Классификация минеральных добавок. Классификация минералов и условия их образования главнейшие породообразующие минералы экзогенно - реферат. Универсальный дополнительный практический толковый словарь

Существующие системы классификации минеральных элементов, обнаруженных в организме животных, основываются на одной из трех исходных предпосылок: 1) преимущественной локализации элементов в тех или иных органах и тканях, 2) количественном содержании элементов в организме и 3) их значении для жизнедеятельности.
В основу классификации по распределению элементов в органах и тканях положена «тропность», т. е. органная и тканевая специфичность элементов, или, наоборот, отсутствие таковой.
Согласно этой схеме, минеральные элементы разделяют на три группы: 1) локализующиеся в костной ткани (остеотропные); 2) локализующиеся в ретикулоэндотелиальной системе; 3) не обладающие тканевой специфичностью, т. е. равномерно распределяющиеся по тканям организма.
К первой группе элементов относят кальций, магний, стронций, бериллий, фтор, ванадий, барий, титан, радий, свинец и др.; ко второй - железо, медь, марганец, серебро, хром, никель, кобальт, часть лантанидов; к третьей - натрий, калий, серу, хлор, литий, рубидий, цезий.
С физиологической точки зрения эта схема несовершенна. Прежде всего большинство «тройных» элементов не является таковыми в полном смысле слова. Магний, например, концентрируется в костях, но он же представляет собой основной внутриклеточный катион мягких тканей. Фосфор - остеотропный элемент (до 83% его находится в скелете в составе гидроксиапатита), но он входит в состав сложных органических соединений и является непременным компонентом внутренней среды организма.
Кроме того, накопление каких-либо элементов в кости, печени, селезенке и т. д. еще не определяет их значения в развитии и функционировании данного органа. Так, некоторые остеотропные элементы (свинец, бериллий, барий, цирконий, олово, актиниды), по-видимому, не выполняют никакой биологической функции и являются для скелета балластными. Концентрация ряда элементов (например, меди, кобальта) в печени находится в прямой зависимости от поступления их с кормом; для других же элементов (марганец, железо) эта зависимость выражена слабо, хотя содержание их в печени достаточно высокое.
Что касается ретикулоэндотелиальной системы (системы макрофагов), то под этим названием понимают совокупность различных по структуре образований, выполняющих функцию защиты организма от чужеродных частиц или веществ. Сюда относят ретикулярные клетки и эндотелий сосудов в костном мозге, селезенке, лимфатических узлах, легких; особые эндотелиальные (купферовские) клетки в капиллярах печени, сходные с ними клетки в мозговом веществе надпочечников и аденогипофизе. Накопление минеральных элементов в этих органах служит не столько доказательством их важности для функции данного органа, сколько показателем их токсичности или бесполезности для организма.
Наконец, имеются элементы, вообще не попадающие ни в одну из перечисленных групп. Это йод, концентрирующийся в щитовидной железе и яичниках, теллур - в почках, мышьяк и сурьма - в эритроцитах, цинк и кадмий - в поджелудочной железе, половых органах, костях.
В целом описанная классификация более полезна для токсикологов и радиобиологов, чем для физиологов.
По классификации, основанной на количественном признаке, все минеральные элементы делят на три группы в соответствии с их содержанием в теле животных: макроэлементы, микроэлементы и ультрамикроэлементы (табл. 1).


Система классификации по количественному признаку проста и удобна, но она не дает ответа на главный вопрос - какова биологическая роль того или иного элемента в организме. Кроме того, количественное содержание некоторых элементов в организме может значительно варьировать в зависимости от среды обитания животных, способа питания, видовой принадлежности (это, в частности, относится к фтору, ванадию, селену, стронцию, молибдену, кадмию).
По мнению ряда исследователей, микро- и ультрамикроэлементы вообще не следует отождествлять с минеральными веществами по той причине, что в кормах и животных организмах они содержатся главным образом в виде органических соединений или комплексов, обладающих биологической активностью. Однако это обстоятельство, по-видимому, не является основанием для обособления микроэлементов в особую группу биологически активных веществ.
При современном уровне знаний метаболизм любого минерального элемента нельзя рассматривать лишь в аспекте динамики его неорганических солей.
С точки же зрения науки о кормлении животных микроэлементы являются столь же необходимыми компонентами питания, как и другие минеральные элементы, независимо от того, в какой форме они поступают в организм.
Классификация, основанная на биологической роли элементов, представляет наибольший интерес для физиологов, биохимиков и специалистов в области питания животных. Согласно этой классификации, минеральные элементы, обнаруженные в организме животных, делят на три группы: 1) жизненно необходимые (биогенные, биотические элементы), 2) вероятно (условно) необходимые и 3) элементы с малоизученной или неизвестной ролью.
Для большинства млекопитающих животных, в том числе и сельскохозяйственных, эту классификацию можно представить следующим образом:

