. Некоторые из них прожили в таких условиях в течение многих часов.

Главная трудность дыхания водой

После ряда опытов стало ясно, что решающим фактором, определяющим продолжительность жизни мышей, является не недостаток кислорода (который мог быть введен в раствор в любом нужном количестве простым повышением его парциального давления), а трудность выделения из организма углекислого газа в необходимой степени.

Мышь, прожившая самое длительное время - 18 часов,- находилась в растворе, в который было добавлено небольшое количество органического буфера, трис(оксиметил)аминометана. Последний сводит к минимуму неблагоприятный эффект накопления углекислого газа в организме животных. Снижение температуры раствора до 20 С (примерно половина нормальной температуры тела мыши) также способствовало продлению жизни.

В данном случае это обусловливалось общим замедлением процессов обмена веществ.

Обычно в литре выдыхаемого животным воздуха содержится 50 миллилитров углекислого газа. При прочих равных условиях (температура, парциальное давление углекислого газа) в одном литре солевого раствора, идентичного по своему солевому составу крови, растворяется только 30 миллилитров этого газа.

Значит, чтобы выделить необходимое количество углекислого газа, животное должно вдыхать воды вдвое больше, чем воздуха. (А ведь для прокачивания жидкости через бронхиальные сосуды требуется в 36 раз больше энергии, так как вязкость воды в 36 раз превышает вязкость воздуха.)

Отсюда очевидно, что даже при отсутствии турбулентного движения жидкости в легких для дыхания водой необходимо в 60 раз больше энергии, чем для дыхания воздухом.

Поэтому нет ничего удивительного в том, что подопытные животные постепенно ослабевали, а потом - вследствие истощения и накопления в организме углекислого газа — дыхание прекращалось.

Результаты эксперимента

На основании проведенных опытов нельзя было судить о том, какое количество кислорода поступает в легкие, насколько насыщена им артериальная кровь и какова степень накопления в крови животных углекислого газа. Постепенно мы подошли к серии более совершенных экспериментов.

Они проводились на собаках в большой камере, снабженной дополнительным оборудованием. Камера наполнялась воздухом под давлением в 5 атмосфер. Здесь же находилась ванна с солевым раствором, насыщенным кислородом. В нее погружали подопытное животное. Перед экспериментом, чтобы снизить общую потребность организма в кислороде, собак анестезировали и охлаждали до 32°С.

Во время погружения собака совершала бурные дыхательные движения. Струйки воды, поднимающиеся с поверхности, ясно показывали, что она прокачивала раствор через легкие. По окончании эксперимента собаку вытаскивали из ванны, удаляли из легких воду и вновь наполняли их воздухом. Из шести животных, подвергшихся испытанию, одно выжило. Собака дышала в воде 24 минуты.

Результаты эксперимента можно сформулировать следующим образом: в определенных условиях животные, которые дышат воздухом, в течение ограниченного промежутка времени могут дышать водой. Главный недостаток водного дыхания - накопление углекислого газа в организме.

Во время опыта давление крови выжившей собаки было несколько меньше нормального, но оставалось постоянным; пульс и дыхание были медленными, но равномерными, артериальная кровь насыщена кислородом. Содержание углекислого газа в крови постепенно увеличивалось.

Это означало, что бурная дыхательная деятельность собаки была недостаточной для удаления необходимых количеств углекислого газа из организма.

Новая серия опытов дыхания водой

В Нью-Йоркском государственном университете я продолжил работу совместно с Германом Рааном, Эдвардом X. Ланфиром и Чарльзом В. Паганелли. В новой серии опытов были применены приборы, позволившие получить конкретные данные по газообмену, происходящему в легких собаки при дыхании жидкостью. Как и прежде, животные дышали солевым раствором, насыщенным кислородом под давлением в 5 атмосфер.

Газовый состав вдыхаемой и выдыхаемой жидкости определяли на входе и выходе раствора из легких собак. Насыщенная кислородом жидкость попадала в организм находящейся под наркозом собаки через резиновую трубку, вставленную в трахею. Поток регулировался клапанным насосом.

При каждом вдохе раствор под действием силы тяжести стекал в легкие, а при выдохе жидкость по такому же принципу поступала в специальный приемник. Количество кислорода, поглощенного в легких, и количество выделенного углекислого газа определяли как разность соответствующих величин в равных объемах вдыхаемой и выдыхаемой жидкости.

Животных не охлаждали. Оказалось, что в этих условиях собака экстрагирует примерно такое же количество кислорода из воды, как обычно из воздуха. Как и следовало ожидать, животные не выдыхали достаточного количества углекислого газа, поэтому содержание его в крови постепенно увеличивалось.

По окончании эксперимента, продолжительность которого доходила до сорока пяти минут, воду из легких собаки удаляли через специальное отверстие в трахее. Легкие продували несколькими порциями воздуха. Дополнительных процедур по «оживлению» не проводили. Шесть из шестнадцати собак перенесли эксперимент без видимых последствий.

Взаимодействие трех элементов

Дыхание и рыб и млекопитающих основано на сложном взаимодействии трех элементов:

1) потребности организма в газообмене,

2) физических свойств окружающей среды и

3) строения органов дыхания.

Чтобы подняться выше чисто интуитивной оценки значения строения органов в процессе приспособления, необходимо точно понимать все эти взаимодействия. Следует, очевидно, поставить такие вопросы. Как молекула кислорода попадает из окружающей среды в кровь? Каков ее точный путь? Ответить на эти вопросы куда более сложно, чем можно предположить.

При расширении грудной клетки в легкие животного попадает воздух (или вода). Что же происходит с жидкостью, попавшей в пограничные воздушные мешочки легких? Рассмотрим это явление на простом примере.

Если в частично заполненный водой шприц медленно вводить через иглу небольшое количество чернил, то они сначала образуют тоненькую струйку в центре сосуда. После прекращения «вдоха» чернила постепенно распространяются по всему объему воды.

Если же чернила вводить быстро, так, чтобы поток был турбулентным, смешивание произойдет, конечно, гораздо быстрее. На основании полученных данных, а также учитывая размер бронхиальных трубок, можно заключить, что вдыхаемый поток воздуха или воды входит в воздушные мешочки медленно, без турбулентности.

Следовательно, можно предположить, что при вдохе свежего воздуха (или воды) молекулы кислорода сначала сосредоточатся в центре воздушных мешочков (альвеол). Теперь им предстоит преодолеть посредством диффузии значительные расстояния, прежде чем они достигнут стенок, через которые попадут в кровь.

Эти расстояния во много раз больше толщины мембран, отделяющих в легких воздух от крови. Если вдыхаемой средой является воздух, это не имеет большого значения: кислород распределяется равномерно по всей альвеоле за миллионные доли секунды.

Скорость распространения газов в воде в 6 тысяч раз меньше, чем в воздухе. Поэтому при дыхании водой возникает разность парциальных давлений кислорода в центральной и периферийной областях. Вследствие малой скорости диффузии газов давление кислорода в центре альвеолы с каждым циклом дыхания становится выше,чем у стенок. Концентрация же углекислого газа, уходящего из крови, больше у стенок альвеолы, чем в центре.

Газообмен в легких

Такие теоретические предпосылки возникли на основании изучения газового состава выдыхаемой жидкости во время экспериментов на собаках. Воду, вытекающую из легких собаки, собирали в длинную трубку.

При этом оказалось, что в первой порции воды, поступившей, по-видимому, из центральной части альвеол, кислорода больше, чем в последней, поступившей от стенок. При дыхании собак в воздушной среде ощутимой разницы в составах первой и последней порций выдыхаемого воздуха не наблюдалось.

Интересно отметить, что газообмен, происходящий в легких собаки при дыхании водой, очень напоминает процесс, протекающий в простой капле воды, когда на ее поверхности осуществляется обмен: кислород - углекислый газ. На основании такой аналогии была построена математическая модель легких, а в качестве функциональной единицы выбрана сфера с диаметром примерно в один миллиметр.

Расчет показал, что легкие составляют около полумиллиона таких сферических газообменных ячеек, передача газа в которых осуществляется только при помощи диффузии. Вычисленное количество и размер этих ячеек близко совпадают с количеством и размером определенных структур легких, называемых «первичными дольками» (лобулями).

По-видимому, эти дольки и являются главными функциональными единицами легких. Аналогично — с привлечением анатомических данных — можно построить математическую модель жабр рыб, первичные газообменные единицы которых будут иметь соответственно другую форму.

Построение математических моделей позволило провести четкую грань между органами дыхания млекопитающих и рыб. Оказывается, главное заключается в геометрической структуре дыхательных ячеек. Это становится особенно очевидным при исследовании зависимости, связывающей потребность рыбы в газообмене, а свойства окружающей среды с формой органов дыхания рыб.

В уравнение, выражающее данную зависимость, входят такие величины, как доступность кислорода, то есть его концентрация, скорость диффузии и растворимость в окружающей животное среде.

Объем вдыхаемого воздуха или воды, число и размер газообменных ячеек, количество кислорода, поглощаемого ими, и, наконец, давление кислорода в артериальной крови. Предположим, что рыбы имеют в качестве органов дыхания не жабры, а легкие.

Подставив в уравнение реальные данные газообмена, протекающего при дыхании рыбы, мы обнаружим, что рыба с легкими не сможет жить в воде, так как расчет показывает полное отсутствие кислорода в артериальной крови вашей модели рыбы.

Значит, в предположении была ошибка, а именно: выбранная форма газообменной ячейки оказалась неверной. Рыбы живут в воде благодаря жабрам, состоящим из плоских, тонких, плотно упакованных пластинок. В такой структуре - в отличие от сферических ячеек легких - не возникает проблемы диффузии газов.

Животное с органами дыхания, подобными легким, может выжить в воде только в том случае, если потребность его организма в кислороде крайне мала. В качестве примера назовем голотурию (морской огурец).

Жабры дают рыбам возможность жить в воде, и эти же жабры не позволяют им существовать вне воды. На воздухе они разрушаются под действием силы тяжести. Поверхностное натяжение на границе воздух - вода вызывает слипание плотно упакованных жаберных пластинок.

Общая площадь жабр, доступная для газообмена, уменьшается настолько, что рыба не может дышать, несмотря на обилие кислорода в воздухе. Альвеолы легких предохраняются от разрушения, во-первых, грудной клеткой, во-вторых, выделяющимся в легких смачивающим агентом, который значительно уменьшает поверхностное натяжение.

Дыхание млекопитающих в воде

Изучение процессов дыхания млекопитающих в воде дало, таким образом, новые сведения об основных принципах дыхания вообще. С другой стороны, возникло реальное предположение, что человек сможет без вредных последствий ограниченное время дышать жидкостью. Это позволит водолазам спускаться на значительно большие глубины океана, чем сейчас.

Главная опасность глубоководного погружения связана с давлением воды на грудную клетку и легкие. В результате в легких повышается давление газов, и часть газов попадает в кровь, что приводит к серьезным последствиям. При высоких давлениях большинство газов токсично для организма.

Так, азот, попадающий в кровь водолаза, вызывает интоксикацию уже на глубине 30 метров и практически выводит его из строя на глубине 90 метров благодаря возникающему азотному наркозу. (Эта проблема может быть решена использованием редких газов, таких, как гелий, которые не токсичны даже при очень высоких концентрациях.)

Кроме того, если водолаз возвращается слишком быстро с глубины на поверхность, газы, растворенные в крови и тканях, выделяются в виде пузырьков, вызывая кессонную болезнь.

Этой опасности можно избежать, если водолаз будет дышать не воздухом, а жидкостью, обогащенной кислородом. Жидкость в легких выдержит значительные внешние давления, а объем ее при этом практически не изменится. В таких условиях водолаз, опускаясь на глубину в несколько сот метров, сможет быстро, без всяких последствий вернуться на поверхность.

