Высшим достижением новейшей биотехнологии является. Биотехнология – новое бурно развивающееся направление биологии. Этапы развития биотехнологии. Основные направления в биотехнологии. Перспективы развития биотехнологии

Государственный университет управления

Институт государственного и муниципального управления

Специальность государственное и муниципальное управление

Курсовая работа

«Достижения генной инженерии и биотехнологии»

Выполнена студенткой

Дата выполнения работы 15.12.2000г.

Руководитель Миронченко В.И.

План

Введение

Строение ДНК

I Биотехнология
Возникновение биотехнологии
Специфика биотехнологии
Разделы биотехнологии
А) Биоэнергетика
Б) Биологизация и экологизация
Практические достижения биотехнологии
II Генная инженерия
Генная инженерия
Методы генной инженерии
Генетическая рекомбинация in vitro
Методы введения ДНК в бактериальные клетки
Достижения генной инженерии

Молекулярная геномика

Генная терапия
Биотехнологические и генно-инженерные компании и их разработки.
А) Компании США
Б) Компании СССР
В) Компании Западной Европы
Г) Международное сотрудничество

Заключение

Список терминов

Список литературы

Приложение 1

Приложение 2

Введение

В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед че­ловечеством как в области фундаментальной науки, так и во мно­гих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое произ­водство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Таким образом, генная инженерия, будучи одним из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сель­скохозяйственная, энергетическая, экологическая.

Еще в прошлом веке биологи изучили процесс клеточного деления, которому предшествует расхождение хромосом, благодаря чему в каждый сперматозоид и в каждую яйцеклетку попадает половина хромосом из исходной клетки. Тогда уже было показано, что носителями генетической информации являются хромосомы.

С точки зрения химиков хромосомы состоят из белка и дезоксирибонуклеиновой кислоты (ДНК). Белки - сложная группа веществ, состоящая из 20 мономерных звеньев (аминокислот), которые соеди­нены в самых разных комбинациях. В ДНК - всего четыре вида ами­нокислот. Сначала предположили, что ДНК строится сочетанием этих четырех единиц в однообразном порядке. В качестве носителей генетической информации предполагались белки, как более сложные структуры. Только в 40-с годы было установлено, что именно ДНК, несмотря на простоту своей структуры, являются носителями инфор­мации, и, более того, обеспечивают образование своих точных копий для передачи последующим поколениям.

Гены - это участки молекулы ДНК, которая "размножается" путем комплиментарного пристраивания друг к другу четырех нуклеотидов (оснований), и при ошибках в этом процессе происходят мутации. Гены управляют синтезом белков, составляю­щих протоплазму, переключаясь время от времени с построения собственных клеток на построение иных молекул. В клетках высших организмов количество ДНК сильно различает­ся, отсюда отличия между организмами и в наборе синтезируемых белков, и в сложности строения организмов.

В начале 50-х годов выяснилось, что химический состав ДНК (а не белков) у од­ного вида почти одинаков, весьма различаясь у разных видов. Любая ДНК состоит из четырех типов нуклеотидов: А, Т, Г, Ц (начальные буквы четырех азотистых оснований- аденин, тимин, гуанин и цитозин), которые присутствуют в ДНК в разных пропорциях у разных видов и имеют близкие пропорции у одного вида. В 1938 г. Уильям Астбери (автор термина молекулярная биология) получил вместе со своим сотрудником Флорином Беллом рентгено­граммы ДНК, которые показали, что азотистые основания распола­гаются одно за другим, построенные как пластинки. Вскоре амери­канский биохимик Эрвин Чаргафф (р. 1905) установил, что отно­шения А/Т и Г/Ц приблизительно равны единице. Эти результаты были важны для понимания структуры ДНК.

Интерес к ДНК как носителю генетической информации резко возрос к началу 50-х го­дов, и структура ДНК была вскоре установлена. Химики понимали, что ДНК собрана из нуклеотидов, каждый из которых имеет фосфатную группу, связанную ковалентно с пяти-углеродным сахаром. Каждый такой сахар связан с одним из четырех азотистых оснований. История открытия структуры ДНК описана американским биохимиком Джеймсом Уотсоном (р.1928) в его книге «Двойная спираль»(1968). Кембридже Уотсон познакомился с Криком, физиком, который переквалифицировался в биохимика. Из общения с химиками Уотсон узнал, что структурные формулы, которыми они пользовались далеки от совершенства. Разобравшись в структуре пуринов (А, Г) и пиримидинов (Т, Ц), Уотсон и Крик решили, что они должны быть тесно связаны между собой. Если это так, то ДНК должна состоять из двух цепей. Цепи должны закручиваться между собой так, чтобы сохранялись определенные углы между группами атомов. Так возникла двойная спи­раль, в которой пурины и пиримидины выстроены по типу ступенек лестницы: роль "перекладин" играют основания, "веревок" - сахарофосфатные остовы. Каждая перекладинка образована из двух оснований, присоединенных к двум противоположным цепям, при­чем у одного из оснований одно кольцо, у другого - два. Следовательно, это может быть А и Т или Г и Ц. Поскольку в каждой паре есть одно ос­нование с одним кольцом и одно - с двумя, величина пе­рекладин одинаковая, и остовы цепей находятся на одном расстоянии. Две цепи удерживаются вместе водородными связями между основаниями. Статья Уотсона и Крика, в которой сообщалось о расшифровке структуры ДНК, заняла всего две странички в научном журнале, но она открыла новую эпоху в раскрытии тайны жизни. В первой же публикации (1953) Крик и Уотсон отметили, что такая структура хорошо объясняет и процесс "воспроизводства" этой молекулы. При рассоединении цепей возможно присоединение новых нуклеотидов к каждой из них, тогда около каждой старой возникнет новая цепь, точно ей соответствующая. Так впервые пришли к структуре, кото­рая была способна к самовоспроизведению. Физики Крик и Уилкинс вместе с биохимиком Уотсоном стали лауреатами Нобелевской пре­мии по физиологии и медицине за 1962 год.

Исследования показали, что ДНК может существовать в двух фор­мах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин воло­кон ДНК информацию получить было достаточно трудно, посколь­ку цепи ДНК расположены вдоль оси волокна беспорядочно, но была подтверждена ее спиральная структура. К настоящему времени иссле­дователи научились синтезировать в необходимом количестве и по­лучать в достаточно чистом виде короткие участки ДНК заданной последовательности.

Строение рекомбинантной ДНК.

Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.

Несмотря на то что в настоящее время препараты и продукты, получаемые в процессах промышленной («белой») биотехнологии, главенствуют на рынке биотехнологических продуктов, наиболее впечатляющие успехи и прорывы в этой области связаны с использованием достижений клеточной и генетической инженерии.

Геномика - это направление биотехнологии, занимающееся изучением геномов и ролей, которые играют различные гены, индивидуально и в комплексе, в определении структуры, направлении роста и развития и регуляции биологических функций. Различают структурную и функциональную геномику.

Предмет структурной геномики - создание и сравнение различных типов геномных карт и крупномасштабное секвенирование ДНК. Проект по изучению человеческого генома (Human Genome Project) и менее известная Программа по изучению растительных геномов (Plant Genome Research Program) являются самыми масштабными исследованиями структурной геномики. В задачи структурной геномики входят также идентификация, локализация и составление характеристик генов.

В результате осуществления частных и государственных проектов по структурной геномике созданы карты геномов и расшифрованы последовательности ДНК большого количества организмов, в том числе сельскохозяйственных растений, болезнетворных бактерий и вирусов, дрожжей, необходимых для приготовления некоторых продуктов питания и производства пива, азотфиксирующих бактерий, малярийного плазмодия и переносящих его комаров, а также микроорганизмов, используемых человеком в самых разнообразных промышленных процессах. В 2003 г. завершен Проект по изучению генома человека.

Предмет и область функциональной геномики - секвенирование геномов, идентификация и картирование генов, выявление функций генов и механизмов регуляции. Для понимания различий между видами основную роль играет не знание количества генов, а понимание того, как они различаются по составу и функциям, знание химических и структурных различий в генах, которые и лежат в основе различий организмов. Эволюционный анализ постепенно становится главным приемом выяснения функций и взаимодействий генов в пределах генома.

Благодаря тому, что генетический код универсален и все живые организмы способны расшифровывать генетическую информацию других организмов и осуществлять заложенные в ней биологические функции, любой ген, идентифицированный в ходе того или иного геномного проекта, может быть использован в широком спектре практических приложений:
- для целенаправленного изменения свойств растений и придания им желаемых признаков;
- выделения специфических рекомбинантных молекул или микроорганизмов;
- идентификации генов, участвующих в осуществлении сложных процессов, контролируемых множеством генов, а также зависящих от влияния окружающей среды;
- обнаружения микробных заражений клеточных культур и др.

Протеомика - это наука, занимающаяся изучением структуры, функций, локализации и взаимодействия белков внутри клетки и между клетками. Набор белков клетки называется ее протеомом. По сравнению с геномикой, протеомика ставит перед исследователями гораздо более многочисленные и трудные задачи. Структура белковых молекул гораздо сложнее, чем структура молекул ДНК, которые представляют собой линейные молекулы, состоящие из четырех нерегулярно повторяющихся элементов (нуклеотидов).

Форма, которую принимает белковая молекула, зависит от последовательности аминокислот, однако все механизмы скручивания и складывания аминокислотной цепочки до конца не изучены. Задачей исследователей, работавших над программой Human Genome Project, была разработка методов, которые позволили бы добиться поставленных целей.

Ученые, занимающиеся протеомикой, и сейчас находятся в подобном положении: им необходимо разработать достаточное количество методов и приемов, которые могли бы обеспечить эффективную работу над огромным количеством вопросов:
- каталогизацию всех белков, синтезируемых различными типами клеток;
- выяснение характера влияния возраста, условий окружающей среды и заболеваний на синтезируемые клеткой протеины;
- выяснение функций идентифицированных белков;
- изучение взаимодействий различных белков с другими белками внутри клетки и во внеклеточном пространстве.