Группа биотических элементов включает в себя все макроэлементы, часть микро- и ультрамикроэлементов. Это подтверждает мысль о том, что порядок концентрации того или иного микроэлемента в организме еще не определяет его биологического значения.
Элемент может быть отнесен к группе биотических, если он удовлетворяет следующим требованиям:
- постоянно присутствует в организме животных в количествах, сходных у разных индивидуумов;
- ткани по содержанию данного элемента всегда располагаются в определенном порядке;
- синтетический рацион, не содержащий этого элемента, вызывает у животных характерные симптомы недостаточности и определенные биохимические изменения в тканях;
- эти симптомы и изменения могут быть предотвращены или устранены путем добавления данного элемента в экспериментальный рацион.
Всем перечисленным требованиям в свете современных данных удовлетворяют 15 элементов, перечисленных выше. Даже такой элемент, как фтор, обладающий очевидным профилактическим эффектом против кариеса зубов и, по-видимому, способствующий костеобразованию, не включен в эту группу. Дело в том, что до настоящего времени не удалось воспроизвести симптомы недостаточности фтора в эксперименте при содержании животных на рационе, дефицитном по этому элементу. Необходимо отметить, что воспроизведение пищевой недостаточности иногда затруднительно вследствие чрезвычайно малой потребности животного в изучаемых элементах и наличия их следов в компонентах очищенного рациона (соевом белке, глюкозе, сахарозе, желатине, казеине и пр.).
Среди 15 жизненно необходимых элементов 9 являются катионами - это кальций (Ca2+), натрий (Na+), калий (K+), магний (Mg2+), марганец (Mn2+), цинк (Zn2+), железо (Fe2+), медь (Cu2+) и кобальт (Co2+), а 6 других - анионами или содержатся в сложных анионных группировках - хлорид (Cl-), йодид (J-), фосфат (РО4в3-), сульфат (SO4в2-), молибдат (МоО4в2-) и селенит (SeO3в2-).
Вероятно необходимые элементы также постоянно обнаруживаются в тканях животных в относительно стабильных количествах, но не удовлетворяют всем перечисленным выше требованиям. Участие этих элементов в обменных процессах может ограничиваться отдельными тканями и в ряде случаев требует экспериментального подтверждения.
Что касается элементов, роль которых в организме мало изучена или неизвестна, то многие из них, по-видимому, случайно накапливаются в организме, поступая с кормами и не выполняя какой-либо полезной функции. Однако строго ограничивать группу биогенных элементов тоже нельзя, поскольку возможно открытие биологической роли новых элементов. Например, в последние годы установлена биотическая роль селена, появились экспериментальные данные об участии в метаболических процессах фтора, хрома, кремния, мышьяка.
На рисунке 2.1 приведена схема классификации элементов тела животных, в которой одновременно учтены их количественные характеристики и значение для процессов жизнедеятельности.
Классификация элементов по степени их биогенности, как и две предыдущие, имеет существенные недостатки: она слишком обща, не отражает механизма влияния минеральных элементов на организм и не позволяет достаточно точно предвидеть возможную биологическую роль или токсикологический эффект того или иного элемента. В настоящее время исследователи вынуждены, как правило, давать индивидуальную оценку каждому элементу.

Бальнеотерапия (лат. balneum — ванна) — лечебное применение минеральных вод. Основу бальнеотерапии составляет наружное применение природных и искусственно приготовленных минеральных вод. Вместе с тем бальнеотерапия традиционно включает и внутреннее применение минеральных вод (питье, ингаляции, промывания кишечника и проч.).

Характеристика и классификация минеральных вод

Минеральные воды природные воды, оказывающие на организм человека лечебное действие, обусловленное основным ионно-солевым и газовым составом, повышенным содержанием биологически активных компонентов и специфическими свойствами (радиоактивность, температура, реакция среды по ГОСТ 13273-88).

Минеральные воды образуются в результате тесно взаимосвязанных геохимических процессов выщелачивания, растворения солей и ионного обмена в системе вода-порода. По происхождению и условиям формирования выделяют минеральные воды:

  • седиментогенные (ювенильные, глубинные), в формировании которых участвуют процессы фильтрации просачивающихся в Землю поверхностных вод осадочными породами;
  • инфильтративные (вадозные, поверхностные), которые формируются в результате осадконакопления и захоронения морских вод в глубоких недрах.

На поверхность Земли минеральные воды выходят в виде естественных минеральных источников или выводятся из недр при помощи буровых (каптажных) скважин глубиной 2-3 км и более.

