Молекулярная кристаллическая решетка обладает высокой прочностью. Кристаллические решетки в химии

Инструкция

Как легко можно догадаться из самого называния, металлический тип решетки встречается у металлов. Эти вещества характеризуются, как правило, высокой температурой плавления, металлическим блеском, твердостью, являются хорошими проводниками электрического тока. Запомните, что в узлах решеток такого типа находятся или нейтральные атомы или положительно заряженные ионы. В промежутках между узлами – электроны, миграция которых и обеспечивает высокую электропроводимость подобных веществ.

Ионный тип кристаллической решетки. Следует запомнить, что он присущ и солям. Характерный – кристаллы всем известной поваренной соли, хлорида натрия. В узлах таких решеток попеременно чередуются положительно и отрицательно заряженные ионы. Такие вещества, как правило, тугоплавки, с малой летучестью. Как легко догадаться, они имеют ионный тип .

Атомный тип кристаллической решетки присущ простым веществам – неметаллам, которые при нормальных условиях представляют собою твердые тела. Например, сере, фосфору, . В узлах таких решеток находятся нейтральные атомы, связанные друг с другом ковалентной химической связью. Таким веществам свойственна тугоплавкость, нерастворимость в воде. Некоторым (например, углероду в виде ) – исключительно высокая твердость.

Наконец, последний тип решетки - молекулярный. Он встречается у веществ, находящихся при нормальных условиях в жидком или газообразном виде. Как опять-таки легко можно понять из , в узлах таких решеток – молекулы. Они могут быть как неполярного вида (у простых газов типа Cl2, О2), так и полярного вида (самый известный пример – вода H2O). Вещества с таким типом решетки не проводят ток, летучи, имеют низкие температуры плавления.

Источники:

  • тип решетки

Температуру плавления твердого вещества измеряют для определения степени его чистоты. Примеси в чистом веществе обычно понижают температуру плавления или увеличивают интервал, в котором плавится соединение. Метод с использованием капилляра является классическим для контроля содержания примесей.

Вам понадобится

  • - испытуемое вещество;
  • - стеклянный капилляр, запаянный с одного конца (диаметром 1 мм);
  • - стеклянная трубка диаметром 6-8 мм и длиной не менее 50 см;
  • - нагреваемый блок.

Инструкция

Поставьте стеклянную трубку вертикально на твердую поверхность и несколько раз бросьте через нее капилляр запаянным концом вниз. Это способствует уплотнению вещества. Для определения температуры столбик вещества в капилляре должен быть около 2-5 мм.

Поместите термометр с капилляром в нагреваемый блок и наблюдайте за изменениями испытуемого вещества при повышении температуры. Термометр до и в процессе нагревания не должен касаться стенок блока и других сильно нагретых поверхностей, иначе он может лопнуть.

Отметьте температуру, при которой появляются первые капли в капилляре (начало плавления ), и температуру, при которой исчезают последние вещества (конец плавления ). В этом интервале вещество начинает спадать до полного перехода в жидкое состояние. При проведении анализа также обратите внимание на изменение или разложение вещества.

Повторите измерения еще 1-2 раза. Результаты каждого измерения представьте в виде соответствующего температурного интервала, в течение которого вещество переходит из твердого состояния в жидкое. В завершение анализа сделайте заключение о чистоте испытуемого вещества.

Видео по теме

В кристаллах химические частицы (молекулы, атомы и ионы) расположены в определенном порядке, в некоторых условиях они образуют правильные симметричные многогранники. Выделяют четыре типа кристаллических решеток - ионные, атомные, молекулярные и металлические.

Кристаллы

Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц, а также симметрией кристаллической решетки. Твердыми кристаллами называют трехмерные образования, у которых один и тот же элемент структуры повторяется во всех направлениях.

Правильная форма кристаллов обусловлена их внутренним строением. Если в них заменить молекулы, атомы и ионы точками вместо центров тяжести этих частиц, получится трехмерное регулярное распределение - . Повторяющиеся элементы ее структуры называют элементарными ячейками, а точки - узлами кристаллической решетки. Выделяют несколько типов кристаллов в зависимости от частиц, которые их образуют, а также от характера химической связи между ними.