Потенциал белковой инженерии позволяет улучшать свойства используемых в биотехнологии белков (ферментов, антител, клеточных рецепторов) и создавать принципиально новые протеины, пригодные в качестве лекарственных препаратов, для обработки и улучшения питательных и вкусовых качеств пищевых продуктов. Наиболее значительны успехи белковой инженерии в биокатализе. Разработаны новые типы катализаторов, в том числе с применением техники иммобилизации ферментов, способные функционировать в неводной среде, при значительных сдвигах рН и температуры среды, а также растворимые в воде и катализирующие биологические реакции при нейтральном рН и при сравнительно низких температурах.

Технологии белковой инженерии позволяют получать новые типы белков биомедицинского назначения, например способных связываться с вирусами и мутантными онкогенами и обезвреживать их; создавать высокоэффективные вакцины и белки-рецепторы клеточной поверхности, выполняющие функцию мишени для фармацевтических препаратов, а также связывания вещества, и биологические агенты, которые могут быть использованы для химических и биологических атак. Так, ферменты гидролазы способны обезвреживать как нервно-паралитические газы, так и используемые в сельском хозяйстве пестициды, а их производство, хранение и применение не опасно для окружающей среды и здоровья людей.

Новейшие биотехнологические методы позволяют диагностировать многие заболевания и патологические состояния экспрессно и с высокой точностью. Так, для постановки стандартного теста определения присутствия в крови липопротеидов низкой плотности («плохого» холестерина) требуется провести три отдельных дорогостоящих анализа: выявление содержания общего холестерина, триглицеридов и липопротеидов высокой плотности. Кроме этого, в течение 12 ч до проведения теста пациенту рекомендуется воздержаться от приема пищи.

Новый биотехнологический тест состоит из одного этапа и не требует предварительного голодания. Эти тесты, помимо быстродействия, существенно снижают стоимость диагностики. К настоящему моменту разработаны и применяются биотехнологические тесты для диагностики некоторых видов опухолевых процессов, требующих для реализации небольшое количество крови, что исключает тотальную биопсию на начальных стадиях диагностики.

Кроме снижения стоимости, повышения точности и скорости диагностики, биотехнология позволяет диагностировать заболевания на гораздо более ранних этапах, чем это было возможно ранее. Это, в свою очередь, обеспечивает гораздо более высокие шансы пациентов на излечение. Новейшие биотехнологические методы протеомики дают возможность идентифицировать молекулярные маркеры, сигнализирующие о приближающейся болезни, еще до появления регистрируемых клеточных изменений и симптомов заболевания.

Огромное количество информации, ставшее доступным в результате успешного завершения проекта «Геном человека», должно сыграть особую роль в разработке методов диагностики наследственных заболеваний, таких как диабет I типа, муковисцидоз, болезни Альцгеймера и Паркинсона. Ранее заболевания этого класса диагностировали только после появления клинических симптомов; новейшие методы позволяют до появления клинических признаков определить группы риска, предрасположенные к заболеваниям такого рода.

Разработанные с помощью биотехнологии диагностические тесты не только повышают уровень диагностики заболеваний, но и улучшают качество медицинского обслуживания. Большинство из биотехнологических тестов портативны, что позволяет врачам проводить тестирование, интерпретировать результаты и назначать соответствующее лечение буквально у постели больного. Биотехнологические методы выявления патогенов важны не только для диагностики заболеваний.

Один из самых наглядных примеров их использования - скрининг донорской крови на наличие ВИЧ-инфекции и вирусов гепатита В и С. Возможно, со временем биотехнологические подходы дадут возможность врачам определять характер инфекционного агента и в каждом конкретном случае подбирать наиболее эффективные антибактериальные препараты не за неделю, как это делается современными методами, а за считанные часы.

Внедрение биотехнологических подходов со временем позволит врачам не только улучшить существующие методы терапии, но и разработать принципиально новые, полностью основанные на новых технологиях. На настоящий момент целый ряд биотехнологических методов лечения одобрен Управлением США по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA). В список заболеваний, подлежащих таким методам терапии, входят: анемия, муковисцидоз, задержка роста, ревматоидный артрит, гемофилия, гепатит, остроконечные кондиломы, отторжение трансплантата, а также лейкемия и ряд других злокачественных заболеваний.

Использование биотехнологических методов позволяет создавать так называемые «съедобные вакцины», синтезируемые генетически модифицированными растениями и животными. Так, созданы генетически модифицированные козы, молоко которых содержит вакцину от малярии. Получены обнадеживающие результаты в клинических испытаниях бананов, содержащих вакцину от гепатита, и картофеля, содержащего вакцины против холеры и патогенных штаммов кишечной палочки. Такие вакцины (например, в виде сублимированного порошка для изготовления напитков), не требующие замораживания, стерилизации оборудования или закупки одноразовых шприцов, особенно перспективны для применения в развивающихся странах.

В процессе разработки также находятся вакцины-пластыри против столбняка, сибирской язвы, гриппа и кишечной палочки. Уже получены трансгенные растения, синтезирующие терапевтические белки (антитела, антигены, факторы роста, гормоны, ферменты, белки крови и коллаген). Эти белки, производимые с помощью различных сортов растений, в том числе люцерны, кукурузы, ряски, картофеля, риса, подсолнечника, сои и табака, являются основными компонентами инновационных методов терапии ряда онкологических заболеваний, СПИДа, болезней сердца и почек, диабета, болезни Альцгеймера, болезни Крона, муковисцидоза, рассеянного склероз, повреждения спинного мозга, гепатита С, хронических обструктивных заболеваний легких, ожирения, онкологических заболеваний и др.

Клеточные технологии находят все более широкое применение для селекции, размножения и повышения продуктивности полезных растений, а также получения биологически активных веществ и лекарственных препаратов.

Н.А. Воинов, Т.Г. Волова

- 20.37 Кб

Современные достижения биотехнологий

Выполнил:

Проверил:

2011г.

Биотехнология – это область человеческой деятельности, которая характеризуется широким использованием биологических систем всех уровней в самых разнообразных отраслях науки, промышленного производства, медицины, сельского хозяйства и других сферах.

Революционизирующим этапом в развитии биотехнологии стало использование генных и клеточных биотехнологий, которые бурно развивались в последние десятилетия и уже существенно повлияли на разные аспекты жизни человека: здоровье, медицину, питание, демографию, экологию.

Первыми продуктами генных биотехнологий стали биологически активные белки, широко используемые сегодня в медицине в качестве лекарственных средств. Раньше с помощью традиционной биотехнологии различные биологические соединения получали путём переработки больших количеств микробного, животного или растительного материала, используя природную способность организмов синтезировать эти соединения. Так, для лечения диабета ранее использовали инсулин, который выделяли из поджелудочных желез свиней. Такой инсулин был дорогим и, кроме того, малоэффективным. Ситуация сильно изменилась с момента получения в 1982 году в США первого генно- инженерного инсулина человека, синтезируемого клетками кишечной палочки.

В настоящее время в практической медицине используются многие биофармацевтические препараты, полученные с помощью генно-клеточной биотехнологии. Наряду с инсулином уже производят разные интерфероны, интерлейкины, лекарства от гемофилии, противораковые и обезболивающие средства, незаменимые аминокислоты, гормон роста, моноклональные антитела и многое другое. И этот список ежегодно пополняется десятками наименований. В лабораториях и клиниках всего мира постоянно идет интенсивный поиск и испытание новых препаратов, в том числе от таких опаснейших болезней, как сердечные заболевания, различные формы рака, СПИД и разнообразные вирусные инфекции. По оценкам специалистов, сегодня с помощью генных биотехнологий выпускается около 25% всех лекарственных средств в мире.

Важным этапом развития современной генно-клеточной биотехнологии стало разработка методов получения трансгенных животных и растений (их также называют генетически модифицированными организмами, сокращенно ГМО). Трансгенный организм – это организм во всех отношениях подобный нетрансгенному, обычному, но содержащий во всех клетках среди десятков тысяч своих собственных генов 1 (редко 2) дополнительный ген (его называют трансген), несвойственный ему в природе.

Технология создания трансгенных растений привела к революции в области растениеводства. Она позволила получать растения, устойчивые к ряду высоко патогенных вирусов, грибковым и бактериальным инфекциям, насекомым-вредителям, созданию растений с высоким содержанием витамина А, устойчивых к холоду, засоленности почв, засухе, растений с улучшенным содержанием и составом белков и т.д. Так, вмешиваясь в генетические программы растений, можно придавать им функции устойчивости к различным неблагоприятным стрессовым факторам окружающей среды. Использование ГМО существенно повысило эффективность сельского хозяйства, и потому эта технология оказалась востребованной рынком, где другие возможности повышения продуктивности (удобрения, ядохимикаты и т. п.) во многом уже исчерпали себя.

В 1994 г. после тщательных всесторонних полевых испытаний в США была разрешена коммерческая продажа первого трансгенного пищевого растения – помидора с уникальным свойством: он может месяцами лежать в недоспелом виде при температуре 12 °С, но как только попадет в тепло, он дозревает буквально за несколько часов. С тех пор на рынок было выпущено много других трансгенных растений; уже удалось получить множество различных форм сои, картофеля, томатов, табака, рапса, устойчивых к разнообразным сельскохозяйственным вредителям. Например, получен трансгенный картофель недоступный для пожирания колорадским жуком. В этом картофеле происходит синтез одного из белков почвенных бактерий, который токсичен для жука, но совершенно безвреден для человека. Имеются трансгенные растения, способные самостоятельно, без помощи микроорганизмов, фиксировать азот, соддан «золотой» рис с повышенным содержанием витамина А и др.