В состав всех минеральных вод входят четыре взаимосвязанных компонента — неорганические минеральные вещества, газы, органические вещества и микрофлора. Они растворены в воде, молекулы которой, по современным представлениям, соединены между собой слабыми водородными связями (с энергией 20 кДж/моль) и образуют различные полиассоциаты. Такие супермолекулы состоят из 57 молекул воды, имеющих тетраэдрическую координацию (рис. 1.1), и составляют 15 % всего объема воды. По 16 таких супермолекул сцеплены в особые «структурные элементы» воды — микрокластеры, состоящие из 912 молекул воды. Доля таких пространственно структурированных элементов в общем объеме воды составляет 80 %, а их линейные размеры достигают 10 -8 м. Целостность такой структуры обусловлена межкластерными атомоподобными взаимодействиями. Гексагональные кластеры молекул волы почти не взаимодействуют друг с другом, а легко скользят гранями друг относительно друга, что обусловливает ее высокую текучесть. Они практически не разрушаются даже при кипении воды. При наличии химических веществ (ионов, газов и др.) структурные элементы воды образуют самоорганизующиеся диссоциативные суперструктуры, строение и физико-химические свойства которых обусловлены химической природой примесей. Исходя из этого, говорят об уникальной «информационной» структуре минеральной воды, в которой «записана» информация о растворенных в ней веществах. Об этом интуитивно догадывались уже древние мыслители: Аристотель утверждал, что «воды таковы, как земли, которые они проходят».

Рис. 1.1. Структура полиассоциатовминеральной воды

В состав минеральных вод входят практически все содержащиеся в недрах Земли химические элементы , которые существуют там в форме гидратированных ионов либо ассоциированных соединений, причем пределы их концентраций различаются на 5-6 порядков. Наиболее распространены катионы Na + , Mg 2+ , Са 2+ и анионы CI - , SO 2 4 - , HCO 3 - . С увеличением суммарного содержания ионов в воде возрастает число соединений хелатноготипа, образуемых ими с комплексонами, которые попадают в грунтовые воды в результате разложения веществ органической природы. Для ионов Na + и СI - содержание таких комплексонов увеличивается до 50%, а для ионов Mg 2+ Са 2+ и SO 2 4 - — до 95 %.

Основными параметрами минеральных вод являются ее ионный и газовый составы.

Ионы многих микроэлементов Мn, Сu, Zn, Mo, Fe, As, Co, В, F, Br, J, содержащиеся в минеральных водах в ничтожных количествах, являются кофакторами большинства энзимов и способны активно вмешиваться в различные виды обмена в организме. При использовании минеральных вод для наружного применения особенности их микрокомпонентного состава не имеют существенного значения и не учитываются, но они играют кардинальную роль при питьевом использовании минеральных вод. Кроме того, минеральные воды содержат значительное количество кремнезема в виде кремниевой кислоты H 2 SiO 3 (в виде коллоидной недиссоциированной фракции) или гидросиликат-иона HSIO 3 - .

Газы , содержащиеся в минеральных водах в растворенном состоянии, состав которых является важнейшим показателем происхождения минеральных вод и влияет на их ионный состав. По справедливому замечанию академика В.И. Вернадского, минеральная вода «насыщена газами той земной оболочки, в которой она находится и где она формировалась». Основными компонентами газового состава минеральных вод являются азот N 2 , метан СН 4 , диоксид углерода СO 2 и сероводород H 2 S. Азот и метан в силу малой растворимости при больших концентрациях спонтанно выделяются из воды. В состав минеральных вод входит радиоактивный газ радон, выделяющийся из радия в водовмещающих горных породах. Из-за небольшого количества и хорошей растворимости радон содержится в водах только в растворенном состоянии.

Среди органических веществ, содержащихся в минеральных водах, преобладают летучие жирные кислоты (уксусная, муравьиная, масляная, пропионовая и др.), эфиры, спирты, амины, углеводы и гуминовые кислоты. Наибольшее количество органических соединений находится в подземных водах газовых и нефтяных месторождений, а также областях высокого торфообразования.

Микрофлора минеральных вод представлена преимущественно аммонифицирующими, метаноокисляющими, сульфатвосстанавливающими и водородпродуцирующими бактериями. Потребляя вещества горных пород, они образуют 66льшую часть содержащихся в воде сложных ионов и газов. Число микроорганизмов в минеральных водах может достигать 10 6 в 1 мл.

Происхождение минеральных вод определяет не только их состав, но и уникальные физико-химические свойства — химические, термофизические, радиационные и механические.

По химическому составу, физическим свойствам и лечебному значению природные минеральные воды разделяют на 9 основных бальнеотерапевтических групп:

  • I — воды без «специфических» компонентов и свойств (действие которых определяется ионным составом и минерализацией);
  • II — воды углекислые;
  • III — воды сероводородные;
  • IV — воды железистые и «полиметальные» (с повышенным содержанием марганца, меди, свинца, цинка, алюминия и т.д.);
  • V -воды бромные, йодные и йодобромные;
  • VI — воды кремнистые гипертермальные (термы);
  • VII — воды мышьяковистые;
  • VIII- воды радоновые (радиоактивные);
  • IX — воды борсодержащие.

Внутри перечисленных групп выделяют различные гидрохимические типы минеральных вод.