Ионные кристаллические решетки

Ионные кристаллы образуют анионы и катионы, между которыми есть . К данному типу кристаллов относятся соли большинства металлов. Каждый катион притягивается r аниону и отталкивается от других катионов, поэтому в ионном кристалле невозможно выделить одиночные молекулы. Кристалл можно рассматривать как одну огромную , причем ее размеры не ограничены, она способна присоединять новые ионы.

Атомные кристаллические решетки

В атомных кристаллах отдельные атомы объединены ковалентными связями. Как и ионные кристаллы, их также можно рассматривать как огромные молекулы. При этом атомные кристаллы очень твердые и прочные, плохо проводят электричество и тепло. Они практически нерастворимы, для них характерна низкая реакционная способность. Вещества с атомными решетками плавятся при очень высоких температурах.

Молекулярные кристаллы

Молекулярные кристаллические решетки образуются из молекул, атомы которых объединены ковалентными связями. Из-за этого между молекулами действуют слабые молекулярные силы. Такие кристаллы отличаются малой твердостью, низкой температурой плавления и высокой текучестью. Вещества, которые они образуют, а также их расплавы и растворы плохо проводят электрический ток.

Металлические кристаллические решетки

В кристаллических решетках металлов атомы расположены с максимальной плотностью, их связи являются делокализованными, они распространяются на весь кристалл. Такие кристаллы непрозрачны, отличаются металлическим блеском, легко деформируются, при этом хорошо проводят электричество и тепло.

Данная классификация описывает лишь предельные случаи, большинство кристаллов неорганических веществ принадлежит к промежуточным типам - молекулярно-ковалентным, ковалентно- и др. В качестве примера можно привести кристалл графита, внутри каждого слоя у него ковалентно-металлические связи, а между слоями - молекулярные.

Источники:

  • alhimik.ru, Твердые вещества

Алмаз - это минерал, относящийся к одной из аллотропных модификаций углерода. Отличительной чертой его является высокая твердость, которая по праву приносит ему звание самого твердого вещества. Алмаз достаточно редкий минерал, но вместе с этим и самый широко распространенный. Исключительная его твердость находит свое применение в машиностроении и промышленности.

Инструкция

Алмаз имеет атомную кристаллическую решетку. Атомы углерода, составляющие основу молекулы, располагаются в виде тетраэдра, благодаря чему алмаз имеет такую высокую прочность. Все атомы связаны прочными ковалентными связями, которые образуются, исходя из электронного строения молекулы.

Атом углерода имеет sp3-гибридизацию орбиталей, которые располагаются под углом в 109 градусов и 28 минут. Перекрывание гибридных орбиталей происходит по прямой линии в горизонтальной плоскости.

Таким образом, при перекрывании орбиталей под таким углом образуется центрированный , который относится к кубической системе, поэтому можно сказать, что алмаз имеет кубическую структуру. Такая структура считается одной из самых прочных в природе. Все тетраэдры образуют трехмерную сеть из слоев шестичленных колец атомов. Такая устойчивая сеть ковалентных связей и трехмерное их распределение ведет к дополнительной прочности кристаллической решетки.
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Комбинированный.

Основная цель урока: Дать учащимся конкретные представления об аморфных и кристаллических веществах, типах кристаллических решеток, установить взаимосвязь между строением и свойствами веществ.

Задачи урока.

Образовательная: сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества, дать учащимся представление о законе постоянства состава.

Воспитательная: продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого- структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.

Развивающая: развивать познавательный интерес школьников, используя проблемные ситуации; совершенствовать умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Оборудование: Периодическая система Д.И.Менделеева, коллекция “Металлы”, неметаллы: сера, графит, красный фосфор, кислород; Презентация “Кристаллические решетки”, модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, смолы, воск, жевательная резинка, шоколад, компьютер, мультимедийная установка, видеопыт “Возгонка бензойной кислоты”.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

Затем сообщает тему урока и цель урока. Учащиеся записывают тему урока в тетрадь. (Cлайд 1, 2).