В мире уже существуют стада трансгенных коз и коров, у которых в молочной железе синтезируются полезные с медицинской точки зрения вещества, которые потом выделяются с молоком этих животных. Сегодня лекарством служит молоко трансгенных животных, которое содержит такие белки, как инсулин, гормон роста человека, антитромбин, интерферон. В России, например, генными технологами создана порода овец, вырабатывающих вместе с молоком и фермент, необходимый в производстве сыра; российские ученые совместно с коллегами из Бразилии успешно работают над созданием трансгенных коз, молоко которых будет содержать фармацевтический продукт под названием гранулоцит- колониестимулирующий фактор, необходимый для лечения различных заболеваний крови, потребности в котором в мире огромны.

Во многих научных центрах ведутся работы по созданию трансгенных животных, используемых в качестве моделей разнообразных наследственных заболеваний человека. Уже получены трансгенные лабораторные животные с повышенной частотой возникновения опухолей, выведены линии животных, в организме которых воспроизводятся такие заболевания человека, как серповидно-клеточная анемия, диабет, нейрологические заболевания, артрит, желтуха, сердечно-сосудистые и ряд наследственных болезней. Такие животные-модели позволяют глубже понять природу различных патологий человека и осуществить на их основе поиск эффективных лекарственных средств.

Технология трансгеноза в перспективе может быть применена также для создания трансгенных животных, которые могут быть использованы в качестве источников органов и тканей для трансплантологии (у них, в частности, инактивированы антигены, ответственные за тканесовместимость). Уже начаты исследования в этой области на свиньях, которые рассматриваются в качестве возможных кандидатов для трансплантации их органов человеку. Трансгенные растения также планируются использовать в медицинских целях. Например, на их основе разрабатываются вакцины, которые получили название «съедобных». Для этого в растение вводят тот или иной вирусный ген, который обеспечивает синтез соответствующего белка, обладающего свойством антигена. Употребление этого растения в пищу позволяет человеку постепенно приобретать иммунитет к тому или иному вирусу. Другой пример: в Японии создан сорт риса, который позволит больным сахарным диабетом обходиться без лекарств, так как его употребление стимулирует синтез поджелудочной железой собственного инсулина.

Вероятно, именно заметные успехи в области создания ГМО послужили толчком для возникновения в 1990 году еще одного важного направления генно- клеточной биотехнологии – генной терапии. С помощью генной терапии в клетки, которые страдают от нарушения работы гена, можно доставить «хороший» ген, способный компенсировать работу «плохого». Правда, иногда болезнь вызывается избыточной работой отдельных генов, несвойственных нормальной клетке (например, при вирусной инфекции). В таких случаях следует наоборот подавить работу «вредного» гена. Один из наиболее перспективных подходов к этому – РНК-интерференция – процесс подавления работы гена с помощью фрагментов молекул РНК, механизм которого раскрыт А. Файром и К. Мелло (и снова Нобелевская премия по физиологии и медицине за 2006 год). Все это и пытаются делать сегодня с помощью генной терапии. Мишенью для генной терапии могут быть как клетки тела (соматические клетки), так и зародышевые клетки (яйцеклетки, сперма). В случае наследственных заболеваний более подходящими для генной терапии могли бы стать зародышевые клетки, исправление которых должно сохраняться и у потомства. Однако в практическом плане сейчас больший интерес представляет соматическая терапия, а генная терапия зародышевых клеток - это проблема отдаленного будущего, хотя в действительности наследственные болезни можно было бы вылечить раз и навсегда, воздействуя именно на половые клетки или клетки эмбрионов на ранних стадиях развития. Введенный ген, попадая в результате искусственного переноса во множество интенсивно делящихся клеток эмбриона, способен предотвратить развитие заболевания. Но этот вид генной терапии связан с целым рядом проблем как технических, так и, главным образом, этических. В частности, высказываются опасения, что такой подход можно будет использовать для производства нового поколения «детей на заказ».

Реальностью в настоящее время представляется только генная терапия, направленная на соматические клетки взрослого организма. Из общего числа известных заболеваний человека около 30-40% составляют так называемые генетические или наследственные болезни. Многие из этих патологий связаны с нарушением работы одного единственного гена. Генная терапия применима в первую очередь к таким заболеваниям, поскольку в этих случаях процесс лечения существенно облегчается. В настоящее время, используя информацию о структуре генома человека и его отдельных генов, ученые осуществляют широкомасштабный поиск средств лечения многих традиционно считавшихся фатальными для человека наследственных и приобретенных болезней, для которых известен «плохой» ген и/или его продукт. В первую очередь это такие заболевания как гемофилия, муковисцидоз, дефицит аденозиндезаминазы, миодистрофия Дюшенна, болезнь Паркинсона, болезнь Альцгеймера, различные кардио-васкулярные патологии и др. Так, в США и Великобритании были проведены испытания на пациентах с дефектом гена, который кодирует белок, необходимый для нормальной работы сетчатки. В ходе операций этим пациентам вводили «здоровые» копии поврежденного гена в заднюю часть одного глаза. Через полгода пациенты, которые до генной терапии могли различать лишь движения рук, стали способны видеть все линии на таблице проверки зрения. Имеются определенные успехи и при использовании генной терапии для лечения ряда ненаследственных патологий (отдельные формы рака, ишемия) и инфекционных заболеваний (СПИД, гепатит). В настоящее время в разных странах мира уже одобрено свыше 600 протоколов клинических испытаний с использование генной и генно-клеточной терапии.

Технология генной терапии претерпела за прошедшие годы значительные изменения. На первых этапах для перенесения генов в организм полагались в основном на природную способность вирусов, несущих терапевтический ген, проникать и размножаться в клетках. Сейчас пришла пора принять в этом участие нанобиотехнологии. Уже начаты разработки подходов к направленному переносу генов в определенные виды клеток с помощью наночастиц, содержащих на своей поверхности антитела к специфическим антигенам этих клеток. Такие «нагруженные» генами и антителами наночастицы целенаправленно движутся в организме к пораженным местам и оказывают целевой терапевтический эффект. Однако при всех положительных результатах, полученных с помощью генной терапии, она пока остается малоэффективной. Остаются нерешенными такие ключевые проблемы, как целевая доставка генов, длительное и эффективное их функционирование в пораженных тканях. Будущее генной терапии во многом зависит от решения этих проблем.

Успеху генных биотехнологий в значительной мере способствовало параллельное развитие с ними клеточных биотехнологий. Одним из важных достижений стало получение и культивирование стволовых клеток. В конце 70-х прошлого века были получены убедительные данные о возможности применения трансплантации стволовых клеток костного мозга при лечении острых лейкозов. С этого времени началась новая эра в медицине. Сначала из эмбрионов мышей, а потом из эмбрионов человека были получены так называемые эмбриональные стволовые клетки. Последнее событие было признано одним из трех наиболее значимых достижений в биологии за XX век (наряду с открытием двойной спирали ДНК и полной расшифровкой генома человека).

Существенный прогресс в современной биотехнология произошел в связи с разработкой технологии репродуктивного клонирования животных организмов, т.е. получения искусственным путем идентичных копий таких организмов. Около 10 лет назад был поднят неимоверный шум вокруг рождения овцы Долли, о которой теперь знают все.

Биотехнология – новое бурно развивающееся направление биологии. Этапы развития биотехнологии. Основные направления в биотехнологии

1Биотехнология – новая отрасль науки и производства, основанная на использовании биологических процессов и объектов для производства экономически важных веществ и создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. В буквальном смысле биотехнология – это «биология + технология», то есть применение фундаментальных биологических знаний в практической деятельности, направленной на производство лекарственных препаратов, ферментов, белков, красителей, ароматических веществ, витаминов и целого ряда биологически активных соединений. Кроме того, речь идет об использовании биотехнологических методов в селекции и конструировании принципиально новых организмов, ранее не существовавших в природе.

Биотехнология растений является самостоятельной дисциплиной, хотя по своим теоретическим и методологическим принципам может рассматриваться как часть общей биотехнологии. Специфика биотехнологии растений предопределена биологическими особенностями растений как особого царства живого мира.

В историческом аспекте человечество всегда использовало растения для получения жизненно важных продуктов. В этом смысле к биотехнологии можно отнести и традиционное растениеводство, и другие агротехнологии. Однако существуют принципиальные различия между биотехнологией и агротехнологией. Как известно, агротехнология имеет дело с целыми растениями и их популяциями, тогда как биотехнология основана на использовании культуры клеток и их популяций.

Следовательно, основным объектом биотехнологии растений являются отдельные клетки, органы, изолированные из целого растения и выращиваемые вне организма на искусственной питательной среде в асептических условиях.

Такие выращиваемые in vitro клетки, ткани, органы называются культурой клеток, тканей, органов – в зависимости от того, что изолируется из растения и культивируется. Однако все эти способы культивирования в последнее время стали называться одним термином «культура клеток растений», ибо в конечном счете культивируемой единицей является клетка.

Клеточные культуры с каждым годом находят все большее применение в самых разнообразных областях биологии, медицины и сельского хозяйства. Их используют при решении таких общебиологических проблем, как выяснение механизмов дифференцировки и пролиферации, взаимодействия клеток со средой, адаптации, старения, биологической подвижности, злокачественной трансформации и многих других. Важную роль клеточные культуры играют в биотехнологии при производстве вакцин и биологически активных веществ. Они являются исходным материалом для создания клеток-продуцентов, используются в целях повышения продуктивности сельскохозяйственных животных и для выведения новых сортов растений. Культуры клеток применяются для диагностики и лечения наследственных заболеваний, в качестве тест-объектов при испытании новых фармакологических веществ, а также для сохранения генофонда исчезающих видов животных и растений.

Биотехнология – это управляемое получение для народного хозяйства, а также для медицины целевых продуктов с помощью биологических агентов: микроорганизмов, вирусов клеток животных и растений, а также с помощью внеклеточных веществ и компонентов клетки. Биотехнология имеет глубокие исторические корни, а за последние 10-15 лет бурного развития оформилась как отдельная отрасль науки и производства.

Основными компонентами биотехнологического процесса являются: биологический агент, субстрат, целевой продукт, аппаратура и совокупность методов для управления процессом.

