Особенности протекания тока в жидкостях. Электрический ток в жидкостях: его происхождение, количественные и качественные характеристики. Температурная зависимость сопротивления электролита

Практически каждому человеку известно определение электрического тока как Однако все дело в том, что происхождение и движение его в различных средах достаточно сильно отличается друг от друга. В частности, электрический ток в жидкостях обладает несколько другими свойствами, чем Речь идет о тех же металлических проводниках.

Основное отличие состоит в том, что ток в жидкостях - это движение заряженных ионов, то есть атомов или даже молекул, которые по какой-либо причине потеряли или приобрели электроны. При этом одним из показателей этого движения является изменение свойств того вещества, по которому данные ионы проходят. Опираясь на определение электрического тока, мы можем предположить, что при разложении отрицательно заряженные ионы будут двигаться в сторону положительного а положительные, наоборот, к отрицательному.

Процесс разложения молекул раствора на положительные и отрицательные заряженные ионы получил в науке название электролитической диссоциации. Таким образом, электрический ток в жидкостях возникает вследствие того, что, в отличие от того же металлического проводника, изменяется состав и химические свойства этих жидкостей, результатом чего является процесс перемещения заряженных ионов.

Электрический ток в жидкостях, его происхождение, количественные и качественные характеристики были одной из главных проблем, изучением которой долгое время занимался знаменитый физик М. Фарадей. В частности, с помощью многочисленных экспериментов ему удалось доказать, что масса выделяемого при электролизе вещества напрямую зависит от количества электричества и времени, в течении которого этот электролиз осуществлялся. Ни от каких других причин, за исключением рода вещества, эта масса не зависит.

Кроме того, изучая ток в жидкостях, Фарадей экспериментально выяснил, что для выделения одного килограмма любого вещества при электролизе необходимо одно и то же количество Это количество, равное 9,65.10 7 к., получило название числа Фарадея.

В отличие от металлических проводников, электрический ток в жидкостях оказывается окруженным которые значительно затрудняют передвижение ионов вещества. В связи с этим, в любом электролите возможно образование тока только небольшого напряжения. В то же время, если температура раствора повышается, то его проводимость увеличивается, а поля возрастает.

Электролиз обладает еще одним интересным свойством. Все дело в том, что вероятность распада той или иной молекулы на положительные и отрицательные заряженные ионы тем выше, чем большее число молекул собственно вещества и растворителя. В то же время, в определенный момент наступает перенасыщение раствора ионами, после чего проводимость раствора начинает снижаться. Таким образом, наиболее сильная будет проходить в растворе, где концентрация ионов крайне невелика, однако напряженность электрического тока в таких растворах будет крайне низкой.

Процесс электролиза нашел широкое применение в различных промышленных производствах, связанных с проведением электрохимических реакций. К числу наиболее важных из них можно отнести получение металла с помощью электролитов, электролиз солей, содержащих хлор и его производные, окислительно-восстановительные реакции, получение такого необходимого вещества, как водород, полировка поверхностей, гальваника. Например, на многих предприятиях машино- и приборостроения весьма распространен метод рафинирования, который представляет собой получение металла без всяких ненужных примесей.

Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников - ионный.

Определение . Проводники второго рода - такие проводники, в которых при протекании тока происходят химические процессы.

Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество - поваренной соли - и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

Рис. 1. Схема опыта

Проводимость электролитов

Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики - полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

Рис. 2. Полярность молекулы воды

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные - возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора - отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

Рис. 3. Схема образования свободных ионов

При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

Электролиз

Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

Определение. Электролиз - процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

Законы Фарадея

В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

Здесь роль коэффициента пропорциональности играет величина - электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

Физический смысл электрохимического эквивалента - масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

Если вспомнить формулы из темы о постоянном токе:

То можно представить первый закон Фарадея в виде:

Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

Исходя из второго закона Фарадея, первый закон можно представить в виде:

Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.

Практическое применение электролиза

Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия - покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
    1. Fatyf.narod.ru ().
    2. ХиМиК ().
    3. Ens.tpu.ru ().

    Домашнее задание

    1. Что такое электролиты?
    2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
    3. Какие могут быть механизмы образования свободных носителей зарядов?
    4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?

    Образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

    Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

    Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

    Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

    При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

    Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, - .

    Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,- катодом .

    Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

    Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

    Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана , иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду - катоду, а отрицательные ионы - к аноду.

    Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

    В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

    Явление электролиза при прохождении тока через раствор медного купороса: С - сосуд с электролитом, Б - источник тока, В - выключатель

    Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным - ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

    Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди Сu и образуется молекула медного купороса СuS О4 , возвращаемая обратно электролиту.

    Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода - анода.

    Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Zn SO4. Цинк также будет переноситься с анода на катод.

    Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах переносится разноименно заряженными частицами вещества - ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

    Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

    Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

    Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые , будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

    Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

    Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

    Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа - явление временное, зависящее от действия внешних причин.

    Однако есть и другой , называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

    В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом "темный покой достаточно ярко освещен быть может". Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

    "Свеча Яблочкова", работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.

    Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для . В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

    В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .

    Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

    Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников - ионный.

    Определение . Проводники второго рода - такие проводники, в которых при протекании тока происходят химические процессы.

    Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество - поваренной соли - и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

    Рис. 1. Схема опыта

    Проводимость электролитов

    Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики - полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

    Рис. 2. Полярность молекулы воды

    При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные - возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора - отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

    Рис. 3. Схема образования свободных ионов

    При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

    Электролиз

    Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

    Определение. Электролиз - процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

    Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

    Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

    Законы Фарадея

    В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

    Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

    Здесь роль коэффициента пропорциональности играет величина - электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

    Физический смысл электрохимического эквивалента - масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

    Если вспомнить формулы из темы о постоянном токе:

    То можно представить первый закон Фарадея в виде:

    Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

    Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

    Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

    Исходя из второго закона Фарадея, первый закон можно представить в виде:

    Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

    Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

    Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.

    Практическое применение электролиза

    Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия - покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
    1. Fatyf.narod.ru ().
    2. ХиМиК ().
    3. Ens.tpu.ru ().

    Домашнее задание

    1. Что такое электролиты?
    2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
    3. Какие могут быть механизмы образования свободных носителей зарядов?
    4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?