2. Проверка домашнего задания

(2 ученика у доски: Определить вид химической связи для веществ с формулами:

1) NaCl, CO 2 , I 2 ; 2) Na, NaOH, H 2 S (записывают ответ на доске и включаются в опрос).

3. Анализ ситуации.

Учитель: Что изучает химия? Ответ: Химия - это наука о веществах, их свойствах и превращениях веществ.

Учитель: Что же такое вещество? Ответ: Вещество - это то, из чего состоит физическое тело. (Cлайд 3).

Учитель: Какие агрегатные состояния веществ вы знаете?

Ответ: Существует три агрегатных состояния: твердое, жидкое и газообразное. (Cлайд 4).

Учитель: Приведите примеры веществ, которые при различных температурах могут существовать во всех трех агрегатных состояниях.

Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 0 0 С вода переходит в твердое состояние - лед, а при повышении температуры до 100 0 С мы получим водяной пар (газообразное состояние).

Учитель (дополнение): Любое вещество можно получить в твердом, жидком и газообразном виде. Кроме воды – это металлы, которые при нормальных условиях находятся в твердом состоянии, при нагревании начинают размягчаться, и при определенной температуре(t пл) переходят в жидкое состояние - плавятся. При дальнейшем нагревании, до температуры кипения, металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно перевести в жидкое и твердое состояние, понижая температуру: например, кислород, который при температуре (-194 0 С) превращается в жидкость голубого цвета, а при температуре (-218,8 0 С) затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества.

Учитель: Назовите, какие твердые вещества находятся у вас на столах.

Ответ: Металлы, пластилин, поваренная соль: NaCl, графит.

Учитель: Как вы думаете? Какое из этих веществ лишнее?

Ответ: Пластилин.

Учитель: Почему?

Делаются предположения. Если ученики затрудняются, то с помощью учителя приходят к выводу, что пластилин в отличие от металлов и хлорида натрия не имеет определенной температуры плавления - он (пластилин) постепенно размягчается и переходит в текучее состояние. Таков, например, шоколад, который тает во рту, или жевательная резинка, а также стекло, пластмассы, смолы, воск (при объяснении учитель демонстрирует классу образцы этих веществ). Такие вещества называют аморфными. (слайд 5), а металлы и хлорид натрия - кристаллические. (Cлайд 6).

Таким образом, различают два вида твердых веществ: аморфные и кристаллические. (слайд7).

1) У аморфных веществ нет определенной температуры плавления и расположение частиц в них строго не упорядочено.

Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены: атомов, молекул и ионов. Эти частицы расположены в строго определенных точках пространства, и, если эти узлы соединить прямыми линиями, то образуется пространственный каркас - кристаллическая решетка .

Учитель задает проблемные вопросы

Как объяснить существование твердых веществ со столь различными свойствами?

2) Почему кристаллические вещества при ударе раскалываются в определенных плоскостях, а аморфные вещества этим свойством не обладают?

Выслушать ответы учеников и подвести их к выводу :

Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено типом химической связи в данном веществе.

Проверка домашнего задания:

1) NaCl – ионная связь,

СО 2 – ковалентная полярная связь

I 2 – ковалентная неполярная связь

2) Na – металлическая связь

NаОН - ионная связь между Na + иОН - (О и Н ковалентная)

Н 2 S - ковалентная полярная

Фронтальный опрос.

  • Какая связь называется ионной?
  • Какая связь называется ковалентной?
  • Какая связь называется ковалентной полярной? неполярной?
  • Что называется электроотрицательностью?

Вывод: Прослеживается логическая последовательность, взаимосвязь явлений в природе: Строение атома->ЭО->Виды химической связи->Тип кристаллической решетки->Свойства веществ. (слайд 10).

Учитель: В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток : ионные, молекулярные, атомные и металлические. (Cлайд 11).

Результаты оформляются в следующую таблицу-образец таблицы у учеников на парте. (см. Приложение 1). (Cлайд 12).