Биотехнологическая отрасль является одной из самых бурно развивающихся и является важным критерием для оценки уровня научно-исследовательского потенциала цивилизованной страны. Наглядное свидетельство того, что основой очередной волны экономического развития станут различные отрасли биотехнологии (сельскохозяйственная, пищевая, медицинская), - динамика курса акций соответствующих компаний. До недавнего времени биотехнологический бизнес мало выделялся из общей группы высоких технологий, однако нестабильность компьютерных магнатов и ряда крупных концернов торгующих природными ресурсами изменило мнение экономических аналитиков.

Котировка акций биотехнологических компаний оказались мене подвержены падению, так как продукция полученная на основе клеточных технологий нова и перспективна. Инвестиции в биосектор привели к беспрецендентному технологическому рывку. В Германии и Франции начаты крупномасштабные полевые испытания генетически модифицированных сортов кукурузы. Японские биотехнологии получили генетически модифицированную кукурузу, устойчивую к насекомым-вредителям. Некоторые компании находятся на грани создания революционных препаратов для различных видов рака, в первую очередь лейкемии. Три года назад одной американской компанией было вложено большое количество денег в биотехнологическую лабораторию в Калифорнии и теперь по данным представителей компании они близки к созданию средств извлечения ряда серьезных недугов, например, болезни Альцгеймера.

2Термин биотехнология произошел от греческих слов: «биос» и «техне». «Биос» – жизнь, «техне» - вить прясть, делать что-то своими руками. Значит, биотехнология – это производство с помощью живых существ, совокупность промышленных методов, использующих живые организмы и биологические процессы для производства различных продуктов.

Биотехнология - это интегрированное использование биохимии, микробиологии и инженерных наук с целью достижения промышленного применения способностей микроорганизмов, культур клеток тканей и их частей. Объекты биотехнологии – микробы (грибы, бактерии, вирусы, простейшие) или клетки других организмов (растения, животные), биологически активные вещества специального назначения (иммобилизованные ферменты, катализирующие синтез или распад).

Типичные методы биотехнологии - крупномасштабное глубинное культивирование биообъектов в периодическом или непрерывном режиме, выращивание клеток растительных и животных тканей в особых условиях.

БИОХИМИЯ МИКРОБИОЛОГИЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ГЕНЕТИКА МЕХАНИЧЕСКАЯ ТЕХНОЛОГИЯ БИОТЕХНОЛОГИЯ БИОХИМИЧЕСКАЯ МЕХАНИЧЕСКАЯ ТЕХНОЛОГИЯ ТЕХНОЛОГИЯ ЭЛЕКТРОНИКА ТЕХНОЛОГИЯ ПИЩЕВЫХ ДРУГИЕ ДИСЦИПЛИНЫ ПРОДУКТОВ Рисунок 1. Междисциплинарная природа биотехнологии

3 Развитие биотехнологии в огромной степени определяется исследованиями в области микробиологии, биохимии, энзимологии и генетики организмов. Современная биотехнология как наука возникла в начале сороковых годов и получила ускоренное развитие с 1953 г., после эпохального открытия Джеймса Уотсона и Френсиса Крика о химической структуре и пространственой организации двойной спирали молекулы ДНК. Новое стратегическое ее направление – генетическая инженерия – родилось к 1972 г., когда в лаборатории Поля Берга впервые была синтезирована рекомбинантная молекула ДНК, что окончательно закрепило за биотехнологией и ее центральным звеном – биоинженерией (ядерной биологией) – важнейшее место в современной науке.



«Межпиковые» работы выдающихся биологов Г. Бойера, С. Коэна, Д. Морра, А.Баева, А.Белозерского, О. Эйвери, Г. Гамова, Ф. Жакоба, Ж.Моно и др. дополнили последовательный ряд важнейших открытий по идентификации генов и ферментов, выделению молекул ДНК из растительных, микробных и животных клеток, расшифровке генетического кода, а также механизмов экспрессии генов и биосинтеза белка у прокариот и эукариот.

В 50-е годы в биотехнологии возникает еще одно важное направление – клеточная инженерия. Основателями его являются П.Ф.Уайт (США) и Р. Готре (Франция). В последующие годы в институте физиологии растений СССР, а затем Российской Академии наук под руководством А.А.Курсанова, Р.Г. Бутенко были развернуты исследования в этой области с привлечением многих молодых ученых страны.

Генетическая и клеточная инженерия определили главные направления современной биотехнологии, методы которой получили широкое развитие в 80-е годы и используются во многих областях науки и производства в нашей стране и за рубежом.

Биотехнология как наука может рассматриваться в двух временных и сущностных измерениях: современном и традиционном, классическом.

Новейшая биотехнология (биоинженерия) – это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения.

В традиционном, классическом смысле биотехнологию можно определить как науку о методах и технологиях производства, транспортировки, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных (природных и селекционных) растений, животных и микроорганизмов, в естественных и искусственных условиях.

Высшим достижением новейшей биотехнологии является генетическая трансформация, перенос чужеродных (природных или искусственно созданных) донорских генов в клетки-реципиенты растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать принципиально новые задачи по созданию растений, животных и микроорганизмов с повышенной устойчивостью к стрессовым факторам среды, высокой продуктивностью и качеством продукции, по оздоровлению экологической обстановки в природе и всех отраслях производства.

Для достижения этих целей предстоит преодолеть определенные трудности в повышении эффективности генетической трансформации и, прежде всего, в идентификации и клонировании генов, создании их банков, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, создании надежных векторных систем и обеспечении высокой устойчивости экспрессии генов. Уже сегодня во многих лабораториях мира с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, используемые в коммерческих целях.

ВВЕДЕНИЕ

1.1. Общие положения

Законом Российской Федерации «О ветеринарии» определены ос­новные задачи ветеринарной медицины «в области научных знаний и практической деятельности, направленные на предупреждение бо­лезней животных и их лечение, выпуск полноценных и безопасных в ветеринарном отношении продуктов животноводства и защиту насе­ления от болезней, общих для человека и животных».

Решение целого ряда этих задач осуществляется методами био­технологии.

Определение биотехнологии в довольно полном объеме дано Ев­ропейской биотехнологической федерацией, основанной в 1978 г. По этому определению биотехнология - это наука, которая на основе применения знаний в области микробиологии, биохимии, генетики, генной инженерии, иммунологии, химической технологии, приборо- и машиностроения использует биологические объекты (микро­организмы, клетки тканей животных и растений) или молекулы (нук­леиновые кислоты, белки, ферменты, углеводы и др.) для промыш­ленного производства полезных для человека и животных веществ и продуктов.

До тех пор, пока всеобъемлющий термин «биотехнология» не стал общепринятым, для обозначения наиболее тесно связанных с биоло­гией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология фер­ментов, биоинженерия, прикладная генетика и прикладная биоло­гия.

Использование научных достижений в биотехнологии осуществ­ляется на самом высоком уровне современной науки. Только биотех­нология создает возможность получения разнообразных веществ и соединений из сравнительно дешевых, доступных и возобновляе­мых материалов.

В отличие от природных веществ и соединений, искусственно син­тезируемые требуют больших капиталовложений, плохо усваивают­ся организмами животных и человека, имеют высокую стоимость.

Биотехнология использует микроорганизмы и вирусы, которые в процессе своей жизнедеятельности вырабатывают естественным пу­тем необходимые нам вещества - витамины, ферменты, аминокис­лоты, органические кислоты, спирты, антибиотики и др. биологи­чески активные соединения.

Живая клетка по своей организационной структуре, слаженности процессов, точности результатов, экономичности и рациональности превосходит любой завод.

В настоящее время микроорганизмы используются, в основном, в трех видах биотехнологических процессов:

Для производства биомассы;

Для получения продуктов метаболизма (например, этанола, ан­тибиотиков, органических кислот и др.);

Для переработки органических и неорганических соединений как природного, так и антропогенного происхождения.

Главная задача первого вида процессов, которую сегодня призва­но решать биотехнологическое производство - ликвидация белково­го дефицита в кормах сельскохозяйственных животных и птиц, т.к. в белках растительного происхождения имеется дефицит аминокис­лот и, прежде всего, особо ценных, так называемых незаменимых.

Основным направлением второй группы биотехнологических про­цессов в настоящее время является получение продуктов микробно­го синтеза с использованием отходов различных производств, вклю­чая пищевую, нефте- и деревоперерабатывающую промышленности и т.д.

Биотехнологическая переработка различных химических соеди­нений направлена, главным образом, на обеспечение экологического равновесия в природе, переработку отходов деятельности человече­ства и максимальное снижение негативного антропогенного воздей­ствия на природу.

В промышленном масштабе биотехнология представляет индуст­рию, в которой можно выделить следующие отрасли:

Производство полимеров и сырья для текстильной промышлен­ности;

Получение метанола, этанола, биогаза, водорода и использова­ние их в энергетике и химической промышленности;

Производство белка, аминокислот, витаминов, ферментов и т.д. путем крупномасштабного выращивания дрожжей, водорослей, бак­терий;

Увеличение продуктивности сельскохозяйственных растений и животных;

Получение гербицидов и биоинсектицидов;

Широкое внедрение методов генной инженерии при получении новых пород животных, сортов растений и выращивания тканевых клеточных культур растительного и животного происхождения;

Переработка производственных и хозяйственных отходов, сточ­ных вод, изготовление компостов с применением микроорганизмов;

Утилизация вредных выбросов нефти, химикатов, загрязняющих почву и воду;

Производство лечебно-профилактических и диагностических пре­паратов (вакцин, сывороток, антигенов, аллергенов, интерферонов, антибиотиков и др.).

Практически все биотехнологические процессы тесно связаны с жизнедеятельностью различных групп микроорганизмов - бактерий, вирусов, дрожжей, микроскопических грибов и т.п., и имеют ряд ха­рактерных особенностей:

1. Процесс микробного синтеза, как правило, является частью мно­гостадийного производства, причем целевой продукт стадии биосин­теза часто не является товарным и подлежит дальнейшей переработ­ке.