Наряду с качественным составом минеральных вод не меньшее значение имеют интегральные количественные показатели, среди которых наиболее информативны:

  • минерализация — количество всех растворенных в единице объема воды веществ (ионов и недиссоциированных молекул), исключая газы;
  • газосодержание — количество всех газов, растворенных в минеральной воде;
  • суммарное содержание органического углерода, которое применяют для оценки содержания органических веществ в минеральных водах.

Кроме того, минеральные воды разделяют по кислотности (щелочности), имеющей важное значение при внутреннем приеме воды. С кислотностью тесно связан окислительно-восстановительный потенциал Eh минеральных вод (мера их окислительной активности). Величина Eh изменяется в различных водах от -600 до 860 мВ и уменьшается с ростом рН.

Температура является основным параметром термофизических свойств минеральной воды. Она обусловливает растворимость и содержание в воде газов и модулирует лечебное действие растворенных в воде химических веществ. Температура минеральных вод колеблется от 0 °С и ниже до 200-300 °С и зависит от теплового режима их недр и глубины циркуляции.

Радиационное действие минеральных вод определяется преимущественно излучением содержащегося в них радона. Количественно оно характеризуется радиоактивностью радона, измеряемой в Бк/дм 3 .

Механические свойства минеральных вод близки к таковым для пресной воды.

Необходимо отметить, что не все содержащиеся в земных недрах многочисленные минеральные воды могут быть использованы в лечебных целях. К лечебным минеральным водам могут быть отнесены только те, состав и свойства которых соответствуют принятым нормам для отнесения воды к лечебной минеральной. Эти нормы разработаны на основе многолетнего опыта клинического использования минеральных вод.

Наименование и подразделение минеральных вод определяется параметрами физико-химических свойств. Основные критерии оценки лечебных минеральных вод и их классификационное наименование представлены в табл. 1.1.

Искусственные минеральные воды не могут быть достаточно полноценным аналогом природных минеральных вод, особенно по газовому составу, содержанию микроэлементов и свойствам коллоидов. Поэтому искусственные минеральные воды используют только для наружного применения, а для внутреннего (питьевого лечения) они не рекомендуются.

По лечебному использованию природные воды подразделяют на минеральные воды наружного () и внутреннего применения ().

Введение

В организме человека и животных содержатся элементы всей таблицы Д.И. Менделеева.

Для обеспечения нормальной жизнедеятельности организма человеку необходимы биологически значимые элементы, которые делятся на макроэлементы и микроэлементы. В живых организмах содержание макроэлементов, по сравнению с микроэлементами, относительно велико и составляет более 0,001%. В основном макроэлементы поступают в организм человека с пищей, рекомендуемая дневная норма потребления при этом составляет более 200 мг.

В повседневной жизни обычно употребляют уже ставшее привычным слово «минерал» для обозначения микро- и макроэлементов. Причиной тому заимствованный из английского языка термин «Dietary mineral», который используется при описании биологически значимых элементов.

Минеральные вещества не обладают энергетической ценностью как жиры, белки и углеводы. Но без них жизнь человека невозможна. Эти вещества выполняют пластическую функцию в процессах жизнедеятельности организма, но особенно велика их роль в построении костных тканей. Минеральные вещества учавствуют в важных обменных процессах - водно-солевом, кислотно-щелочном.

Из них состоит плоть живых организмов. Ряд элементов относится к биогенным элементам или макронутриентам. Это азот, углерод, водород, кислород, сера, фосфор. Органические вещества человеческого организма, такие как жиры, белки, углеводы, гормоны, витамины, ферменты состоят именно из этих макронутриентов. К другим макроэлементам относятся: магний, кальций, калий, хлор, натрий.

Можно с уверенностью утверждать, что макроэлементы - это основа жизни и здоровья человека. Содержание в организме макроэлементов достаточно постоянно, однако могут возникать довольно серьезные отклонении от нормы, что приводит к развитию патологий различного характера. Эти элементы сконцентрированы преимущественно в мышечной, костной, соединительной тканях и в крови. Они являются строительным материалом несущих систем и обеспечивают свойства всего организма в целом. Макроэлементы отвечают за стабильность коллоидных систем организма, поддерживают осмотическое давление.

Классификация минеральных веществ

Как правило, изучение любых биологически активных веществ (включая минералы) начинается с их классификации.

Простейшая классификация минеральных элементов основана на количественном признаке. Суммарное количество каждого из элементов может быть очень разным, поэтому различают так называемые макроэлементы и микро- (или ультрамикро)-элементы. Микроэлементы (МЭ) - это группа химических элементов, которые содержатся в организме человека и животных в очень малых количествах, в пределах 10 -3 -10 -12 %. По определению Н.А. Агаджаняна и А.В. Скального (2001), «МЭ - это не случайные ингредиенты тканей и жидкостей живых организмов, а компоненты закономерно существующей очень древней и сложной физиологической системы, участвующей в регулировании жизненных функций организмов на всех стадиях развития». Деление минералов по количественному признаку достаточно условно, так как один и тот же элемент может выступать в организме и как макроэлемент, и как микроэлемент. Примером этого может служить кальций, который содержится в огромных количествах в костях, и в этом случае он - безусловно - макроэлемент. Но тот же кальций выполняет в клетках роль вторичного посредника гормонального сигнала, в этом случае его количество измеряется в микрограммах, и он, безусловно, - микроэлемент.