Ионные кристаллические решетки

Учитель: Как вы думаете? Для веществ с каким видом химической связи будет характерен такой вид решетки?

Ответ: Для веществ с ионной химической связью будет характерна ионная решетка.

Учитель: Какие частицы будут находиться в узлах решетки?

Ответ: Ионы.

Учитель: Какие частицы называются ионами?

Ответ: Ионы-это частицы, имеющие положительный или отрицательный заряд.

Учитель: Какие ионы бывают по составу?

Ответ: Простые и сложные.

Демонстрация - модель кристаллической решетки хлорида натрия (NaCl).

Объяснение учителя: В узлах кристаллической решетки хлорида натрия находятся ионы натрия и хлора.

В кристаллах NaCl отдельных молекул хлорида натрия не существует. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , Na n Cl n , где n – большое число.

Связи между ионами в таком кристалле очень прочные. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки, нелетучи, хрупки. Расплавы их проводят электрический ток (Почему?), легко растворяются в воде.

Ионные соединения - это бинарные соединения металлов (I А и II A), соли, щелочи.

Атомные кристаллические решетки

Демонстрация кристаллических решеток алмаза и графита.

У учеников на столе образцы графита.

Учитель: Какие частицы будут находиться в узлах атомной кристаллической решетки?

Ответ: В узлах атомной кристаллической решетки находятся отдельные атомы.

Учитель: Какая химическая связь между атомами будет возникать?

Ответ: Ковалентная химическая связь.

Объяснения учителя.

Действительно, в узлах атомных кристаллических решеток находятся отдельные атомы, связанные между собой ковалентными связями. Так как атомы, подобно ионам, могут по-разному располагаться в пространстве, то образуются кристаллы разной формы.

Атомная кристаллическая решетка алмаза

В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Вопрос: Какие эти вещества по составу? Ответ: Простые по составу.

Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 3500 0 С), прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки

Учитель: Ребята, у вас на столах коллекция металлов, рассмотрим эти образцы.

Вопрос: Какая химическая связь характерна для металлов?

Ответ: Металлическая. Связь в металлах между положительными ионами посредством обобществленных электронов.

Вопрос: Какие общие физические свойства для металлов характерны?

Ответ: Блеск, электропроводность, теплопроводность, пластичность.

Вопрос: Объясните, в чем причина того, что у такого числа разнообразных веществ одинаковые физические свойства?

Ответ: Металлы имеют единое строение.

Демонстрация моделей кристаллических решеток металлов.

Объяснение учителя.

Вещества с металлической связью имеют металлические кристаллические решетки

В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки

Учитель демонстрирует и называет вещества: йод, сера.

Вопрос: Что объединяет эти вещества?

Ответ: Эти вещества являются неметаллами. Простые по составу.

Вопрос: Какая химическая связь внутри молекул?

Ответ: Химическая связь внутри молекул ковалентная неполярная.

Вопрос: Какие физические свойства для них характерны?

Ответ: Летучие, легкоплавкие, малорастворимые в воде.

Учитель: Давайте сравним свойства металлов и неметаллов. Ученики отвечают, что свойства принципиально отличаются.

Вопрос: Почему свойства неметаллов сильно отличаются от свойств металлов?

Ответ: У металлов связь металлическая, а у неметаллов ковалентная неполярная.

Учитель: Следовательно, и тип решетки другой. Молекулярная.

Вопрос: Какие частицы находятся в узлах решетки?

Ответ: Молекулы.

Демонстрация кристаллических решеток углекислого газа и йода.

Объяснение учителя.

Молекулярная кристаллическая решетка

Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H 2 ,O 2 ,N 2, I 2 , O 3 , белый фосфор Р 4 , но и сложные : твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи, способны к возгонке.

Вопрос : Какой процесс называется возгонкой или сублимацией?

Ответ : Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией .

Демонстрация опыта: возгонка бензойной кислоты (видеоопыт).

Работа с заполненной таблицей.