2. При культивировании микроорганизмов обычно необходимо под­держивать асептические условия, что требует стерилизации оборудо­вания, коммуникаций, сырья и др.

3. Культивирование микроорганизмов осуществляют в гетероген­ных системах, физико-химические свойства которых в ходе процесса могут существенно изменяться.

4. Технологический процесс характеризуется высокой вариабель­ностью из-за наличия в системе биологического объекта, т.е. популя­ции микроорганизмов.

5. Сложность и многофакторность механизмов регуляции роста микроорганизмов и биосинтеза продуктов метаболизма.

6. Сложность и в большинстве случаев отсутствие информации о качественном и количественном составе производственных питатель­ных сред.

7. Относительно низкие концентрации целевых продуктов.

8. Способность процесса к саморегулированию.

9. Условия, оптимальные для роста микроорганизмов и для био­синтеза целевых продуктов, не всегда совпадают.

Микроорганизмы потребляют из окружающей среды вещества, растут, размножаются, выделяют жидкие и газообразные продукты метаболизма, тем самым реализуя те изменения в системе (накопле­ние биомассы или продуктов метаболизма, потребление загрязняю­щих веществ), ради которых проводят процесс культивирования. Сле­довательно, микроорганизм можно рассматривать как центральный элемент биотехнологической системы, определяющий эффективность ее функционирования.

1.2. История развития биотехнологии

За последние 20 лет биотехнология, благодаря своим специфичес­ким преимуществам перед другими науками, совершила решитель­ный прорыв на промышленный уровень, что в немалой степени обя­зано также развитию новых методов исследований и интенсифика­ции процессов, открывших ранее неизвестные возможности в полу­чении биопрепаратов, способов выделения, идентификации и очист­ки биологически активных веществ.

Биотехнология формировалась и эволюционировала по мере фор­мирования и развития человеческого общества. Ее возникновение, становление и развитие условно можно подразделить на 4 периода.

1. Эмпирический период или до­исторический - самый длительный, охватывающий примерно 8000 лет, из которых более 6000 лет до н.э. и около 2000 лет н.э. Древние народы того времени интуитивно использовали приемы и способы изготовления хлеба, пива и некоторых других продуктов, которые теперь мы относим к разряду биотехнологических.

Известно, что шумеры - первые жители Месопотамии (на терри­тории современного Ирака) создали цветущую в те времена цивили­зацию. Они выпекали хлеб из кислого теста, владели искусством го­товить пиво. Приобретенный опыт передавался из поколения в поко­ление, распространялся среди соседних народов (ассирийцев, вави­лонян, египтян и древние индусов). В течение нескольких тысячеле­тий известен уксус, издревле приготавливавшийся в домашних усло­виях. Первая дистилляция в виноделии осуществлена в XII в.; водку из хлебных злаков впервые получили в XVI в.; шампанское известно с XVIII в.

К эмпирическому периоду относятся получение кисломолочных продуктов, квашеной капусты, медовых алкогольных напитков, си­лосование кормов.

Таким образом, народы исстари пользовались на практике био­технологическими процессами, ничего не зная о микроорганизмах. Эмпиризм также был характерен и в практике использования полез­ных растений и животных.

В 1796 г. произошло важнейшее событие в биологии - Э. Дженнером были проведены первые в истории прививки человеку коровьей оспы.

2. Этиологический период в развитии биотехнологии охватывает вторую половину XIX в. и первую треть XX в. (1856 - 1933 гг.). Он связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822 - 95) - основопо­ложника научной микробиологии.

Пастер установил микробную природу брожения, доказал возмож­ность жизни в бескислородных условиях, создал научные основы вакцинопрофилактики и др.

В этот же период творили его выдающиеся ученики, сотрудники и коллеги: Э. Дюкло, Э. Ру, Ш.Э. Шамберлан, И.И. Мечников; Р. Кох, Д. Листер, Г. Риккетс, Д. Ивановский и др.

В 1859 г. Л. Пастер приготовил жидкую питательную среду, Р. Кох в 1881 г. предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. И, как следствие этого, удалось доказать индивидуальность микробов и получить их в чистых культурах. Более того, каждый вид мог быть размножен на питательных средах и использован в целях воспроиз­ведения соответствующих процессов (бродильных, окислительных и др.).

Среди достижений 2-й периода особо стоит отметить следующие:

1856 - чешский монах Г. Мендель открыл законы доминирова­ния признаков и ввел понятие единицы наследственности в виде дис­кретного фактора, который передается от родителей потомкам;

1869 - Ф. Милер выделил «нуклеин» (ДНК) из лейкоцитов;

1883 - И. Мечников разработал теорию клеточного иммунитета;

1984 - Ф. Леффлер изолировал и культивировал возбудителя дифтерии;

1892 - Д.Ивановский открыл вирусы;

1893 - В. Оствальд установил каталитическую функцию ферментов;

1902 - Г. Хаберланд показал возможность культивирования кле­ток растений в питательных растворах;

1912 - Ц. Нейберг раскрыл механизм процессов брожения;

1913 - Л. Михаэлис и М. Ментен разработали кинетику фермен­тативных реакций;

1926 - X. Морган сформулировал хромосомную теорию наслед­ственности;

1928 - Ф. Гриффит описал явление «трансформации» у бакте­рий;

1932 - М. Кнолль и Э. Руска изобрели электронный микроскоп.
В этот период было начато изготовление прессованных пищевых

дрожжей, а также продуктов их метаболизма - ацетона, бутанола, лимонной и молочной кислот, во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

Тем не менее, накопление большой массы клеток одного возраста оставалось исключительно трудоемким процессом. Вот почему тре­бовался принципиально иной подход для решения многих задач в области биотехнологии.

3. Биотехнический период - начался в 1933 г. и длился до 1972 г.

В 1933 г. А. Клюйвер и А.Х. Перкин опубликовали работу «Мето­ды изучения обмена веществ у плесневых грибов», в которой изло­жили основные технические приемы, а также подходы к оценке по­лучаемых результатов при глубинном культивировании грибов. Началось внедрение в биотехнологию крупномасштабного герметизи­рованного оборудования, обеспечивающего проведение процессов в стерильных условиях.

Особенно мощный толчок в развитии промышленного биотехно­логического оборудования был отмечен в период становления и раз­вития производства антибиотиков (время второй мировой войны 1939-1945 гг., когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами).

Все прогрессивное в области биотехнологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии:

1936 - были решены основные задачи по конструированию, со­зданию и внедрению в практику необходимого оборудования, в том числе главного из них - биореактора (ферментера, аппарата-культи­ватора);

1942 - М. Дельбрюк и Т. Андерсон впервые увидели вирусы с помощью электронного микроскопа;

1943 - пенициллин произведен в промышленных масштабах;

1949 - Дж. Ледерберг открыл процесс конъюгации у Е. colly ;

1950 - Ж. Моно разработал теоретические основы непрерывно­го управляемого культивирования микробов, которые развили в сво­их исследованиях М. Стефенсон, И. Молек, М. Иерусалимский,
И. Работнова, И. Помозгова, И. Баснакьян, В. Бирюков;

1951 - М. Тейлер разработал вакцину против желтой лихорадки;

1952 - У. Хейс описал плазмиду как внехромосомный фактор наследственности;

1953 - Ф. Крик и Дж. Уотсон расшифровали структуру ДНК. Это стало побудительным мотивом для разработки способов крупномас­штабного культивирования клеток различного происхождения для получения клеточных продуктов и самих клеток;

1959 - японские ученые открыли плазмиды антибиотикоустойчивости (К-фактор) у дизентерийной бактерии;

1960 - С. Очоа и А. Корнберг выделили белки, которые могут «сшивать» или «склеивать» нуклеотиды в полимерные цепочки, син­тезируя тем самым макромолекулы ДНК. Один из таких ферментов был выделен из кишечной палочки и назван ДНК-полимераза;

1961 - М. Ниренберг прочитал первые три буквы генетического
кода для аминокислоты фенилаланина;

1962 - X. Корана синтезировал химическим способом функцио­нальный ген;

1969 - М. Беквит и С. Шапиро выделили ген 1ас-оперона у Е. colly ;

- 1970 - выделен фермент рестриктаза (рестриктирующая эндонуклеаза).

4. Геннотехнический период начался с 1972 г., когда П. Берг создал первую рекомбинацию молекулы ДНК, тем самым показав возмож­ность направленных манипуляцией с генетическим материалом бак­терий.

Естественно, что без фундаментальной работы Ф. Крика и Дж. Уотсона по установлению структуры ДНК было бы невозможно дос­тигнуть современных результатов в области биотехнологии. Выяс­нение механизмов функционирования и репликации ДНК, выделе­ние и изучение специфичных ферментов привело к формированию строго научного подхода к разработке биотехнических процессов на основе генноинженерных манипуляций.

Создание новых методов исследований явилось необходимой пред­посылкой развития биотехнологии в 4-ом периоде:

1977 - М. Максам и У. Гилберт разработали метод анализа пер­вичной структуры ДНК путем химической деградации, а Дж. Сэнгер
- путем полимеразного копирования с использованием терминиру­ющих аналогов нуклеотидов;

1981 - разрешен к применению в США первый диагностичес­кий набор моноклональных антител;

1982 - поступил в продажу человеческий инсулин, продуцируе­мый клетками кишечной палочки; разрешена к применению в Евро­пейских странах вакцина для животных, полученная по технологии
рекомбинантных ДНК; разработаны генно-инженерные интерфероны, фактор некротизации опухоли, интер-лейкин-2, соматотропный гормон человека и др;

1986 - К. Мюллис разработал метод полимеразной цепной реак­ции (ПЦР);

1988 - началось широкомасштабное производство оборудова­ния и диагностических наборов для ПЦР;

1997 - клонировано первое млекопитающее (овечка Долли) из дифференцированной соматической клетки.