Хотя классификация по количественному признаку проста и удобна, она не помогает ответить на вопрос о биологической роли каждого конкретного элемента в организме. Еще меньше этот способ разделения минеральных элементов на группы по их количеству может быть полезен при определении сочетанного действия минералов в организме, будь то синергическое или антагонистическое действие. Поэтому исследователи разных биологических и медицинских специальностей предлагают свое видение этого вопроса.

Минералы резко отличаются друг от друга по своим физико-химическим свойствам и биологическому действию. Функции биоминералов в организме чрезвычайно разнообразны и зависят от множества факторов: концентрации в биологических субстратах, от свойств самого биосубстрата, от взаимодействия их между собой и с другими биологически активными веществами в организме. В этом случае они могут выступать как «неорганические витамина» - (в составе ферментов, с гормонами, с другими биологически активными соединениями).

Начало серьезного изучения роли макро- и микроэлементов для жизнедеятельности организма относится в концу 19 века. Уже тогда встал вопрос о классификации минеральных элементов применительно к особенностям питания человека (цит. по: Петровский К.С., Ванханен В.Д., 1981). В основу этого варианта классификации положено свойство минералов изменять кислотно-щелочное равновесие.

Изучение минерального состава пищевых продуктов показало, что одни из них характеризуются преобладанием состава минеральных элементов, обусловливающих в организме электроположительные (катионы), другие вызывают преимущественно электроотрицательные (анионы) сдвиги. В связи с этим пищевые продукты, богатые катионами, имеют щелочную ориентацию, а пищевые продукты, богатые анионами, -- кислотную ориентацию. Учитывая важность поддержания в организме кислотно-щелочного состояния и возможное влияние на него кислотных и щелочных веществ пищи, авторы этой классификации посчитали целесообразным разделить минеральные элементы пищевых продуктов на вещества щелочного и кислотного действия. Кроме того, как самостоятельная группа биомикроэлементов выделены минеральные элементы, встречающиеся в пищевых продуктах в небольших количествах, проявляющих в организме высокую биологическую активность.

Минеральные элементы щелочного характера (катионы): Кальций, Магний, Калий, Натрий.

Минеральные элементы кислотного характера (анионы): Фосфор, Сера, Хлор.

На современном уровне знаний приведенная выше классификация уже несколько устарела, т.к. метаболизм любого минерального элемента нельзя рассматривать только с точки зрения его щелочности или кислотности.

Наибольший интерес для физиологов, биохимиков и специалистов в области питания человека представляет классификация, основанная на биологической роли элементов. Согласно этой классификации из 81 элемента, обнаруженного в организме человека выделяют 15 жизненно необходимых или эссенциальных элементов: кальций, фосфор, калий, хлор, натрий, цинк, марганец, молибден, йод, селен, сера, магний, железо, медь и кобальт. При «абсолютном дефиците» (по Авцыну А.П. с соавт., 1991) эссенциальных веществ наступает смерть.

Кроме того, различают условно эссенциальные элементы: фтор, кремний, титан, ванадий, хром, никель, мышьяк, бром, стронций и кадмий.

Выделяют также достаточно большую группу элементов, которые достаточно часто накапливаются в организме, поступая с пищей, вдыхаемым воздухом или питьевой водой, но их биологически полезная функция пока не определена. Напротив, некоторые из этих элементов являются, несомненно, токсическими. К общеизвестным токсическим веществам относятся свинец, ртуть, кадмий, бериллий и некоторые другие. Подразделение элементов на эссенциальные и токсичные в значительной степени условно. Так, некоторые в основном токсичные элементы (мышьяк, свинец и даже кадмий) некоторыми авторами относятся к эссенциальным, по крайней мере, для лабораторных животных. С другой стороны такие сугубо эссенциальные МЭ как медь, марганец селен, молибден, йод, фтор, кобальт при определенных условиях могут вызвать симптомы интоксикации.

Классификация элементов по их биогенной активности также не лишена недостатков. Прежде всего, она не отражает изменений биологических свойств биоминералов в зависимости от их дозы, сочетанности с другими элементами, их синергизма или антагонизма. Кроме того, биологическая роль биоминералов может изменяться от целого ряда других факторов: условий жизни, возраста, вредных привычек и т.д.

В.И. Смоляр (1989) выделил пять критериев биогенности химического элемента или МЭ:

1) присутствие в тканях здорового организма;

2) небольшие различия в относительном содержании в различных организмах;

3) При исключении из рациона четко воспроизводятся морфологические изменения, обусловленные его недостаточностью;

4) специфические нарушения биохимических процессов при гиперэлементозе;

5) обнаруженные изменения устраняются путем введения недостающего элемента.