Приложение 1. (Слайд 17)

Кристаллические решетки, вид связи и свойства веществ

Тип решетки

Виды частиц в узлах решетки

Вид связи между частицами Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA,IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная неполярная - связь очень прочная

2. Ковалентная полярная - связь очень прочная

Простые веществ а : алмаз(C), графит(C) , бор(B), кремний(Si).

Сложные вещества:

оксид алюминия (Al 2 O 3), оксид кремния (IY)-SiO 2

Очень твердые, очень тугоплавкие, прочные,нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекуми- слабые силы межмолекулярного притяжения, а вот внутри молекулпрочная ковалентная связь Твердые вещества при особых условиях, которые при обычных- газы или жидкости

(О 2 ,Н 2 ,Cl 2 ,N 2 ,Br 2 ,

H 2 O, CO 2 ,HCl);

сера, белый фосфор, йод; органические вещества

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическаяразной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ-металлов- металлическая кристаллическая решетка; для неметаллов - атомная или молекулярная.

Работа с Периодической системой Д.И.Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IY A,Y A, YI A, YII A, YIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O , галогены и благородные газы ).

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA (кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IY A и бора в простом веществе кристаллическая решетка атомная; а у элементов Y A, YI A, YII A, YIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод:

Существует следующая закономерность: если известно строение веществ, то можно предсказать их свойства, или наоборот: если известны свойства веществ, то можно определить строение. (Cлайд 18).

Учитель: Посмотрите внимательно на таблицу. Какую еще классификацию веществ вы можете предложить?

Если ученики затрудняются, то учитель объясняет, что вещества можно разделить на вещества молекулярного и немолекулярного строения. (Cлайд 19).

Вещества молекулярного строения состоят из молекул.

Вещества немолекулярного строения состоят из атомов, ионов.

Закон постоянства состава

Учитель: Сегодня мы познакомимся с одним из основных законом химии. Это закон постоянства состава, который был открыт французским химиком Ж.Л.Прустом. Закон справедлив только для веществ молекулярного строения. В настоящее время закон читается так:”Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства”. Но для веществ с немолекулярным строением этот закон не всегда справедлив.

Теоретическое и практическое значение закона состоит в том, что на его основе состав веществ можно выразить с помощью химических формул(для многих веществ немолекулярного строения химическая формула показывает состав не реально существующей, а условной молекулы).

Вывод: химическая формула вещества заключает в себе большую информацию. (Cлайд 21)

Например, SO 3:

1. Конкретное вещество - серный газ, или оксид серы (YI).

2.Тип вещества - сложное; класс - оксид.

3. Качественный состав - состоит из двух элементов: серы и кислорода.

4. Количественный состав - молекула состоит из1 атома серы и 3 атомов кислорода.

5.Относительная молекулярная масса - M r (SO 3)= 32 + 3 * 16 = 80.

6. Молярная масса - М(SO 3) = 80 г/моль.

7. Много другой информации.

Закрепление и применение полученных знаний

(Слайд 22, 23).

Игра в крестики-нолики: зачеркните по вертикали, горизонтали, диагонали вещества, имеющие одинаковую кристаллическую решетку.

Рефлексия.

Учитель задает вопрос: “Ребята, что нового вы узнали на уроке?”.

Подведение итогов занятия

Учитель: Ребята, давайте подведем основные итоги нашего урока - ответьте на вопросы.

1. Какие классификации веществ вы узнали?

2. Как вы понимаете термин кристаллическая решетка.

3. Какие типы кристаллических решеток вы теперь знаете?

4. О какой закономерности строения и свойств веществ вы узнали?

5. В каком агрегатном состоянии вещества имеют кристаллические решетки?

6. С каким основным законом химии вы познакомились на уроке?

Домашнее задание: §22, конспект.

1. Составьте формулы веществ: хлорид кальция, оксид кремния (IY), азот, сероводород.

Определите тип кристаллической решетки и попытайтесь прогнозировать: каковы должны быть температуры плавления у этих веществ.

2. Творческое задание -> составить вопросы к параграфу.

Учитель благодарит за урок. Выставляет отметки ученикам.

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе - ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз - на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело - алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки - величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c - длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения - десятой доли нанометра или ангстремах .

2. К - координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).