Такие выдающиеся отечественные ученые как Л.С. Ценковский, С.Н. Вышелесский, М.В. Лихачев, Н.Н. Гинзбург, С.Г. Колесов, Я.Р. Коляков, Р.В. Петров, В.В. Кафаров и др. внесли неоценимый вклад в развитие биотехнологии.

Наиболее важные достижения биотехнологии в 4-ом периоде:

1. Разработка интенсивных процессов (вместо экстенсивных) на основе направленных, фундаментальных исследований (с продуцен­тами антибиотиков, ферментов, аминокислот, витаминов).

2. Получение суперпродуцентов.

3. Создание различных продуктов, необходимых человеку, на ос­нове генноинженерных технологий.

4. Создание необычных организмов, ранее не существовавших в природе.

5. Разработка и внедрение в практику специальной аппаратуры биотехнологических систем.

6. Автоматизация и компьютеризация биотехнологических про­изводственных процессов при максимальном использовании сырья и минимальном потреблении энергии.

Вышеперечисленные достижения биотехнологии реализуются в настоящее время в народное хозяйство и будут внедряться в практи­ку в последующие 10-15 лет. В обозримом будущем будут опреде­лены новые краеугольные камни биотехнологии и нас ждут новые открытия и достижения.

1.3. Биосистемы, объекты и методы в биотехнологии

Одним из терминов в биотехнологии является понятие «биосисте­мы». Обобщенные характеристики биологической (живой) системы могут быть сведены к трём присущим им основным признаками:

1. Живые системы являются гетерогенными открытыми система­ми, которые обмениваются с окружающей средой веществами и энер­гией.

2. Эти системы являются самоуправляемыми, саморегулирующими, идактивными, т.е. способными к обмену информацией с окружа­ющей средой для поддержания своей структуры и управления про­цессами метаболизма.

3. Живые системы являются самовоспроизводящимися (клетки, организмы).

По структуре биосистемы делятся на элементы (подсистемы), свя­занные между собой, и характеризуются сложной организацией (ато­мы, молекулы, органеллы, клетки, организмы, популяции, сообще­ства).

Управление в клетке представляет собой сочетание процессов синтеза молекул белков-ферментов, необходимых для осуществления той или иной функции, и непрерывных процессов изменения активно­сти в ходе взаимодействия триплетных кодов ДНК в ядре и макромо­лекул в рибосомах. Усиление и торможение ферментативной актив­ности происходит в зависимости от количества начальных и конеч­ных продуктов соответствующих биохимических реакций. Благода­ря этой сложной организации биосистемы отличаются от всех нежи­вых объектов.

Поведение биосистемы является совокупностью ее реакций в от­вет на внешние воздействия, т.е. наиболее общей задачей управляю­щих систем живых организмов является сохранение его энергетиче­ской основы при изменяющихся условиях внешней среды.

Н.М. Амосов делит все биосистемы на пять иерархических уров­ней сложности: одноклеточные организмы, многоклеточные организ­мы, популяции, биогеоценоз и биосферу.

Одноклеточные организмы - это вирусы, бактерии и простейшие. Функции одноклеточных - обмен веществом и энергией со средой, рост и деление, реакции на внешние раздражители в виде изменения обмена и формы движения. Все функции одноклеточных поддержива­ются за счет биохимических процессов ферментативной природы и за счет энергетического обмена - начиная от способа получения энер­гии и до синтеза новых структур или расщепления существующих. Единственным механизмом одноклеточных, обеспечивающим их приспособление к окружающей среде, является механизм изменений в отдельных генах ДНК и, как следствие, изменение белков-фермен­тов и изменение биохимических реакций.

Основой системного подхода к анализу структур биосистем является ее представление в виде двух компонентов - энергетической и управляющей.

На рис. 1. показана обобщенная принципиальная схема потоков энергии и информации в любой биосистеме. Основным, элементом является энергетическая составляющая, обозначенная через МС (ме­таболическая система), и управляющая, обозначенная через Р (генетическое и физиологическое управле­ние) и передающая сигналы управле­ния на эффекторы (Э). Одной из главных функций метаболической системы является снабжение биосистем энер­гией.


Рис. 1. Потоки энергии и информации в биосистеме.

Структура биосистем поддерживается механизмами генетическо­го управления. Получая от остальных систем энергию и информацию в виде продуктов обмена веществ (матаболитов), а в период формиро­вания - в виде гормонов, генетическая система управляет процессом синтеза необходимых веществ и поддерживает жизнедеятельность остальных систем организма, причем процессы в этой системе про­текают достаточно медленно.

Несмотря на многообразие биосистем, отношения между их био­логическими свойствами остаются инвариантными для всех организ­мов. В сложной системе возможности к адаптации значительно боль­ше, чем в простой. В простой системе эти функции обеспечиваются малым количеством механизмов, при этом они более чувствительны к изменениям во внешней среде.

Для биосистем характерна качественная неоднородность, прояв­ляющаяся в том, что в рамках одной и той же функциональной био­системы совместно и слаженно работают подсистемы с качественно различными адекватными управляющими сигналами (химическими, физическими, информационными).

Иерархичность биосистем проявляется в постепенном усложнении функции на одном уровне иерархии и скачкообразном переходе к качественно другой функции на следующем уровне иерархии, а также в специфическом построении различных биосистем, их ана­лиза и управления в такой последовательности, что итоговая выход­ная функция нижележащего уровня иерархии входит в качестве эле­мента в вышележащий уровень.

Постоянное приспособление к среде и эволюция невозможны без единства двух противоположных свойств: структурно-функциональ­ной организованности и структурно-функциональной вероятности, стохастичности и изменчивости.

Структурно-функциональная организованность проявляется на всех уровнях биосистем и характеризуется высокой устойчивостью биологического вида и его формы. На уровне макромолекул это свой­ство обеспечивается репликацией макромолекул, на уровне клетки -делением, на уровне особи и популяции - воспроизведением особей путем размножения.

В качестве биологических объектов или систем, которые исполь­зует биотехнология, прежде всего необходимо назвать одноклеточ­ные микроорганизмы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими моментами:

1. Клетки являются своего рода «биофабриками», вырабатываю­щими в процессе жизнедеятельности разнообразные ценные продук­ты: белки, жиры, углеводы, витамины, нуклеиновые кислоты, ами­нокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и пр. Многие из этих продуктов, крайне необходимые в жиз­ни человека, пока недоступны для получения «небиотехнологическими» способами из-за дефицитности или высокой стоимости сырья
или же сложности технологических процессов;

2. Клетки чрезвычайно быстро воспроизводятся. Так, бактериаль­ная клетка делится через каждые 20 - 60 мин, дрожжевая – через каждые 1,5 - 2 ч, животная - через 24 ч, что позволяет за относитель­но короткое время искусственно нарастить на сравнительно дешё­вых и недефицитных питательных средах в промышленных масшта­бах огромные количества биомассы микробных, животных или рас­тительных клеток. Например, в биореакторе ёмкостью 100 м 3 за 2 – 3 сут можно вырастить 10" 6 - 10 18 микробных клеток. В процессе жиз­недеятельности клеток при их выращивании в среду поступает боль­шое количество ценных продуктов, а сами клетки представляют со­бой кладовые этих продуктов;

3. Биосинтез сложных веществ, таких как белки, антибиотики, антигены, антитела и др. значительно экономичнее и технологичес­ки доступнее, чем химический синтез. При этом исходное сырьё для биосинтеза, как правило, проще и доступнее, чем сырьё для других
видов синтеза. Для биосинтеза используют отходы сельскохозяй­ственной, рыбной продукции, пищевой промышленности, рас­тительное сырьё (молочная сыворотка, дрожжи, древесина, меласса и др.)

4. Возможность проведения биотехнологического процесса в промышленных масштабах, т.е. наличие соответствующего техно­логического оборудования, доступность сырья, технологии перера­ботки и т.д.

Таким образом, природа дала в руки исследователям живую сис­тему, содержащую и синтезирующую уникальные компоненты, и, в первую очередь, нуклеиновые кислоты, с открытием которых и на­чала бурно развиваться биотехнология и мировая наука в целом.

Объектами биотехнологии являются вирусы, бактерии, грибы, протозойные организмы, клетки (ткани) растений, животных и чело­века, вещества биологического происхождения (например, ферменты, простагландины, лектины, нуклеиновые кислоты), молекулы.

В этой связи можно сказать, что объекты биотехнологии относят­ся либо к микроорганизмам, либо к растительным и животным клет­кам. В свою очередь организм можно охарактеризовать как систему экономного, сложнейшего, компактного, целенаправленного синте­за, устойчиво и активно протекающего при оптимальном под­держании всех необходимых параметров.

Методы, применяемые в биотехнологии, определяются двумя уровнями: клеточным и молекулярным. Тот и другой определяются биобъектами.

В первом случае дело имеют с бактериальными клетками (для получения вакцинных препаратов), актиномицетов (при получении антибиотиков), микромицетов (при получении лимонной кислоты), животных клеток (при изготовлении противовирусных вакцин), кле­ток человека (при изготовлении интерферона) и др.

Во втором случае дело имеют с молекулами, например с нуклеи­новыми кислотами. Однако в конечной стадии молекулярный уро­вень трансформируется в клеточный. Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты разнообразного физико-химичес­кого состава и биологического действия.

При росте клетки в ней осуществляется огромное число катали­зируемых ферментами реакций, в результате которых образуются промежуточные соединения, которые в свою очередь превращаются в структуры клетки. К промежуточным соединениям, к строитель­ным «кирпичикам» относятся 20 аминокислот, 4 рибонуклеотида, 4 дезоксирибонуклеотида, 10 витаминов, моносахара, жирные кисло­ты, гексозамины. Из этих «кирпичиков» строятся «блоки»: пример­но 2000 белков, ДНК, три типа РНК, полисахариды, липиды, фер­менты. Образующиеся «блоки» идут на строительство клеточных структур: ядро, рибосомы, мембрана, клеточная стенка, митохонд­рии, жгутики и пр., из которых состоит клетка.