В нашей стране по предложению академика РАМН А.П. Авцына и его коллег (1983г.) для обозначения всех патологических процессов, вызванных дефицитом, избытком или дисбалансом макро- и микроэлементов, введено понятие микроэлементозов и предложена рабочая классификация микроэлементозов человека, в основу которой был положен принцип первоочередного выделения этиологического фактора химической природы. Отсюда каждый микроэлементоз следует именовать в соответствии с названием МЭ, дефицит или токсическое действие которого вызвало заболевание. Микроэлементозы могут быть явными, т.е. клинически выраженными, либо латентными или потенциальными.

Согласно его классификации (Авцын А.П. с соавт., 1991), все микроэлементозы можно разделить на природные эндогенные, природные экзогенные и техногенные. Если природные микроэлементозы не связаны с деятельностью человека, то техногенные связаны с производственной деятельностью человека. Это: 1)промышленные (профессиональные), связанные с производственной деятельностью человека. При этом болезни и синдромы, вызванные избытком определенных микроэлементов (МЭ) и их соединений непосредственно в зоне самого производства. 2)Так называемые «соседские» микроэлементозы, развивающиеся по соседству с производством. 3)Трансгрессивные микроэлементозы развиваются в значительном отдалении от производства за счет воздушного или водного переноса МЭ.

В независимости от многообразия и значения той или иной классификации, для простоты и удобства чаще используют простейшую - основанную на количественном признаке.

В зависимости от условий твердения минеральные вяжущие вещества подразделяются на три группы:

1. Воздушные

2. Гидравлические

3. Вяжущие автоклавного твердения.

Воздушные вяжущие.

Они твердеют и набирают прочность только на воздухе. Эти вяжущие обладают низкой водостойкостью и могут эксплуатироваться только в сухих условиях.

По химическому составу разделяются на 4 подгруппы:

1. Известковые вяжущие, в основном состоящие из оксида кальция (CaO).

2. Гипсовые вяжущие, в основном состоящие из сульфата кальция (CaSO 4)

3. Магнезиальные,

4. Вяжущие на основе жидкого стекла, представляющие собой силикаты натрия или калия (NaO cdot m SiO_2 или K_2 O cdot m SiO_2)

Гидравлические вяжущие.

Они представляют собой вещества, способные твердеть и набирать прочность не только на воздухе, но и в воде. Они обладают высокой прочностью и водостойкостью и могут эксплуатироваться в любых условиях.

По химическому составу представляют собой сложные соединения. В основном содержат 4 оксида - CaO-SiO 2 -Al 2 O 3 -Fe 2 O 3 .

В зависимости от состава (каких оксидов больше), гидравлические вяжущие подразделяются на 2 подгруппы:

1. Силикатные цементы, в основном состоящие из силикатов кальция.

◦ Портланд-цемент и его разновидности.

2. Аллюминатные цементы, в основном состоящие из аллюминатов кальция.

◦ Глиноземистый цемент и его разновидности

Вяжущие автоклавного твердения.

Они представляют собой вещества, способные образовывать прочный камень в атмосфере автоклавного синтеза при температуре 175-200 градусов и давлении от 0,8 до 1,3 мегапаскалей. К ним относятся известково-кремнеземистые вяжущие, состоящие из извести и кремнеземистого компонента (песка, шлака или золы).

Воздушные вяжущие.

1.Гипсовые вяжущие вещества.

Гипсовыми называют получаемые из минерального сырья, путем его обжига и помола и содержащие в основном сульфат кальция.

Сырьем для производства гипсовых вяжущих являются горные породы (гипсовый камень CaSO 4 *2H 2 0) и ангидрит (CaSO 4), а также отходы промышленности (фосфогипс). В зависимости от температуры тепловой обработки, гипсовые вяжущие подразделяются на низкообжиговые и высокообжиговые.

1.1. Низкообжиговые гипсовые вяжущие.

Их получают термической обработкой гипсового камня при температуре от 110 до 180 градусов. При этом образуется так называемый полуводный гипс (CaSO 4 *0,5H 2 0). Они обладают невысокой прочностью и водостойкостью. К достоинствам можно отнести хорошие тепло- и звукоизоляционные свойства, экологическую чистоту и способность регулировать влажность в помещении.

1.1.1.К ним относятся следующие разновидности:

1.1.1.1 Строительный гипс

Его получают тепловой обработкой гипсового камня в открытых варочных котлах или печах. При этом образуется %beta - модификация полуводного гипса с мелкими и плохо сформированными кристаллами, поэтому прочность строительного гипса невысока. Она выражается маркой строительного гипса Г, которая представляет собой предел прочности при сжатии (R сж) половинок гипсовых балочек, размером 4х4х16 сантиметров. Строительный гипс выпускают трех марок: Г3, Г4 и Г5. Это означает, что прочность при сжатии = 3-5 МПа.

Время перехода гипсового теста в камнеподобное состояние называется сроками схватывания. Различают начало и конец схватывания. Начало схватывания - это время, за которое система, вяжущее-вод только начинает терять свою подвижность. Для строительного гипса не ранее 4 минут. Конец схватывания - это время, за которое системой вяжущее-вода подвижность теряется полностью, т.е. система превращается в камень. Для строительного гипса от 6 до 30 минут.

1.1.1.2. Высокопрочный гипс.

Его получают термической обработкой гипсового камня в автоклавах при повышенном давлении. Полуводный гипс образует крупные и правильно сформированные кристаллы - альфа-модификация полуводного гипса. Это приводит к тому, что прочность высокопрочного гипса гораздо выше, чем строительного.

1.1.1.3. Формовочный гипс.

По составу такой же, как и строительный гипс (бета-модификация), но содержит меньше примесей и более тонко размолот. Используется в керамической промышленности для изготовления форм.

1.1.2. Твердение низкообжиговых гипсовых вяжущих.

Происходит при их взаимодействии с водой. Половинка поды становится двойной нормальной водой. Твердение можно регулировать - замедлять и ускорять. Ускоряют твердение введением электролитов (CaCl, NaCl), или вводят частицы молотого гипсового камня, которые служат дополнительными центрами кристаллизации. Замедляют твердение гипса введением пленкообразующих веществ, затрудняющих доступ воды, например водный раствор столярного клея.

1.1.3. Применение.

Низкообжиговые гипсовые вяжущие используют для штукатурных строительных растворов, изготовления гипсовой плитки и лепнины. Кроме того, из них изготавливают композиционные материалы - гипсоволокнистые листы (ГВЛ) из гипса и распушенной на волокна бумаги и гипсокартон из гипса и плотного картона. Кроме того, изготовляют сухие смеси для отделки стен и потолков, а также клея и затирки гипса.

1.2. Высообжиговые гипсовые вяжущие

Их изготавливают обжигом гипсового камня при температуре 600-1000 градусов. Они обладают более высокой прочностью и водостойкостью в сравнении с низкообжиговыми, но очень медленно твердеют.

К высокообжиговым гипсам относятся:

а) ангидритовый цемент, его получают либо высокотемпературным обжигом гипсового камня, либо помолом горных пород ангидрита.

Это вяжущее крайне медленно твердеет и для ускорения процесса вводят от 3 до 5% извести CaO. Сроки схватывания: начало не ранее 30 минут, конец не позднее 24 часов. Rсж от 5 до 20 Мпа.

б) эстрих-гипс. Его получают обжигом гипсового камня при температуре 800-1000 градусов.

9Катализатор твердения CaO образуется в процессе обжига, т.е. Исключается технологическая операция его введения. В остальном эстрих-гипс имеет те же свойства и марки, что и ангидритовый цемент.

Применение: для штукатурных растворов, изготовления отделочного материала искусственного мрамора, а также для устройства бесшумных наливных полов.

{известковые, магнезиальные и вяжущие на основе жидкого стекла самостоятельно}

Минеральные элементы

щелочного характера

(катионы)

Минеральные элементы

кислотного характера

Биомикроэлементы

Стронций

Марганец

Сурьма и др.

Физиологическое значение минеральных элементов определяется их участием:

    в образовании струк­тур и осуществлении функции ферментных систем;

    в пластических процессах в орга­низме;

    в построении тканей организма, особенно костной ткани;

    в поддержании кислотно-основного состояния и нормального солевого состава крови;

    в нор­мализации водно-солевого обмена.

Минеральные элементы щелочного характера (катио­ны).

Кальций является наиболее распространенным минеральным элементом, который содержится в организ­ме человека в количестве 1500 г. Около 99% кальция находится в костях, участвует в процессах свертывания крови и стимулирует сократи­тельную способность сердечной мышцы.

Источниками кальция являются молоко и молочные продукты: 0,5 л молока или 100 г сыра обеспечивают су­точную потребность взрослого человека в кальции (800 мг). Для беременных и кормящих матерей - 1500 мг в сутки. Дети должны по­лучать 1100-1200 мг кальция в сутки в зависимости от возраста.

Магний играет существенную роль в углеводном и фосфорном обмене, обладает антиспастическими и со­судорасширяющими свойствами.

Основными источниками магния являются злаковые: крупы, горох, фасоль. Продукты животного происхожде­ния содержат очень мало магния.

Потребность взрослого человека в магнии - 400 мг в сутки. Детей - 250-350 мг в сутки в зависимости от возраста.

Натрий участвует в процессах внеклеточного и межтканевого обмена, в поддержании кислотно-основ­ного равновесия и осмотического давления. Натрий в основном поступает в организм с поваренной солью. Потребление натрия составляет 4-6 г в сутки, что соответствует 10-15г хлорида натрия. Потребность в натрии повышается при тяжелом физическом труде, обильном потоотделении, рвотах и поносе.

Калий. Значение калия заключается прежде всего в его способности уси­ливать выведение жидкости из организма. Высо­ким содержанием калия отличаются сухие фрукты – курага, урюк, сушеная вишня, чернослив, изюм. Значительное количество калия содержится в картофеле. Суточная потреб­ность взрослых людей в калии составляет 3-5 г.

Минеральные элементы кислотного характера (анио­ны) - фосфор, хлор, сера.

Фосфор , так же как и кальций, участвует в образо­вании костной ткани, имеют значение в функции нервной системы и мозговой ткани, мышц и печени. Соотношение кальция и фосфора в пище не должно превышать 1: 1,5.

Наибольшее количество фосфора находится в молоч­ных продуктах, яйцах, рыбе. Содержание фосфора в сыре - до 600, яичном желтке - 470, фасоли - 504 мг в 100 г продукта.

Потребность взрослого человека в фосфоре - 1200 мг в сутки.

Хлор поступает в организм в основном с хлористым натрием. Принимает участие в регуляции осмотического давления, нормализации водного обмена, а также в об­разовании соляной кислоты железами желудка

Содержится хлор преимущественно в продуктах жи­вотного происхождения: в яйце - 196, моло­ке - 106, сыре - 880 мг в 100 г продукта.

Потребность в хлоре составляет 4-6 г в сутки.

Сера входит в состав некоторых аминокислот - метионина, цистина, цистеина, витами­нов - тиамина и биотина, а также в состав фермента инсулина.

Источниками серы служат преимущественно продукты животного происхождения: в сыре содержится 263, рыбе-175, мясе-230, яйцах-195 мг в 100 г про­дукта.

Потребность взрослых людей в сере ориентировочно определена в количестве 1 г/сут.

Биомикроэлементы представлены в пищевых про­дуктах в небольших количествах, но характе­ризуются выраженными биологическими свойствами. К ним относятся железо, медь, кобальт, йод, фтор, цинк, стронций и т. д.

Железо играет важную роль в кроветворении, нормализации состава крови. Около 60% железа в организме, сосредото­чено в гемохромогене - основной части гемоглобина. Наибольшее количество железа находится в печени, почках, икре, мясных продуктах, яйцах, орехах.

Потребность взрослого человека в железе составляет 10 мг/сут для мужчин и 18 мг/сут для женщин.

Медь является вторым (после железа) кроветвор­ным биомикроэлементом. Медь способствует переносу железа в костный мозг.

Содержится медь в печени, рыбе, яичном желтке и зеленых овощах. Суточная потребность - около 2,0 мг.

Кобальт является третьим биомикроэлементом, участвующим в кроветворении, он активирует процессы образования эритроцитов и гемоглобина, является исходным материалом для образования в организме витаминаB 12 .

Кобальт содержится в печени, свекле, землянике, в крупе овсяной. Потребность в ко­бальте 100-200 мкг/сут.

Марганец активирует процессы костеобразования, кроветворения, способствует обмену жиров, обладает липотропными свойствами, влияет на функцию эндокрин­ных желез.

Основные источники его - растительные продукты, особенно листовые овощи, свекла, черника, ук­роп, орехи, бобовые, чай.

Потребность в марганце составляет около 5 мг в сутки.

Биомикроэлементами, являются йод, фтор, они связаны с эндемическими заболеваниями.

Йод участвует в образовании гормона щитовидной железы - тироксина. Он распространен в природе неравномерно. В районах с низким природ­ным содержанием йода в местных продуктах возникает эндемический зоб. Это за­болевание характеризуется увеличением щитовидной же­лезы, нарушением ее функции.

Профилактика эндемического зоба включает специфи­ческие и общие мероприятия. К специфическим меро­приятиям относится продажа насе­лению йодированной соли с целью обеспечить ежедневное поступление в организм человека около 200 мкг йода.

Фтор играет существенную роль в процессах раз­вития зубов, формирования дентина и зубной эмали, а также костеобразования. Следует заметить, что основным источником фтора для человека являются не пищевые продукты, а питьевая вода.

ВИТАМИНЫ И ИХ ЗНАЧЕНИЕ В ПИТАНИИ

Витамины представляют собой низкомолекулярные органические соединения, различные по своей химиче­ской структуре. В организме витамины не синтезируются или синтезируются в малых количествах, поэтому должны поступать с пищей. Они принимают участие в обмене веществ, оказывают большое влияние на состояние здоровья, адаптационные способности, трудоспособность. Длительное отсутствие в пище того или иного витамина вызывает авитаминоз (гиповитаминоз). Для всех гиповитаминозов характерны общие признаки, которые проявляются слабостью, повышенной утомляемостью, сниженной тру­доспособностью, подверженностью различным простуд­ным заболеваниям. Повышенное поступление витаминов в организм человека приводит кгипервитаминозам (на­пример, гипервитаминозы витаминовAиDу детей).

В основу современной классификации вита­минов положен принцип растворимости их в воде и жире.