Чему равно значение постоянной больцмана. Больцмана постоянная. Зависимость давления газа от концентрации его молекул и температуры

Бабочки, конечно, ничего не знают о змеях. Зато о них знают птицы, охотящиеся на бабочек. Птицы, плохо распознающие змей, чаще становятся...

  • Если octo на латыни «восемь», то почему октава содержит семь нот?

    Октавой называется интервал между двумя ближайшими одноименными звуками: до и до, ре и ре и т. д. С точки зрения физики «родство» этих...

  • Почему важных особ называют августейшими?

    В 27 году до н. э. римский император Октавиан получил титул Август, что на латыни означает «священный» (в честь этого же деятеля, кстати,...

  • Чем пишут в космосе

    Известная шутка гласит: «NASA потратило несколько миллионов долларов, чтобы разработать специальную ручку, способную писать в космосе....

  • Почему основа жизни - углерод?

    Известно порядка 10 миллионов органических (то есть основанных на углероде) и лишь около 100 тысяч неорганических молекул. Вдобавок...

  • Почему кварцевые лампы синие?

    В отличие от обычного стекла, кварцевое пропускает ультрафиолет. В кварцевых лампах источником ультрафиолета служит газовый разряд в парах ртути. Он...

  • Почему дождь иногда льет, а иногда моросит?

    При большом перепаде температур внутри облака возникают мощные восходящие потоки. Благодаря им капли могут долго держаться в воздухе и...

  • Постоя́нная Бо́льцмана ( k {\displaystyle k} или k B {\displaystyle k_{\rm {B}}} ) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её значение в Международной системе единиц СИ согласно изменения определений основных единиц СИ (2018) точно равно

    k = 1,380 649 × 10 − 23 {\displaystyle k=1{,}380\,649\times 10^{-23}} Дж / .

    Связь между температурой и энергией

    В однородном идеальном газе , находящемся при абсолютной температуре T {\displaystyle T} , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , k T / 2 {\displaystyle kT/2} . При комнатной температуре (300 ) эта энергия составляет 2 , 07 × 10 − 21 {\displaystyle 2{,}07\times 10^{-21}} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 2 k T {\displaystyle {\frac {3}{2}}kT} .

    Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет 5 степеней свободы - 3 поступательных и 2 вращательных (при низких температурах, когда не возбуждены колебания атомов в молекуле и не добавляются дополнительные степени свободы).

    Определение энтропии

    Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z {\displaystyle Z} , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

    S = k ln ⁡ Z . {\displaystyle S=k\ln Z.}

    Коэффициент пропорциональности k {\displaystyle k} и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими ( Z {\displaystyle Z} ) и макроскопическими состояниями ( S {\displaystyle S} ), выражает центральную идею статистической механики.

    Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

    Дж / .

    Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако, вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний. В естественной системе единиц Планка естественная единица температуры задаётся так, что постоянная Больцмана равна единице.

    Связь между температурой и энергией

    В однородном идеальном газе , находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла k T / 2 . При комнатной температуре (300 ) эта энергия составляет Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 / 2(k T ) .

    Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона. В случае молекулярного газа ситуация усложняется, например двухатомный газ уже имеет приблизительно пять степеней свободы.

    Определение энтропии

    Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

    S = k lnZ .

    Коэффициент пропорциональности k и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими (Z ) и макроскопическими состояниями (S ), выражает центральную идею статистической механики.

    См. также

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Больцмана постоянная" в других словарях:

      Физическая постоянная k, равная отношению универсальной газовой постоянной R к числу Авогадро NA: k = R/NA = 1,3807.10 23 Дж/К. Названа по имени Л. Больцмана … Большой Энциклопедический словарь

      Одна из фундаментальных физических констант; равна отношению газовой постоянной R к Авогадро постоянной NA, обозначается k; названа в честь австр. физика Л. Больцмана (L. Boltzmann). Б. п. входит в ряд важнейших соотношений физики: в ур ние… … Физическая энциклопедия

      БОЛЬЦМАНА ПОСТОЯННАЯ - (k) универсальная физ. постоянная, равная отношению универсальной газовой (см.) к постоянной Авогадро NA: k = R/Na = (1,380658 ± 000012)∙10 23 Дж/К … Большая политехническая энциклопедия

      Физическая постоянная k, равная отношению универсальной газовой постоянной R к числу Авогадро NA: k = R/NA = 1,3807·10 23 Дж/К. Названа по имени Л. Больцмана. * * * БОЛЬЦМАНА ПОСТОЯННАЯ БОЛЬЦМАНА ПОСТОЯННАЯ, физическая постоянная k, равная… … Энциклопедический словарь