На каждой стадии «биологического синтеза» клетки можно опре­делить те продукты, которые могут быть использованы в биотехно­логии.

Обычно продукты одноклеточных делят на 4 категории:

а) сами клетки как источник целевого продукта. Например, выра­щенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины; дрожжи, как кормовой белок или основу для получения гидролизатов питательных сред и т.д.;

б) крупные молекулы, которые синтезируются клетками в процессе выращивания: ферменты, токсины, антигены, антитела, пептидогликаны и др.;

в) первичные метаболиты - низкомолекулярные вещества (менее 1500 дальтон), необходимые для роста клеток, такие как аминокис­лоты, витамины, нуклеотиды, органические кислоты;

г) вторичные метаболиты (идиолиты) - низкомолекулярные со­единения, не требующиеся для роста клеток: антибиотики, алкалои­ды, токсины, гормоны.

Все микрообъекты, используемые в биотехнологии, относят к акариотам, про- или к эукариотам. Из группы эукариот, например, опе­рирует в качестве биообъектов клетками простейших, водорослей и грибов, из группы прокариот - клетками сине-зеленых водорослей и бактерий, акариот – вирусами.

Биообъекты из микромира варьируют в размерах от нанометров (вирусы, бактериофаги) до миллиметров и сантиметров (гигантские водоросли) и характеризуются относительно быстрым темпом раз­множения. В современной Фарминдустрии используется гигантская гамма биообъектов, группировка которых весьма сложна и лучше всего может быть выполнена на основе принципа их соразмерности.

Огромная совокупность биобъектов не исчерпывает всей элемен­тной базы, которой оперирует биотехнология. Последние успехи биологии и генной инженерии привели к появлению совершенно новых биообъектов – трансгенных (генетически-модифицированных) бактерий, вирусов, грибов, клеток растений, животных, человека и химер.

Несмотря на то, что представители всех надцарств содержат ге­нетический материал, различные акариоты лишены какого-либо од­ного типа нуклеиновой кислоты (РНК или ДНК). Они не способны функционировать (в том числе - реплицироваться) вне живой клет­ки, и, следовательно, правомочно именовать их безъядерными. Па­разитизм вирусов развивается на генетическом уровне.

При целенаправленном обследовании различных экологических ниш выявляются все новые группы микроорганизмов-продуцентов полезных веществ, которые могут быть использованы в биотехноло­гии. Количество видов микроорганизмов, используемых в биотехно­логии, постоянно растет.

При выборе биологического объекта во всех случаях нужно со­блюдать принцип технологичности. Так, если в течение многочис­ленных циклов культивирования свойства биологического объекта не сохраняются или претерпевают существенные изменения, то дан­ный биологический объект следует признать нетехнологичным, т.е. неприемлемым для следующих после стадии лабораторных иссле­дований технологических разработок.

С развитием биотехнологии огромное значение приобретают спе­циализированные банки биологических объектов, в частности кол­лекции микроорганизмов с изученными свойствами, а также криобанки клеток животных и растений, которые уже сейчас с помощью специальных методов могут быть с успехом использованы для кон­струирования новых, полезных для биотехнологии организмов. По сути дела, такие специализированные банки культур ответственны за сохранение чрезвычайно ценного генофонда.

Коллекции культур играют важную роль в процедуре правовой защиты новых культур и в стандартизации биотехнологических про­цессов. В коллекциях проводится сохранение, поддержание и обес­печение микроорганизмов штаммами, плазмидами, фагами, линия­ми клеток как для научных и прикладных исследований, так для и соответствующих производств. Коллекции культур кроме основной задачи - обеспечения жизнеспособности и сохранения генетических свойств штаммов - содействуют развитию научных исследований (в области таксономии, цитологии, физиологии), а также служат целям обучения. Они выполняют незаменимую функцию в качестве депо­зитариев патентуемых штаммов. Согласно международным прави­лам, патентоваться и депозитироваться могут не только эффектив­ные продуценты, но и культуры, используемые в генетической инже­нерии.

Большое внимание ученые уделяют целенаправленному созданию новых, не существующих в природе биологических объектов. В пер­вую очередь, следует отметить создание новых клеток микроорганиз­мов, растений, животных методами генетической инженерии. Созданию новых биологических объектов, безусловно, способствует со­вершенствование правовой охраны изобретений в области генетичес­кой инженерии и биотехнологии в целом. Сформировалось направле­ние, занимающееся конструированием искусственных клеток. В на­стоящее время существуют методы, позволяющие получить искусст­венные клетки с использованием различных синтетических и биоло­гических материалов, например искусственной клеточной мембра­ны с заданной проницаемостью и поверхностными свойствами. Неко­торые материалы могут быть заключены внутри таких клеток: фер­ментные системы, клеточные экстракты, биологические клетки, маг­нитные материалы, изотопы, антитела, антигены, гормоны и др. При­менение искусственных клеток дало положительные результаты в производстве интерферонов и моноклональных антител, при создании иммуносорбентов и др.

Разрабатываются подходы к созданию искусственных ферментов и аналогов ферментов, обладающих повышенной стабильностью и активностью. Например, проводится синтез полипептидов желаемой стереоконфигурации, ведутся поиски методов направленного мута­генеза с целью замены одной аминокислоты на другую в молекуле фермента. Делаются попытки построения неферментных каталити­ческих моделей.

Как наиболее перспективные следует выделить следующие груп­пы биологических объектов:

Рекомбинанты, т.е. организмы, полученные методами гене­тической инженерии;

Растительные и животные тканевые клетки;

Термофильные микроорганизмы и ферменты;

Анаэробные организмы;

Ассоциации для превращения сложных субстратов;

Иммобилизованные биологические объекты.

Процесс искусственного создания биологического объекта (мик­роорганизма, или тканевой клетки) состоит в изменении его генети­ческой информации с целью исключить нежелательные и усилить нужные свойства или придать ему совершенно новые качества. Наи­более целенаправленные изменения можно выполнить путем реком­бинаций - перераспределяя гены или части генов и объединяя в од­ном организме генетическую информацию от двух и более организ­мов. Получение рекомбинантных организмов, в частности, можно осуществить методом слияния протопластов, путем переноса при­родных плазмид и методами генной инженерии.

К нетрадиционным биологическим агентам на данном этапе раз­вития биотехнологии относятся растительные и животные тканевые клетки, в том числе гибридомы, трансплантаты. Культуры клеток мле­копитающих уже сейчас являются продуцентами интерферона и ви­русных вакцин, в недалеком будущем осуществится крупномасштаб­ное получение моноклональных антител, поверхностных антигенов клеток человека, ангиогенных факторов.

С развитием методов биотехнологии все большее внимание будет уделяться использованию термофильных микроорганизмов и их ферментов.

Ферменты, продуцируемые термофильными микроорганизмами, характеризуются термостабильностью и более высокой устойчи­востью к денатурации по сравнению с ферментами из мезофилов. Проведение биотехнологических процессов при повышенной тем­пературе с использованием ферментов термофильных микроорга­низмов обладает рядом достоинств:

1) увеличивается скорость реакции;

2) повышается растворимость реактивов и за счет этого - продук­тивность процесса;

3) уменьшается возможность микробного заражения реакцион­ной среды.

Наблюдается возрождение биотехнологических процессов с ис­пользованием анаэробных микроорганизмов, которые нередко яв­ляются также термофильными. Анаэробные процессы привлекают внимание исследователей в связи с недостатком энергии и возмож­ностью получения биогаза. Так как при анаэробном культивировании не нужна аэрация среды и биохимические процессы менее интен­сивны, упрощается система теплоотвода, анаэробные процессы можно рассматривать как энергосберегающие.

Анаэробные микроорганизмы успешно используются для пере­работки отходов (биомассы растений, отходов пищевой промыш­ленности, бытовых отходов и др.) и стоков (бытовые и промышлен­ные стоки, навоз) в биогаз.

В последние годы расширяется применение смешанных куль­тур микроорганизмов и их природных ассоциаций. В реальной био­логической ситуации в природе микроорганизмы существуют в виде сообществ различных популяций, тесно связанных между со­бой и осуществляющих круговорот веществ в природе.

Основные преимущества смешанных культур по сравнению с монокультурами следующие:

Способность утилизировать сложные, неоднородные по со­ставу субстраты, зачастую непригодные для монокультур;

Способность к минерализации сложных органических соеди­нений;

Повышенная способность к биотрансформации органических веществ;

Повышенная устойчивость к токсичным веществам, в том чис­ле тяжелым металлам;

Повышенная устойчивость к воздействию окружающей среды;

Повышенная продуктивность;

Возможный обмен генетической информацией между отдель­ными видами сообщества.

Следует особо выделить такую группу биологических объектов, как ферменты-катализаторы биологического происхождения, изуче­нием которых в прикладном аспекте занимается инженерная энзимология. Основная ее задача - разработка биотехнологических про­цессов, в которых используется каталитическое действие энзимов, как правило, выделенных из состава биологических систем или находящихся внутри клеток, искусственно лишенных способнос­ти роста. Благодаря ферментам скорость реакций по сравнению с реакциями, протекающими в отсутствие этих катализаторов, возрастает в 10 б - 10 12 раз.

Как отдельную отрасль создания и использования биологических объектов следует выделить иммобилизованные биологические объек­ты. Иммобилизованный объект представляет собой гармоничную систему, действие которой в целом определяется правильным подбо­ром трех основных компонентов: биологического объекта, носителя и способа связывания объекта с носителем.

В основном используются следующие группы методов мобилиза­ции биологических объектов:

Включение в гели, микрокапсулы;

Адсорбция на нерастворимых носителях;

Ковалентное связывание с носителем;

Сшивка бифункциональными реагентами без использования но­сителя;

- «самоагрегация» в случае интактных клеток.