В доказательство того, что кессонная болезнь не возникает при дыхании водой, в моей лаборатории были проведены следующие опыты. В экспериментах с мышью, которая дышала жидкостью, давление в 30 атмосфер в течение трех секунд доводили до одной атмосферы. Признаков заболевания не наблюдалось. Такая степень изменения давления эквивалентна эффекту подъема с глубины 910 метров со скоростью 1 100 километров в час.

Человек может дышать водой

Дыхание жидкостью может пригодиться человеку во время будущих путешествий в космос. При возвращении с далеких планет, например, с Юпитера, возникнет потребность в огромных ускорениях, позволяющих выйти из зоны притяжения планеты. Эти ускорения значительно больше того, что может вынести организм человека, особенно легко уязвимые легкие.

Но те же нагрузки станут вполне допустимыми, если легкие будут заполнены жидкостью, а тело космонавта погружено в жидкость с плотностью, равной плотности крови, подобно тому, как плод погружен в амниотическую жидкость материнской утробы.

Итальянские физиологи Рудольф Маргариа, Т. Гволтеротти и Д. Спинелли в 1958 году ставили такой опыт. Стальной цилиндр, в котором находились беременные крысы, бросали с разных высот на свинцовую опору. Целью эксперимента было проверить, выживет ли плод в условиях резкого торможения и толчка при приземлении. Скорость торможения вычисляли по глубине вдавливания цилиндра в свинцовую основу.

Сами животные в ходе опыта немедленно погибали. Вскрытия показывали значительное повреждение легких. Однако освобожденные хирургическим путем эмбрионы были живыми и развивались нормально. Плод, защищенный утробной жидкостью, способен перенести отрицательные ускорения до 10 тысяч g.

После экспериментов, показавших, что сухопутные животные могут дышать жидкостью, резонно предположить такую возможность и для человека. В настоящее время мы располагаем некоторыми прямыми доказательствами в пользу этого предположения. Так, например, нами используется сейчас новый метод лечения некоторых заболеваний легких.

Метод состоит в промывании одного легкого солевым раствором, удаляющим патологические выделения из альвеол и бронхов. Второе легкое дышит при этом газообразным кислородом.

Успешное осуществление этой операции вдохновило нас поставить эксперимент, на который добровольно вызвался мужественный водолаз — глубинник Фрэнсис Д. Фалейчик.

Под наркозом в его трахею был введен двойной катетер, каждая трубка которого доходила до легких. При нормальной температуре тела воздух в одном легком заменили 0,9-процентным раствором поваренной соли. «Дыхательный цикл» заключался в ведении солевого раствора в легкое и последующем удалении его.

Цикл был повторен семь раз, причем для каждого «вдоха» брали 500 миллилитров раствора. Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при входе и выходе потока жидкости из легкого.

Конечно, этот опыт еще очень далек от попытки осуществить процесс дыхания обоими легкими в воде, но он показал, что заполнение легких человека солевым раствором, если процедура выполнена правильно, не вызывает серьезных разрушений тканей и не производит неприятных ощущений.

Самая трудная проблема дыхания водой

Вероятно, самая трудная проблема, которую предстоит разрешить, связана с выделением из легких углекислого газа при дыхании водой. Как мы уже говорили, вязкость воды примерно в 36-40 раз больше вязкости воздуха. Это значит, что легкие будут прокачивать воду, по крайней мере, в сорок раз медленнее, чем воздух.

Другими словами, здоровый молодой водолаз, способный вдыхать 200 литров воздуха в минуту, сможет вдохнуть в минуту всего 5 литров воды. Вполне очевидно, что при таком дыхании углекислый газ не будет выделяться в достаточном количестве, даже если человек целиком погружен в воду.

Можно ли разрешить эту проблему использованием среды, в которой углекислый газ растворяется лучше, чем в воде? В некоторых сжиженных синтетических фтороуглеродах углекислого газа растворяется, например, в три раза больше, чем в воде, а кислорода - в тридцать раз. Леланд С. Кларк и Франк Голлан показали, что мышь может жить в содержащем кислород жидком фтористом углероде при атмосферном давлении.

Во фтористом углероде не только содержится больше кислорода, чем в воде, но в этой среде в четыре раза выше и скорость диффузии газа. Однако и здесь по-прежнему остается камнем преткновения малая пропускная способность жидкости через легкие: фтороуглероды обладают еще большей вязкостью, чем солевой раствор.

Перевод с английского Н. Познанской.

После публичного эксперимента по жидкостному дыханию с собакой ученые в полезности этого опыта и перспективах этой технологии в целом. Редакция N + 1 попросила врача и ученого Андрея Филиппенко, который занимается разработкой систем жидкостного дыхания с советских времен, рассказать о современном состоянии исследований в этой сфере.

N + 1: Все мы видели эффектную демонстрацию с таксой, организованную Фондом перспективных исследований. Вы занимаетесь тематикой жидкостного дыхания с 1980-х годов, вы имеете какое-то отношение к этому проекту? Вы являетесь сотрудником ФПИ?

Андрей Филиппенко: Нет, я работаю независимо от ФПИ. В 1980-х я был научным руководителем исследований по проблемам жидкостного дыхания (НИОКР «Олифа МЗ»). В 2014–15 годах выполнил с ФПИ аванпроект «Терек», в качестве общественной нагрузки продолжал обучать жидкостному дыханию, ездил и согласовывал задания соисполнителям в продолжение темы «Терек-1» до первой половины 2016 года. Сейчас продолжаю работать по проблеме как врач-исследователь и разработчик аппаратов жидкостного дыхания для подводников, водолазов и космонавтов.

Эксперименты с жидкостным дыханием в 1988 году

Специалисты из ИМБП сомневаются, что в экстремальной ситуации можно действительно использовать технологию жидкостного дыхания, в частности, потому что для перехода на него требуется быстро убрать воздух из легких, иначе может наступить «белая асфиксия». Как решить эту проблему?

Причина такой асфиксии - смыкание голосовой щели, точнее, голосовых связок. Они срабатывают не у всех млекопитающих при иммерсии (полном погружении под воду), да и смыкание можно убрать анестезией. Предотвратить смыкание - это стандартная проблема для всех бронхоскопий, а бронхоскопия - рутинное мероприятие в больницах, то есть проблема недопущения смыкания связок решена.

Как обеспечить дыхание жидкостью? Ведь для этого требуется постоянная перекачка и обновление кислородсодержащей жидкости. Разве могут легкие человека обеспечить ее постоянную перекачку?

В 1987-88 годах я показал, что крупные животные (собаки) с этим могут справиться - за счет движения диафрагмы и межреберных мышц прокачивать жидкость в течение нескольких часов. Мы впервые тогда увидели противоречие западным публикациям - возможно жидкостное дыхание дольше 20 минут, то есть вдыхание кислородсодержащей жидкости и ее эвакуация наружу, при приемлемых показателях газов в крови. В случае с людьми несколько сложнее, чем с животными, но к этому нет непреодолимых препятствий. Да, это достаточно тяжело, такие эксперименты для здоровых и сильных людей, на пожилых со слабыми легкими и сердцем это и не рассчитано. Таких среди подводников нет. В переключении на жидкостное дыхание, а потом на обычное ничего невозможного нет, хотя это порой не просто. «Дьявол» в деталях.

Возможны ли негативные последствия для здоровья потом? Повреждения легких, пневмония? Насколько я понимаю, жидкость должна вымывать из легких сурфактант?

Да, альвеолы легких действительно покрыты изнутри сурфактантом, который удерживает их в развернутом состоянии. При экспериментах с солевыми растворами было установлено, что сурфактант вымывается и альвеолы в легких могли спадаться. Но мы проводили эксперименты с перфторуглеродной жидкостью, а она обладает крайне низкой смачивающей способностью, соответственно сурфактант из альвеол практически не вымывает. Кроме того, можно добавить сурфактант в саму дыхательную жидкость (они бывают разные по составу). В «чистых» перфторуглеродных экспериментах с собаками, с крысами, с мышами у нас не было случаев «спадения» альвеол легких. Следует отметить, что жидкость не всасывается в стенки альвеол и какое-то количество жидкости в легких остается, но она испаряется и выдыхается.

Но тем не менее, в результате экспериментов возникала пневмония, например, у того же Фрэнка Фалейчика?

Фалейчик, кстати, жив-здоров, мой врач-приятель из шведского Каролинского института недавно его видел. Часто дело не только в жидкости, но и в температуре. Мы ведь для имитации спасения подводников работаем в холоде, изначально животное охлаждалось, все тело погружается в воду температурой 10 градусов, а потом еще она заливается в легкие - возникает переохлаждение. И единственное, за счет чего мы можем уменьшить это переохлаждение, - это за счет быстрого подъема к поверхности.

Особенно сложная ситуация для подводников, поскольку ниже 100 метров температура воды не поднимается выше 4 градусов. Даже если нет гибели от переохлаждения в процессе всплытия, есть вероятность гибели от воспаления легких потом. Поэтому бессмысленно делать технологию жидкостного дыхания для комнатных или лабораторных условий.

Нужно решать эту проблему. Как и исключить возможность попадания в легкие каких-то примесей с жидкостью, например, шерсти собак в опыте. Именно поэтому я предложил и опробовал в море три года назад погружать таксу головой вниз в капсуле для морских испытаний. Она дышала оксигенированной жидкостью, потом смогла вывернуться из собачьего гидрокостюма и хлебнула много холодной морской воды.

Первые опыты на крупных собаках в лаборатории ВНИИ пульмонологии в 1987 году. Виден монитор состояния собаки и забор пробы дыхательной жидкости на этапе заполнения легких.

Личный архив Андрея Филиппенко

Еще одна проблема связана с самой жидкостью. В ранних экспериментах с солевыми растворами животные часто гибли, поскольку не могли вернуться обратно к дыханию воздухом. Не дает таких осложнений при адекватной методике чистая перфторуглеродная жидкость. Кстати, даже обученный для презентации первым лицам государства сотрудник ФПИ в представленном на весь мир видео оговорился и назвал ее перфтораном, невольно сделав рекламу нашему уникальному по возрасту препарату. Тут критически важна именно чистота жидкости, она должна быть чище, чем для переливаний в кровь, даже малейшие примеси могут привести к тяжелым последствиям.

Насколько серьезной проблемой может быть нервный синдром высокого давления?

В гипербарическом центре ВМФ города Ломоносова, где я работал с 1979 года, исследовали этот эффект много лет вместе с институтами Академии наук. Пробовали и лекарства, и добавление инертных газов в дыхательную смесь. Помогало и то, и другое снять проявления НСВД. Что будет на сверхбольших глубинах - узнаем, когда к ним будет приближаться человек. Опыты на животных, даже человекообразных обезьянах, мы не можем полностью переносить на людей.

Зачем вообще подводникам может понадобиться технология жидкостного дыхания? Не проще ли сделать средства спасения с обычным дыханием?

Подводников спасать сложно - в момент аварии на лодке может не быть ни света, ни тепла, почти всегда в аварийном отсеке - вода, и часто единственным способом спасения остается свободное всплытие. Один из вариантов спасения состоит в том, что подводники в специальных водолазных костюмах собираются в одном отсеке, который затапливается, а затем они через люк всплывают на поверхность. На практике это срабатывает только на очень небольшой глубине, потому что при повышении давления в отсеке азот начинает интенсивно растворяться в крови, а затем при всплытии пузыри азота выделяются обратно – в кровеносных сосудах, в тканях, возникает множество азотных пузырьков, которые закупоривают сосуды, что может привести к фатальным последствиям. Это и называется декомпрессионной болезнью. Предотвратить ее можно, только выдерживая очень длительный график всплытия в воде или в барокамере, что в условиях аварии, смертельно низкой температуры воды и недостатка кислорода попросту невозможно.

Поэтому промежуток подъема давления в отсеке должен быть максимально короткий - десятки секунд, инструкции допускают в этом случае даже прорыв барабанных перепонок, потому что декомпрессионная болезнь намного опаснее. Даже при учениях подводников, когда они тренируются на свободное всплытие, гибнут люди, как докладывали офицеры ВМС Голландии при мне в штаб-квартире НАТО в Брюсселе.

А в случае серьезной глубоководной аварии, как например, в случае «Курска», шанс на спасение может быть только у одного человека, остальные просто не успеют. Поэтому скорее всего подводники будут ждать спасения извне. Ждать до гибели, если глубина более 200 метров.

В случае использования жидкостного дыхания ситуация выглядит совершенно иначе. Экипаж надевает аппараты для жидкостного дыхания, включает их, а затем они поднимаются, всплывая в спасательном гидрокостюме на поверхность. В дыхательной жидкости нет азота, нет значительного перепада давления между легкими и внешней средой, поэтому риска декомпрессионной болезни нет. Это не значит, что все проблемы спасения людей в море будут решены, но будет решена одна из них - подъем к поверхности.

Но ведь такое устройство должно быть крайне сложным: в нем должны быть системы перекачки жидкости, системы насыщения ее кислородом и удаления из нее углекислого газа, должен быть подогрев жидкости и многое другое. Можно ли вообще использовать такое сложное и ненадежное устройство в экстренной ситуации? Насколько реально ее построить?

Что касается аппарата механической, принудительной вентиляции, то американцы сделали аппарат жидкостного дыхания величиной со шкаф. Мне же пришлось сделать размером с «дипломат» для бумаг. Просто не было возможности его возить на машине в командировки. Наш аппарат в опытах с жидкостным дыханием собак тридцать лет назад вдвое превысил заданную рабочую глубину - 700 метров вместо 350 метров. Был успех. Если толковым людям правильно взяться, можно сделать многое.

Когда же мы делаем длительное принудительное жидкостное дыхание аппаратом водолаза-спасателя, то у него, например, должна быть система подогрева жидкости, прецизионные датчики насыщения кислородом перфторуглерода. Как в ребризерах, с тройным резервированием. И все же не вижу проблем сделать устройство достаточно компактным.

Считаю, что можно сделать простое устройство для подводников, правда, нужны большой опыт и талант, а также граничные условия применения от заказчика. Помня, что этот метод не решает всех проблем при аварии лодки. Это не магия.

Вопрос использования - вопрос тренировки подводников профессионалами. Переключиться на жидкостное дыхание не просто, но эту операцию возможно отработать. В Институте пульмонологии регулярно проводят процедуры заливания и промывки легких жидкостью - она жизненно необходима для больных альвеолярным протеинозом. Без этого они не способны жить дальше. И не всегда эта процедура проводится под общим наркозом, порой его из-за опасности для больного не применяли.

Наконец, когда у нас появилось требование, чтобы человек вышел в космос, сложнейший скафандр «Беркут» сделали сверхбыстро - за девять месяцев, и в полете Леонов его испытал. Наши деды сделали, мы тоже, если возьмемся, сможем!

В каком состоянии эти исследования сейчас?

Это непростой вопрос. Сейчас мы в проекте «Терек-1» повторили результаты 1988 года, когда я по заказу ВМФ СССР вместе с Научно-исследовательским институтом спасания и подводных технологий провел в НИОКР «Олифа МЗ» серию экспериментов с собаками в барокамерах при гипербарии и в лаборатории при нормальном давлении. Мне повторить свой же результат было не сложно, а коллегам из ФПИ и их подопечным из Института медицины труда и Севастопольского государственного института пришлось учиться. И результат есть.

Пока в простом варианте: без видеокамеры снизу и датчиков контроля состояния собаки, при нормальном давлении, в рамках нескольких минут. В таких условиях сложно увидеть собственно жидкостное дыхание.

Если говорить о научных результатах публичного опыта, то здесь их не собрать: сразу после опыта перевозить животное в самолете в Москву или забирать домой - все это непременно сказывается на показателях здоровья. Результаты будут искаженными. Это допустимо только при пилотных, пробных опытах или при отсутствии финансирования. Очень важно содержать животное после реабилитации к норме в стандартных условиях. Нужно ежедневно контролировать его состояние в течение нескольких лет и планировать секцию опытных животных порой через годы.

Хорошо знаю, что сейчас масса проблем с экспериментальными животными, поэтому при планировании темы «Терек-1» в 2016 году я требовал опережающего строительства в Севастополе вивария для животных и создания мест для их пожизненного проживания под присмотром ветеринаров после экстремальных глубоководных экспериментов. Надеюсь, мы увидим образцовый виварий, раз иностранцам показывали такой опыт.

А как скоро можно ожидать экспериментов на людях в России?

Пилотный эксперимент со здоровыми добровольцами, находящимися в сознании, может быть проведен через три месяца. Я 30 лет разрабатываю свою методику самостоятельного жидкостного дыхания. Да, должна быть слаженная команда высококвалифицированных специалистов. За долгие годы успел со многими поработать. Сложилась команда готовых к уникальным экспериментам врачей-исследователей. Волонтерские испытания с военнослужащими отпадают, поскольку нет соответствующего законодательства. В России проводят испытания лекарств и медицинских устройств (в основном западных) на гражданских лицах, но Фонд перспективных исследований не имеет необходимых разрешений на проведение таких исследований, их головной в теме «Терек-1» - московский Институт медицины труда - проблемный по сравнению с другими организациями. Еще в 2014–2015 годах (до моих морских испытаний) их специалисты отрицали возможность успешного самостоятельного жидкостного дыхания крупных животных по своему опыту с животными в теме 2008 года.

Когда это может быть реализовано иностранной группой - сказать не могу, да и вряд ли у кого получится. Шведы и американцы прямо говорили: «Мы после вас».

Горжусь этим, да и тем, что 25 лет хранил и передал прорывную технологию нашей стране. Есть недостатки и трудности, но можно сказать, что тема жидкостного дыхания получила поддержку в России и будет развиваться.

Беседовал Илья Ферапонтов

Фото: РИА "Новости"
Сергей Пятаков

Человек будущего сможет погружаться на огромные глубины, но ему придется научиться дышать жидкостью.

Жидкостное дыхание, или дыхание с помощью хорошо растворяющей кислород жидкости давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен сохранить жизни аквалангистам и подводникам, эта технология может быть использована в медицине, а в перспективе будет полезна при совершении длительных космических полетов при освоении других планет. Реальные разработки по созданию аппарата жидкостного дыхания велись в 1970-1980 е годы в СССР и США, тогда эксперименты проводились на животных, но больших успехов добиться не удалось. Насколько перспективной и реалистичной остается эта технология, разбирался корреспондент «Совершенно секретно».

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет вполне научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны очень хорошо растворять кислород и углекислый газ.

ЖИДКОСТНОЕ ДЫХАНИЕ ИЗБАВИТ ВОДОЛАЗОВ ОТ КЕССОННОЙ БОЛЕЗНИ

Вице-адмирал, Герой Социалистического Труда, доктор технических наук, профессор, действительный член РАЕН, председатель Комитета по проведению подводных работ особого назначения при Правительстве РФ в 1992-1994 годах Тенгиз Борисов рассказал «Совершенно секретно», что опыты с жидкостным дыханием ведутся на протяжении нескольких десятков лет.

«В настоящее время человек ограничен в возможностях - водолаз, в дыхательных баллонах которого находится обычный воздух, может без риска для здоровья погрузиться на глубину 60 метров. В исключительных случаях самые опытные пловцы достигали 90 метров, дальше человеческий организм подвергается токсическому воздействию азота. После того как появились специальные гелийсодержащие газовые смеси, в которых поддерживается небольшое постоянное давление кислорода и отсутствует азот, стало возможным в жестких скафандрах погружаться до 300 метров, и это предел.

Главный враг водолазов - кессонная болезнь: при всплытии с большой глубины из-за быстрого понижения давления вдыхаемой дыхательной смеси газы, которые растворяются в крови, начинают бурно выделяться, как будто бутылку шампанского встряхнули, и вино внутри вспенилось. Газы разрушают стенки клеток и кровеносных сосудов, забивают капилляры, блокируют кровоток, последствия ужасные - при тяжелой форме декомпрессионная болезнь может привести к параличу или смерти.

Чтобы дальше двигаться на глубину, нужны новые технологии. И сегодня как самый перспективный рассматривается принцип жидкостного дыхания. Этот метод должен преодолеть основные проблемы водолазов: при погружении и всплытии решится вопрос с компрессией, не будет происходить обжатия грудной клетки, поскольку жидкости практически не сжимаются.

Однако, даже если специальные жидкие смеси будут созданы, придется разработать методы применения жидкостного дыхания. Ведь для того, чтобы человеку заполнить свои легкие тягучим веществом, придется преодолеть жесточайшее психологическое сопротивление организма. Были проведены эксперименты на людях: при попытке заполнить легкие у человека непроизвольно происходит срабатывание рефлексов, начинает сжиматься гортань и перекрываются легкие.

У человека существует врожденная реакция на воду - достаточно капле попасть на чувствительные клетки бронхов, как кольцевая мышца сдавливает горло, возникают спазмы, а затем наступает удушье. Хотя специальная жидкость никакого вреда причинить не может, но организм отказывается это понимать, и мозг дает команду сопротивляться. В завершение не менее неприятная процедура, когда эту жидкость нужно удалять из легких. Но если решение будет найдено, это будет серьезный прорыв - тогда водолазы получат возможность работать на очень больших глубинах.

Предполагается, что эта технология будет использоваться в военных целях, для разведки нефтегазовых месторождений и обслуживания глубоководных скважин, а также для подъема ценностей с затонувших на больших глубинах кораблей. Сегодня в мире ведется несколько разработок, которые позволяют надеяться, что эта технология получит путевку в будущее».


ИССЛЕДОВАНИЯ ПОМОГЛИ В РАБОТЕ АМЕРИКАНСКИХ НЕОНАТОЛОГОВ

Американцы обратились к идее жидкостного дыхания в 1960 х. И пожалуй, самое большое их достижение - зарегистрированный патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Согласно идее автора, так называемый жидкий воздух, который подается из баллона в шлем дайвера, заполняет собою все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. Жидкость для дыхания предполагалось создать на основе перфторуглеродов, в которых можно растворить требуемое количество газа.

В свою очередь, углекислый газ, который выделяется в процессе дыхания, должен был выводиться при помощи своеобразного аналога жабр, прикрепленного к бедренной вене ныряльщика. В итоге кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, для использования такой системы человек должен будет научиться обходиться без использования основных функций дыхательной системы - вдохов и выдохов.

Первые опыты, связанные с дыханием при помощи жидкости, американцами были проведены в 1960 е годы. Проводились они на грызунах. Ученые осуществили полную замену крови крыс эмульсией с большой концентрацией жидкого кислорода. Какое-то время животные мог-ли дышать жидкостью, но их организм не смог выводить углекислый газ, что через непродолжительное время привело к разрушению легких. В последующие годы формула была доработана.

Одной из самых удачных разработок стала жидкость, которая используется в LiquiVent - препарате, созданном для лечения тяжелого расстройства дыхания у недоношенных новорожденных. По своей консистенции это чистая маслянистая жидкость, обладающая малой плотностью, которая содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, она не наносит вреда легким, так как у нее весьма низкая температура кипения и она быстро и легко выводится из легких.

Это вещество привлекает специалистов еще и потому, что оно бесцветно, не имеет запаха и нетоксично - почти как воздух. Эта жидкость удерживает гораздо большее, чем воздух, количество кислорода на единицу объема. Во время следующих экспериментов мыши и кошки, погруженные в насыщенную кислородом перфторуглеводородную жидкость, жили уже в течение нескольких дней. Однако во время опытов также выяснилось, что нежные легкие млекопитающих плохо приспособлены к тому, чтобы постоянно вкачивать и выкачивать жидкость - поэтому заменять ею воздух можно только на очень непродолжительное время.

Идею системы жидкостного дыхания сегодня используют в своей практике врачи-неонатологи, которые уже более 20 лет применяют подобные технологии для ухода за недоношенными младенцами. В этой отрасли медицины жидкостное дыхание получило широкое применение. Этот способ используют для спасения новорожденных. Легочная ткань таких младенцев к рождению сформирована не до конца, поэтому с помощью специальных устройств дыхательную систему насыщают как раз кислородсодержащим раствором на основе перфторуглеродов. Неслучайно в состав групп по созданию жидкостного дыхания американские экспериментаторы непременно включают врачей этого профиля.

КРУПНЫЕ МЛЕКОПИТАЮЩИЕ ДЫШАТЬ ЖИДКОСТЬЮ ТАК И НЕ НАУЧИЛИСЬ

В дальнейшем за счет усовершенствования дыхательной жидкости удалось добиться многочасового жидкостного дыхания у мелких лабораторных животных - мышей и крыс и у щенков собак. Однако ученые столкнулись с новой проблемой - добиться устойчивого жидкостного дыхания у крупных лабораторных животных (взрослых собак, диаметр трахеи и устройство легких которых близки к человеку) так и не получилось. Взрослые собаки выдерживали не более 10-20 минут и погибали от легочной недостаточности. Перевод на искусственную вентиляцию жидкостью легких с помощью клинической аппаратуры улучшал показатели, но дополнительное оборудование для дыхательного снаряжения разработчиками не рассматривается.

Для того чтобы человек мог дышать жидкостью, она должна выполнять две главные функции: поставлять кислород легким и выводить углекислый газ. Этим свойством обладает кислород, который человек вдыхает, и еще несколько газов, а также, как доказали ученые, некоторые жидкости тоже способны выполнять подобные функции. При этом неудачные эксперименты с жидкостным дыханием также имеют объяснение: человеческие легкие намного тяжелее воспринимают и выводят жидкость, чем воздух, поэтому процесс замены углекислого газа кислородом происходит с большим замедлением.

Действительно, человеческие легкие технически способны «дышать» определенной богатой кислородом жидкостной смесью, но только на протяжении нескольких минут. Если предположить, что жидкое дыхание получит распространение, то больным людям, использующим жидкий воздух в медицинских целях, придется постоянно использовать дополнительные устройства, по сути, таскать на себе аппарат искусственной вентиляции легких для стимулирования дыхания. Водолазам, которые и так под водой испытывают жесточайший дискомфорт, придется нести на себе дополнительное оборудование, при этом дышать жидкостью во время длительных и глубоких погружений будет нелегко.

В США ЗАПАТЕНТОВАН ВОДОЛАЗНЫЙ КОСТЮМ, В КОТОРОМ ИСПОЛЬЗОВАН ПРИНЦИП ЖИДКОСТНОГО ДЫХАНИЯ


В РОССИИ, ВОЗМОЖНО, ПОСТАВИЛИ ОПЫТ НАД ЧЕЛОВЕКОМ

В Советском Союзе также существовали программы жидкостного дыхания. В одном из советских НИИ добились значительных результатов в реализации жидкостного дыхания. Были разработаны специальные аппараты, ставились опыты на животных и были достигнуты определенные результаты. Мыши и собаки, действительно, дышали жидкостью, причем достаточно длительное время. Есть информация, что в 1991 году должны были состояться первые опыты на волонтерах. Нужно отметить, что в Советском Союзе эти программы не имели коммерческой направленности и были связаны исключительно с военными разработками.

Поэтому в связи с прекращением финансирования, все работы были свернуты, а позднее - полностью прекращены. Однако недавно некоторые проекты были реанимированы. Как удалось узнать «Совершенно секретно», в одном из оборонных НИИ России провели эксперимент с добровольцем, у которого в результате хирургической операции в связи с опасной патологией была удалена гортань (поэтому кольцевая мышца отсутствовала, это позволило успешно провести эксперимент).

Человеку залили специальный раствор сначала в легкие, а затем погрузили под воду в специально изготовленной маске. После эксперимента жидкость из его легких была безболезненно откачана. Воодушевленные этим успехом российские специалисты утверждают, что в будущем дышать под водой смогут обычные люди с нормальным горлом, поскольку преодоление рефлекторной реакции организма на жидкость вполне реально.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, рассказал «Совершенно секретно», что в настоящее время об этих разработках практически ничего нельзя говорить из-за их закрытости.

«Сегодня эти разработки ведутся как в интересах военных, так и в гражданской сфере. Существует множество технологических трудностей, которые стопорят продвижение этих проектов. В настоящее время эта технология работает исключительно в лаборатории и совершенно непригодна для эксплуатации в реальных условиях. Например, на больших глубинах. Эта технология плохо работает не только в России, но и за рубежом. Чтобы продвинуться вперед, необходимо усовершенствовать множество технологий, в том числе те, которые связаны с преодолением большого давления».

ЖИДКОСТНОЕ ДЫХАНИЕ МОЖЕТ БЫТЬ ВОСТРЕБОВАНО В КОСМОСЕ И У ПОДВОДНИКОВ

В Советском Союзе одно время рассматривалась идея межпланетного перелета. Так как космический полет сопряжен с большими перегрузками космонавтов, анализировались варианты, как их уменьшить. Среди прочего предлагался вариант погружения космических путешественников в жидкость. Действительно, если человека погрузить водообразный раствор, то при перегрузках давление будет распространяться равномерно на все тело. Таков принцип использовался при создании антиперегрузочного костюма, который применяется в ВВС Германии. Производитель - немецко-швейцарская компания AutoflugLibelle - заменила воздушные подушки герметичными сосудами с жидкостью. Таким образом, костюм представляет собой жесткий скафандр, наполненный водой. Это позволяет пилоту сохранять сознание и работоспособность даже при огромных (свыше 10 g) перегрузках.

Однако использование положительных свойств жидкости для дыхания в авиации и космонавтике может навсегда остаться мечтой - вещество для костюма защиты от перегрузок должно обладать плотностью воды, а единственная рабочая на сегодняшний день перфторуглеводородная жидкость в два раза тяжелее. Если идею удастся реализовать, погруженный в жидкую среду и дышащий твердым кислородом космонавт практически не будет ощущать эффекта экстремально высоких перегрузок, поскольку силы будут распределяться равномерно во всех направлениях.

Несомненно, что технология жидкостного дыхания в первую очередь нужна морякам-подводникам. Как это ни парадоксально звучит, но в настоящее время нет надежных способов спасения людей, терпящих бедствие на больших глубинах. Не только у нас, но и во всем мире методы и техника спасения терпящих бедствие на большой глубине много лет практически не развиваются. То, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Субмарина была оснащена оборудованием, помогающим покинуть ее в случае аварии, но всплывающая спасательная камера была повреждена взрывом, и воспользоваться ею не удалось. Кроме того, для каждого члена команды было предусмотрено штатное индивидуальное спасательное средство, которое позволяло спасаться с глубины до 120 метров. Несколько минут, необходимых для подъема, человек в этом снаряжении может дышать кислородно-гелиевой смесью. Но и этими средствами люди воспользоваться не смогли. Помимо прочего, это связано и с тем, что баллоны с гелием на подлодке не хранятся, поскольку при высокой концентрации в воздухе этот газ может вызвать удушье и состояние кислородной недостаточности.

Таков большой недостаток индивидуального снаряжения. Спасатели должны были передать баллоны членам команды снаружи, через люки шлюзовой камеры. Нужно отметить, что все это оборудование было разработано в далеком 1959 году и с тех пор никак не менялось. Да и сегодня никаких альтернатив не видно. Возможно, поэтому о применении дыхания жидкостью в морском аварийно-спасательном деле говорят как о самом перспективном методе будущего.

«Далеко не все так просто, как было представлено сегодня. Бедная собачка». Такими словами специалисты комментируют эксперимент, продемонстрированный Дмитрием Рогозиным президенту Сербии как пример новейших научных разработок России: собака смогла дышать не воздухом, а жидкостью. Что представляет собой эта технология и может ли она помочь российским военным?

В ходе встречи в Москве с президентом Сербии Александром Вучичем вице-премьер Дмитрий Рогозин во вторник ряд новейших разработок российского Фонда перспективных исследований (ФПИ). Рогозин отметил, что сербского гостя могли бы свозить на какое-нибудь огромное промышленное предприятие, но куда интереснее «показать тот самый завтрашний день, куда мы стремимся». Таким «гвоздем программы» стал уникальный проект жидкостного дыхания, который был впервые продемонстрирован публично.

Как пояснил руководитель проекта военно-морской врач Федор Арсеньев, задача данного изобретения состоит в спасении экипажа гибнущей подводной лодки. Как известно, с глубины ниже 100 метров невозможно быстро подняться на поверхность из-за кессонной болезни. Чтобы избежать ее, на подлодке можно будет надеть аппарат с «не содержащей азота жидкостью», как передал ТАСС . Легкие человека при этом не будут сжиматься, что позволит быстро подняться на поверхность и спастись.

На глазах у сербского президента в особый резервуар с жидкостью была помещена собака – такса. За несколько минут она освоилась и начала самостоятельно «дышать» жидкостью. После сотрудники лаборатории вынули пса из резервуара, вытерли полотенцем, и президент Сербии смог лично убедиться, что собака в порядке. Вучич погладил пса и признался, что очень впечатлен.

Мечта про «человека-амфибию»

«Жидкостное дыхание как медицинская технология подразумевает вентиляцию легких не воздухом, а насыщенной кислородом жидкостью. В рамках проекта решается научная задача по изучению особенностей влияния различных переносящих кислород веществ на газообмен и другие функции клеток, тканей и органов млекопитающих», – рассказали газете ВЗГЛЯД в отделе по связям с общественностью Фонда перспективных исследований (ФПИ).

Одним из направлений является формирование медико-биологических основ технологии самостоятельной эвакуации подводников с больших глубин на поверхность, отметили в ФПИ, но технология способна вообще заметно продвинуть исследование человеком ранее не изученных морских и океанских глубин. Утверждается, что данная разработка понадобится и в медицине – например, поможет выходить недоношенных детей или людей, получивших ожоги дыхательных путей, найдет применение в лечении бронхообструктивных, инфекционных и других тяжелых заболеваний.

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны хорошо растворять кислород и углекислый газ.

«Жидкостное дыхание» давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен спасать аквалангистов и подводников, а в перспективе пригодится в длительных космических полетах. Разработки велись в 1970–1980-е годы в СССР и США, эксперименты проводились на животных, но больших успехов добиться не удалось.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, признавался ранее газете «Совершенно секретно» , что о разработках практически ничего нельзя говорить из-за их закрытости. Но то, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Напомним, ранее сообщалось о других смелых проектах ФПИ, в частности это «конструктор» для создания и самолета будущего.

Наверху должна ждать реанимация

«Технология не один десяток лет отрабатывалась, но для этого нужны очень хорошо подготовленные люди. Когда человеку вливают в легкие эту жидкость – будет автоматически срабатывать инстинкт самосохранения, спазмы перекрывают горло, организм сопротивляется изо всех сил. Обычно это делается под наблюдением врачей. На людях такие опыты проводились в единичных случаях, а в основном они отрабатывались на животных», – пояснил газете ВЗГЛЯД глава Комитета при правительстве РФ по проведению подводных работ особого назначения в 1992–1994 гг., доктор технических наук, профессор, вице-адмирал Тенгиз Борисов.

«Как правило, вставляется в гортань специальная трубка, с помощью которой легкие медленно заполняются этой жидкостью, – сказал Борисов, добавив:

– При этом организм всячески сопротивляется, нужны препараты, которые блокируют спазмы, нужны анестетики. Далеко не все так просто, как было представлено сегодня. Бедная собачка».

«Если человек всплывет из подводной лодки, то он действительно избежит кессонной болезни, но самостоятельно спасаться подводники в любом случае не смогут. Нужно: а) исключительно грамотные люди на подводной лодке, б) наверху должна ждать, грубо говоря, команда реанимации, которая будет выкачивать из человека эту жидкость и заставлять его дышать обычным способом», – добавил эксперт.

«Думаю, в медицине эту технологию куда легче внедрить и применять в условиях стационара, когда рядом есть специалисты и большое количество необходимой аппаратуры. А вот спасение экипажа затонувшей субмарины такими методами в обозримом будущем крайне маловероятно», – заключил Борисов.