      Физ. постоянная k, равная отношению универс. газовой постоянной R к числу Авогадро NA: k = R/NА = 1,3807 х 10 23 Дж/К. Названа по имени Л. Больцмана … Естествознание. Энциклопедический словарь

      Одна из основных физических постоянных (См. Физические постоянные), равная отношению универсальной газовой постоянной R к числу Авогадро NA. (числу молекул в 1 моль или 1 кмоль вещества): k = R/NA. Названа по имени Л. Больцмана. Б. п.… … Большая советская энциклопедия

      Постоя́нная Бо́льцмана ( k {\displaystyle k} или k B {\displaystyle k_{\rm {B}}} ) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её значение в Международной системе единиц СИ согласно изменения определений основных единиц СИ (2018) точно равно

      k = 1,380 649 × 10 − 23 {\displaystyle k=1{,}380\,649\times 10^{-23}} Дж / .

      Связь между температурой и энергией

      В однородном идеальном газе , находящемся при абсолютной температуре T {\displaystyle T} , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , k T / 2 {\displaystyle kT/2} . При комнатной температуре (300 ) эта энергия составляет 2 , 07 × 10 − 21 {\displaystyle 2{,}07\times 10^{-21}} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 2 k T {\displaystyle {\frac {3}{2}}kT} .

      Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет 5 степеней свободы - 3 поступательных и 2 вращательных (при низких температурах, когда не возбуждены колебания атомов в молекуле и не добавляются дополнительные степени свободы).

      Определение энтропии

      Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z {\displaystyle Z} , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

      S = k ln ⁡ Z . {\displaystyle S=k\ln Z.}

      Коэффициент пропорциональности k {\displaystyle k} и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими ( Z {\displaystyle Z} ) и макроскопическими состояниями ( S {\displaystyle S} ), выражает центральную идею статистической механики.

      Для постоянной, связанной с энергией излучения чёрного тела, смотри Постоянная Стефана-Больцмана

      Значение постоянной k

      Размерность

      1,380 6504(24) 10 −23

      8,617 343(15) 10 −5

      1,3807 10 −16

      Смотри также Значения в различных единицах ниже.

      Постоянная Больцмана (k или k B ) - физическая постоянная, определяющая связь между температурой вещества и энергией теплового движения частиц этого вещества. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

      В таблице последние цифры в круглых скобках указывают стандартную погрешность значения постоянной. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако точное вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний.

      Экспериментально постоянную Больцмана можно определить с помощью закона теплового излучения Планка, описывающего распределение энергии в спектре равновесного излучения при определённой температуре излучающего тела, а также другими методами.

      Существует связь между универсальной газовой постоянной и числом Авогадро , из которой следует значение постоянной Больцмана:

      Размерность постоянной Больцмана такая же, как и у энтропии.

      • 1 История
      • 2 Уравнение состояния идеального газа
      • 3 Связь между температурой и энергией
        • 3.1 Соотношения газовой термодинамики
      • 4 Множитель Больцмана
      • 5 Роль в статистическом определении энтропии
      • 6 Роль в физике полупроводников: тепловое напряжение
      • 7 Применения в других областях
      • 8 Постоянная Больцмана в планковских единицах
      • 9 Постоянная Больцмана в теории бесконечной вложенности материи
      • 10 Значения в различных единицах
      • 11 Ссылки
      • 12 См. также

      История

      В 1877 г. Больцман впервые связал между собой энтропию и вероятность, однако достаточно точное значение постоянной k как коэффициента связи в формуле для энтропии появилось лишь в трудах М. Планка. При выводе закона излучения чёрного тела Планк в 1900–1901 гг. для постоянной Больцмана нашёл значение 1,346 10 −23 Дж/K, почти на 2,5% меньше принятого в настоящее время.

      До 1900 г. соотношения, которые сейчас записываются с постоянной Больцмана, писались с помощью газовой постоянной R , а вместо средней энергии на одну молекулу использовалась общая энергия вещества. Лаконичная формула вида S = k log W на бюсте Больцмана стала таковой благодаря Планку. В своей нобелевской лекции в 1920 г. Планк писал:

      Эта константа часто называется постоянной Больцмана, хотя, насколько я знаю, сам Больцман никогда не вводил её - странное состояние дел, при том, что в высказываниях Больцмана не было речи о точном измерении этой константы.