Основными преимуществами использования иммобилизованных биологических объектов являются:

Высокая активность;

Возможность контроля за микроокружением агента;

возможность полного и быстрого отделения целевых продук­тов;

Возможность организации непрерывных процессов с многократ­ным использованием объекта.

Как следует из вышеизложенного, в биотехнологичиеских про­цессах возможно использование ряда биологических объектов, ха­рактеризующихся различными уровнями сложности биологической регуляции, например клеточным, субклеточным, молекулярным. От особенностей конкретного биологического объекта самым непос­редственным образом зависит подход к созданию всей биотехноло­гической системы в целом.

В результате фундаментальных биологических исследований уг­лубляются и расширяются знания о природе и, тем самым, о воз­можностях прикладного использования той или иной биологичес­кой системы в качестве активного начала биотехнологического процесса. Набор биологических объектов непрерывно пополняется.

1.4. Основные направления развития методов биотехнологии в ветеринарии

За последние 40 - 50 лет произошло скачкообразное развитие боль­шинства наук, что привело к форменной революции в производстве ветеринарных и медицинских биопрепаратов, созданию трансгенных растений и животных с заданными уникальными свойствами. По­добные исследования являются приоритетными направлениями на­учно-технического прогресса и в XXI в. займут ведущее место среди всех наук.

Даже простое перечисление товарных форм биопрепаратов ука­зывает на неограниченные возможности биотехнологии. Однако этот важный вопрос заслуживает некоторой детализации.

На наш взгляд, возможности биотехнологии особенно впечатля­ющи в трех основных направлениях.

Первое - это крупнотоннажное производство микробного белка для кормовых целей (вначале - на основе гидролизатов древесины, а затем - на основе углеводородов нефти).

Важную роль играет производство незаменимых аминокислот, необходимых для сбалансированности по аминокислотному составу кормовых добавок.

Кроме кормового белка, аминокислот, витаминов и других кормо­вых добавок, увеличивающих питательную ценность кормов, быст­ро расширяются возможности массового производства и примене­ния вирусных и бактериальных препаратов для профилактики бо­лезней птиц и сельскохозяйственных животных, для эффективной борьбы с вредителями сельскохозяйственных растений. Микробиологические препараты, в отличие от многих химичес­ких, обладают высокой специфичностью действия на вредных насе­комых и фитопатогенные микроорганизмы, они безвредны для чело­века и животных, птиц и полезных насекомых. Наряду с прямым уничтожением вредителей в период обработки они действуют на потомство, снижая его плодовитость, не вызывают образования ус­тойчивых форм вредных организмов.

Огромны возможности биотехнологии в области производства ферментных препаратов для переработки сельскохозяйственно­го сырья, создания новых кормов для животноводства.

Второе направление - разработки в интересах развития био­логической науки, здравоохранения и ветеринарии. На основе дости­жений генной инженерии и молекулярной биологии биотехнология может обеспечить здравоохранение высокоэффективными вакцинами и антибиотиками, моноклональными антителами, интерфероном, ви­таминами, аминокислотами, а также ферментами и другими био­препаратами для исследовательских и лечебных целей. Некоторые из этих препаратов уже сегодня с успехом применяются не только в научных экспериментах, но и в практической медицине и ветерина­рии.

Наконец, третье направление - разработки для промышленности. Уже сегодня продукцию биотехнологических производств потреб­ляют или применяют пищевая и легкая промышленность (фермен­ты), металлургия (использование некоторых веществ в процессах флотации, точного литья, прецизионного проката), нефтегазовая промышленность (использование ряда препаратов комплексной переработки растительных и микробных биомасс при бурении скважин, при селективной очистке и др.), резиновая и лакокра­сочная промышленность (улучшение качества синтетического ка­учука за счет некоторых белковых добавок), а также ряд других про­изводств.

К числу активно разрабатываемых направлений биотехнологии относятся биоэлектроника и биоэлектрохимия, бионика, нанотехнология, в которых используются либо биологические системы, либо принципы действия таких систем.

Широко в научных исследованиях применяются ферментсодержащие датчики. На их основе разработан ряд устройств, например, дешевые, точные и надежные приборы для проведения анализов. Появляются и биоэлектронные иммуносенсоры, причем в не­которых из них используется полевой эффект транзисторов. На их основе предполагается создавать относительно дешевые приборы, способные определять и поддерживать на заданном уровне концент­рацию широкого круга веществ в жидкостях тела, что может вызвать переворот в биологической диагностике.

Достижения ветеринарной биотехнологии. В России биотехно­логия как наука начала развиваться с 1896 г. Толчком послужила необхо­димость создавать профилактические и терапевтические средства против таких болезней как сибирская язва, чума крупного рогатого скота, бешен­ство, ящур, трихинеллез. В конце XIX в. ежегодно от сибирской язвы гибло более 50 тыс. животных и 20 тыс. людей. За 1881 - 1906 гг. от чумы пало 3,5 млн коров. Значительный ущерб наносил сап, от которого гибло конское поголовье и люди.

Успехи отечественной ветеринарной науки и практики в проведении специфической профилактики инфекционных болезней связаны с круп­ными научными открытиями, сделанными в конце XIX и начале XX столетий. Это касалось разработки и внедрения в ветеринарную практику профилактических и диагностических препаратов при карантин­ных и особо опасных болезнях животных (вакцины против сибирской язвы, чумы, бешенства, аллергенов для диагностики туберкулеза, сапа и др). Была научно доказана возможность приготовления лечебных и ди­агностических гипериммунных сывороток.

На этот период приходится фактическая организация в России само­стоятельной биологической промышленности.

С 1930 г. существующие в России ветеринарные бактериологичес­кие лаборатории и институты стали существенно расширяться, и на их базе было начато строительство крупных биологических фабрик и био­комбинатов по производству вакцин, сывороток, диагностикумов для ветеринарных целей. В этот период разрабатываются технологические процессы, научно-технологическая документация, а также единые ме­тоды (стандарты) изготовления, контроля и применения препаратов в животноводстве и ветеринарии.

В 30-е годы были построены первые заводы по получению кор­мовых дрожжей на гидролизатах древесины, сельскохозяйственных отходах и сульфитных щелоках под руководством В.Н.Шапошнико­ва. Успешно внедрена технология микробиологического производ­ства ацетона и бутанола (рис. 2).

Большую роль в создание основ отечественной биотехнологии внесло его учение двухфазном характере брожения. В 1926 г. в СССР были исследованы биоэнергетические закономерности окисления углеводородов микроорганизмами. В последующие годы биотехно­логические разработки широко использовались в нашей стране для расширения «ассортимента» антибиотиков для медицины и животно­водства, ферментов, витаминов, ростовых веществ, пестицидов.

С момента создания в 1963 г. Всесоюзного научно-исследо­вательского института биосинтеза белковых веществ в нашей стра­не налаживается крупнотоннажное производство богатой белками биомассы микроорганизмов как корма.

В 1966 г. микробиологическая промышленность была выделена в отдельную отрасль и создано Главное управление микробиологичес­кой промышленности при Совете Министров СССР - Главмикробиопром.

С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур микроорганизмов для непрерывного культивиро­вания в промышленных целях.

В разработку генно-инженерных методов советские исследователи включились в 1972 г. Следует указать на успешное осуществление в СССР проекта «Ревертаза» - получение в промышленных масшта­бах фермента «обратной транскриптазы».

Развитие методов изучения структуры белков, выяснение меха­низмов функционирования и регуляции активности ферментов от­крыли путь к направленной модификации белков и привели к рожде­нию инженерной энзимологии. Иммобилизованные ферменты, об­ладающие высокой стабильностью, становятся мощным инструмен­том для осуществления каталитических реакций в различных отрас­лях промышленности.

Все эти достижения поставили биотехнологию на новый уровень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами биосинтеза.

За годы становления промышленного производства биологических препаратов в нашей стране произошли существенные качественные из­менения биотехнологических приемов их получения:

Проведены исследования по получению стойких, с наследственно закрепленными свойствами, авирулентных штаммов микроорганизмов, из которых готовят живые вакцины;

Разработаны новые питательные среды для культивирования мик­роорганизмов, в том числе и на основе гидролизатов и экстрактов из сырья непищевого назначения;

Получены высококачественные сывороточные питательные среды для лептоспир и других трудно культивируемых микроорганизмов;

Разработан глубинный реакторный способ культивирования мно­гих видов бактерий, грибов и некоторых вирусов;

Получены новые штаммы и линии клеток, чувствительных ко мно­гим вирусам, что обеспечило приготовление и получение стандартных и более активных противовирусных вакцин;

Механизированы и автоматизированы все процессы производства;

Разработаны и внедрены в производство современные методы кон­центрирования культур микроорганизмов и сублимационной сушки биопрепаратов;

Снижены энергозатраты на получение единицы продукции, стан­дартизировано и улучшено качество биопрепаратов;

Повышена культура производства биопрепаратов.

Уделяя большое внимание разработкам ветеринарных биопрепаратов дня профилактики, диагностики инфекционных болезней и лечения больных животных, в нашей стране постоянно ведется работа по совершен­ствованию промышленной технологии, освоению производства более эффективных, дешевых и стандартных препаратов. При этом основными требованиями являются:

Использование мирового опыта;

Экономия ресурсов;

Сохранение производственных площадей;

Приобретение и монтаж современного оборудования и технологи­ческих линий;

Проведение научных исследований по разработке и изысканию но­вых видов биопродуктов, новых и дешевых рецептов приготовления пи­тательных сред;

Изыскание более активных штаммов микроорганизмов в отно­шении их антигенных, иммуногенных и продуктивных свойств.

Федеральное государственное общеобразовательное учреждение высшего профессионального образования «Московская государственная академия ветеринарной медицины и биотехнологий им. К.И.Скрябиан»

Реферат по биотехнологии

«Лекция № 1»

Работу выполнила

Студентка ФВМ

4 курса, 11 группы

Гордон Мария