      Такая ситуация может быть объяснена проведением в то время научных дебатов по выяснению сущности атомного строения вещества. Во второй половине 19 века существовали значительные разногласия в отношении того, являются ли атомы и молекулы реальными, либо они лишь удобный способ описания явлений. Не было единства и в том, являются ли "химические молекулы", различаемые по их атомной массе, теми же самыми молекулами, что и в кинетической теории. Далее в нобелевской лекции Планка можно найти следующее:

      «Ничто не может лучше продемонстрировать положительную и ускоряющуюся скорость прогресса, чем искусство эксперимента за последние двадцать лет, когда было открыто сразу множество методов измерения массы молекул практически с той же точностью, что и измерение массы какой-нибудь планеты».

      Уравнение состояния идеального газа

      Для идеального газа справедлив объединённый газовый закон, связывающий давление P , объём V , количество вещества n в молях, газовую постоянную R и абсолютную температуру T :

      В данном равенстве можно сделать замену . Тогда газовый закон будет выражаться через постоянную Больцмана и количество молекул N в объёме газа V :

      Связь между температурой и энергией

      В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, kT / 2 . При комнатной температуре (≈ 300 K) эта энергия составляет Дж, или 0,013 эВ.

      Соотношения газовой термодинамики

      В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия 3kT / 2 . Это хорошо согласуется с экспериментальными данными. Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню из атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона.

      Кинетическая теория даёт формулу для среднего давления P идеального газа:

      Учитывая, что средняя кинетическая энергия прямолинейного движения равна:

      находим уравнение состояния идеального газа:

      Это соотношение неплохо выполняется и для молекулярных газов; однако зависимость теплоёмкости изменяется, так как молекулы могут иметь дополнительные внутренние степени свободы по отношению к тем степеням свободы, которые связаны с движением молекул в пространстве. Например, двухатомный газ имеет уже приблизительно пять степеней свободы.

      Множитель Больцмана

      В общем случае система в равновесии с тепловым резервуаром при температуре T имеет вероятность p занять состояние с энергией E , что может быть записано с помощью соответствующего экспоненциального множителя Больцмана:

      В данном выражении фигурирует величина kT с размерностью энергии.

      Вычисление вероятности используется не только для расчётов в кинетической теории идеальных газов, но и в других областях, например в химической кинетике в уравнении Аррениуса.

      Роль в статистическом определении энтропии

      Основная статья : Термодинамическая энтропия

      Энтропия S изолированной термодинамической системы в термодинамическом равновесии определяется через натуральный логарифм от числа различных микросостояний W , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией E ):

      Коэффициент пропорциональности k является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими и макроскопическими состояниями (через W и энтропию S соответственно), выражает центральную идею статистической механики и является главным открытием Больцмана.

      В классической термодинамике используется выражение Клаузиуса для энтропии:

      Таким образом, появление постоянной Больцманаk можно рассматривать как следствие связи между термодинамическим и статистическим определениями энтропии.

      Энтропию можно выразить в единицах k , что даёт следующее:

      В таких единицах энтропия точно соответствует информационной энтропии.

      Характерная энергия kT равна количеству теплоты, необходимому для увеличения энтропии S " на один нат.

      Роль в физике полупроводников: тепловое напряжение

      В отличие от других веществ, в полупроводниках существует сильная зависимость электропроводности от температуры:

      где множитель σ 0 достаточно слабо зависит от температуры по сравнению с экспонентой, E A – энергия активации проводимости. Плотность электронов проводимости также экспоненциально зависит от температуры. Для тока через полупроводниковый p-n-переход вместо энергии активации рассматривают характерную энергию данного p-n перехода при температуре T как характерную энергию электрона в электрическом поле:

      где q – , а V T есть тепловое напряжение, зависящее от температуры.

      Данное соотношение является основой для выражения постоянной Больцмана в единицах эВ∙К −1 . При комнатной температуре (≈ 300 K) значение теплового напряжения порядка 25,85 милливольт ≈ 26 мВ.

      В классической теории часто используют формулу, согласно которой эффективная скорость носителей заряда в веществе равна произведению подвижности носителей μ на напряженность электрического поля. В другой формуле плотность потока носителей связывается с коэффициентом диффузии D и с градиентом концентрации носителей n :

      Согласно соотношению Эйнштейна-Смолуховского, коэффициент диффузии связан с подвижностью:

      Постоянная Больцмана k входит также в закон Видемана-Франца, по которому отношение коэффициента теплопроводности к коэффициенту электропроводности в металлах пропорционально температуре и квадрату отношения постоянной Больцмана к электрическому заряду.

      Применения в других областях

      Для разграничения температурных областей, в которых поведение вещества описывается квантовыми или классическими методами, служит температура Дебая: