Нелинейная механика деформируемого твердого тела. Большая энциклопедия нефти и газа

Cтраница 1


Механика деформируемого твердого тела, как представляется автору, должна рассматриваться как единая наука, объединяющая те научные дисциплины, которые по традиции излагаются и изучаются раздельно. Для механики недостаточно написать определяющие уравнения, нужно уметь их решать при данных граничных условиях и решать возможно точно. Поэтому та картина, которую строит механик, может иногда показаться чрезмерно упрощенной. Но механик вынужден блуждать между Сциллой и Харибдой; с одной стороны, его уравнения должны достаточно точно отражать действительность, с другой - быть доступными для интегрирования.  

Механика деформируемого твердого тела - наука, в которой изучаются законы движения и равновесия твердых тел в условиях их деформирования при различных воздействиях. Деформация твердого тела заключается в том, что изменяются его размеры и форма. С этим свойством твердых тел, как элементов конструкций, сооружений и машин, инженер постоянно встречается в своей практической деятельности.  

Механика деформируемого твердого тела является во всех своих разделах постоянно развивающейся наукой. Разрабатываются новые методы определения напряженного и деформированного состояний тел. Широкое применение получили различные численные методы решения задач, что связано с внедрением и использованием ЭВМ практически во всех сферах науки и инженерной практики.  

Механика деформируемого твердого тела изучает законы деформирования реальных твердых тел под действием приложенных к ним внешних сил, температурных, магнитных полей и других внешних воздействий. Силы, как основной фактор взаимодействия между телами, представляют собой меру механического действия тел друг на друга и взаимодействия частей одного тела между собой. В механике деформируемого твердого тела и сопротивлении материалов, в частности, под термином деформация обычно понимают локальную деформацию, описывающую изменение расстояний между близкими материальными точками тела, и изменение взаимной ориентации отдельных волокон тела. Под волокном понимают совокупность материальных точек тела, непрерывно заполняющих некоторый малый отрезок ab, заданным образом ориентированный в пространстве.  

Механика деформируемого твердого тела - наука о равновесии и движении твердых тел с учетом изменения расстояний между отдельными частицами тела.  

Задача механики деформируемого твердого тела для конкретных форм элементов конструкции и условий нагружения рассматривается как краевая задача, которая решается методом конечных элементов. В процессе такого численного решения становится важным адекватное моделирование поведения материала и его свойств. Свойства, характеризующие поведение материала под нагрузкой, а также в общем случае и краевые условия могут быть определены из экспериментально полученных кривых деформирования и зависимостей для возмущающих воздействий.  

Зарождение механики деформируемого твердого тела как науки датируется 1638 г., когда в голландском городе Лейдене была издана книга Гали-лео Галилея Беседы и математические доказательства, касающиеся двух новых отраслей науки, содержащая основы двух новых отраслей науки: динамики и учения о прочности. Здесь Галилеем дана постановка проблемы о прочности тел и предпринята первая в истории человечества попытка решить этот вопрос на научной основе. Конечно, в догалилеево время возводились поражающие ум человека архитектурные творения, однако их сооружение выполнялось на базе эмпирических знаний, методом проб, на базе знаний, передававшихся от поколения к поколению как результат опыта, накопленного в практической деятельности. Галилеей сказано новое слово в задаче об изгибе балки, где он правильно установил, что для балки прямоугольного поперечного сечения момент сопротивления пропорционален первой степени ширины и квадрату высоты ее сечения.  

Зарождение механики деформируемого твердого тела как науки датируется 1638 г., когда в голландском городе Лейдене была издана книга Гали-лсо Галилея Беседы и математические доказательства, касающиеся двух новых отраслей пауки, содержащая основы двух новых отраслей науки: динамики и учения о прочности. Здесь Галилеем дана постановка проблемы о прочности тел и предпринята первая в истории человечества попытка решить этот ьопрос на научной основе. Конечно, в догалилеево время возводились поражающие ум человека архитектурные творения, однако их сооружение выполнялось на базе эмпирических знаний, методом проб, на базе знаний, передававшихся от поколения к поколению как результат опыта, накопленного в практической деятельности. Галилеем сказано новое слово в задаче об изгибе балки, где он правильно установил, что для балки прямоугольного поперечного сечения момент сопротивления пропорционален первой степени ширины и квадрату высоты ее сечения.  


В механике деформируемого твердого тела оболочкой называют в общем случае неоднородное материальное тело, метрика и форма которого в известном приближении отождествляются с метрикой и формой некоторой поверхности, связанной с этим телом и называемой поверхностью приведения SQ.  

В механике деформируемого твердого тела под термином определяющие (иногда физические, конституционные) соотношения понимают зависимость между напряжениями и деформациями.  

В механике деформируемого твердого тела материал называется однородным, если он имеет одинаковые свойства во всех материальных точках. Материал считается изотропным по отношению к некоторому свойству, если это свойство в данной материальной точке одинаково по всем направлениям. Материал считается анизотропным по отношению к тем свойствам, которые зависят от направления.  

В механике деформируемого твердого тела вводятся различные гипотезы и допущения, касающиеся характера процесса деформирования тела и свойств его материала.  

В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существующих микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в § 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  

ЛЕКЦИЯ 1. Введение. Основные понятия, гипотезы и принципы. Расчётная схема сооружения. Виды нагрузок.

Введение. Курс «Сопротивление материалов» является одним из разделов науки, которая носит название «Механика деформируемого твёрдого тела». В теоретической механике рассматривается равновесие и движение абсолютно твёрдого тела. Механика деформируемого твёрдого тела – наука, в которой изучаются законы движения и равновесия твёрдых тел в условиях их деформирования под действием различных нагрузок. Деформация твёрдого тела заключается в изменении его размеров и формы.

Например, стержень под действием растягивающих сил удлиняется, балка, нагруженная поперечной силой, изгибается, вал под действием скручивающих нагрузок претерпевает кручение. Эти примеры проиллюстрированы на рис. 1.1.

Рис. 1.1. Различные виды сопротивления стержня: а) растяжение; б) изгиб; в) кручение

При действии нагрузок в твёрдых телах возникают внутренние силы, которые характеризуют сопротивление тела деформации. Внутренние силы, отнесённые к единице площади, называются напряжениями .

Сопротивление материалов – наука о методах расчёта инженерных конструкций и их элементов на прочность, жёсткость и устойчивость. Правильное решение этих задач является основой при расчёте и проектировании конструкций, поскольку оно обеспечивает их надёжность в течение всего периода эксплуатации.

Прочность – способность конструкции и её элементов не разрушаясь нести приложенные к ним нагрузки в течение всего времени эксплуатации. Потеря прочности балки под действием силы показана на рис. 1.2.а на примере разрушения балки.

Жёсткость - способность конструкции и её элементов деформироваться в заданных пределах. Обычно жёсткость конструкций регламентируется нормами проектирования. Например, максимальные прогибы балок (рис. 1.2.б), применяемых в строительстве находятся в пределах v = (1/200÷1/1000) , углы закручивания валов обычно не должны превышать 2 0 на 1 метр длины вала и т.д.

Устойчивость - способность конструкции и её элементов сохранять первоначальную форму равновесия. Например, для стержня на рис. 1.2.в при F < F cr будет устойчивой первоначальная прямолинейная форма равновесия, а при F > F cr устойчивым будет изогнутое состояние стержня. При этом стержень будет работать не только на сжатие, но и на изгиб, что приведёт его к быстрому разрушению из-за потери устойчивости.

Рис. 1.2. Иллюстрации потери стержнем: а) прочности; б) жесткости;

в) устойчивости

Кроме того, что сооружение должно быть прочным, жёстким и устойчивым, оно должно быть ещё и экономичным.

Некоторые сведения из истории науки о сопротивлении материалов . Начало этой науки относят к 1638 году, когда Галилео Галилей опубликовал свой труд «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению».

В дальнейшем проблемами поведения конструкций под нагрузкой занимались Кулон, братья Бернулли, Эйлер, Лагранж, Гук. Их работы, в основном, относились к математической стороне задачи и не получили в то время практического применения.

В начале XIX века сопротивление материалов становится основой для расчётов сооружений и машин. Инженер и математик Навье в 1826 году во Франции издал первый курс сопротивления материалов, в котором суммировался весь накопленный в то время объём знаний по этой науке. В это время в России и за рубежом появляются механические лаборатории для испытания материалов с целью определения их механических свойств и проверки теоретических выводов.

В последнее время методы механики деформируемого твёрдого тела усиленно развиваются на базе использования ЭВМ и достижений в физике твёрдого тела.

Основные понятия, гипотезы и принципы . Одним из основных понятий механики деформируемого твёрдого тела является понятие о деформации тела при различных воздействиях. В процессе деформирования изменяется взаимное расположение частиц тела, которые получают перемещения .

Как правило, эти перемещения считаются малыми по сравнению с размерами тела.

Вводится ряд гипотез и допущений, касающихся характера процесса деформирования тела и свойств его материала.

Деформирование называют абсолютно упругим (гипотеза идеальной упругости тела) , если после снятия нагрузки деформации полностью исчезают и восстанавливаются первоначальные размеры и форма тел.

Наличие остаточных деформаций характеризует пластические свойства материала. Процесс деформирования тела с учётом пластических деформаций изучается в курсе теории пластичности.

При нагружении тела с фиксацией нагрузки на определённом уровне с течением времени деформации могут увеличиться, такое явление называют ползучестью. С другой стороны, если деформации тела в течение определённого периода времени остаются неизменными, то внутренние силы и напряжения в теле могут уменьшиться. Такое явление называется релаксацией напряжений .

На основе гипотезы о сплошности тела материал считается сплошным и полностью заполняющим объём, ограниченный поверхностью тела. При этом не учитывается молекулярное состояние вещества.

Строение и состав материала могут быть неодинаковыми в различных точках. В природе все тела более или менее неоднородны. Для многих строительных конструкционных материалов вводится гипотеза об однородности тела , что соответствует осреднению свойств материала по всему объёму.

Материал тела имеет определённые физико-механические характеристики. Если эти характеристики одинаковы по всем направлениям, то материал называется изотропным , а при их различии – анизотропным . Свойством анизотропии в той или иной степени обладают все материалы, но если она незначительна, то её можно пренебречь и считать материал изотропным.

Большое значение в механике деформируемого твёрдого тела имеетпринцип суперпозиции или принцип независимости действия сил . Он справедлив при выполнении закона Гука. Согласно этому принципу какой-либо результат действия нагрузки (деформации, опорные реакции) можно представить в виде суммы аналогичных результатов действия по отдельности всех составляющих нагрузки. Например, удлинение стержня на рис.1.3.а от сил F 1 и F 2 равно сумме его удлинений от раздельного действия этих сил (рис. 1.3.б и 1.3.в)

Рис. 1.3. Иллюстрация принципа независимости действия сил

Использование принципа Сен-Венана позволяет вносить упрощения в расчётные схемы. Этот принцип в середине XIX века сформулировал французский математик и механик. Согласно принципу Сен-Венана напряжённое состояние тела на достаточном удалении от области действия локальных нагрузок мало зависит от детального способа приложения этих нагрузок (рис. 1.4).

Рис. 1.4. Иллюстрация принципа Сен-Венана

Расчётная схема сооружения. Расчёт любой конструкции начинается с построения её расчётной схемы. При этом вводятся схематизации и упрощения, касающиеся характера действия нагрузок, условий опирания, типов конструктивных элементов и т.п. Расчётная схема отображает всё существенное для работы данной конструкции и не содержит второстепенных факторов, мало влияющих на результаты её расчёта.

По геометрическим признакам выделяют три типа расчётных схем.

1. Стержни или брусья (рис. 1.5.а), у которых длина значительно больше размеров поперечного сечения (стойка, вал, балка). Они могут иметь различную форму поперечного сечения (круг, прямоугольник, двутавр, и т.п.), они бывают сплошными и полыми (например, труба), криволинейными и прямолинейными, с постоянными или переменными по длине размерами сечения.

Рис. 1.5. Схемы расчётных элементов: а) стержень; б) пластина;

в) массивное тело

2. Пластины и оболочки (рис 1.5.б) имеют один размер – толщину - намного меньше двух других размеров (плиты перекрытий, панели зданий,).

3. Массивное тело (рис 1.5.в) имеет размер во всех трёх направлениях одного порядка (блоки фундаментов, гидротехнических сооружений).

В инженерных конструкциях широко применяются стержневые системы (рис. 1.6), состоящие из стержней, например рамы и фермы.

Рис. 1.6. Стержневые системы: а) рамы; б) фермы

Виды нагрузок . Нагрузки, действующие на конструкции, классифицируют по ряду признаков.

    Поверхностные и объёмные нагрузки . Поверхностные нагрузки можно рассматривать как результат взаимодействия различных конструктивных элементов друг с другом или с различными физическими объектами (грунт, вода, снег). Объёмные нагрузки действуют на каждую частицу внутри тела (собственный вес конструкции, силы инерции).

    Активные и реактивные нагрузки. Активные нагрузки, как правило, известны. Реактивные нагрузки – реакции связей, возникают в местах закрепления конструктивного элемента и подлежат определению.

    Распределённые и сосредоточенные нагрузки. Все поверхностные нагрузки являются распределёнными по некоторой поверхности конструкции (снег, ветер). Эти нагрузки характеризуются интенсивностью q , которая может быть переменной или постоянной. В последнем случае нагрузка называется равномерно распределённой . При расчёте стержней распределённая по площади нагрузка приводится к линейной, распределённой по длине стержня. При малой площади распределения нагрузку можно считать сосредоточенной .

    Статические и динамические нагрузки. При статическом нагружении пренебрегают силами инерции, такое нагружение характеризуется постепенным нарастанием нагрузки до её конечного значения. При динамическом нагружении нагрузки прикладываются внезапно или ударно. В этом случае учёт сил инерции и частоты колебаний является обязательным.

    Постоянные и временные нагрузки. К постоянным нагрузкам относят те, которые должны действовать в течение всего периода эксплуатации конструкции (собственный вес). Временные носят периодический характер (давление людей и оборудования на перекрытия здания).

Определение 1

Механика твердого тела - обширный раздел физики, исследующий движение твердого тела под воздействием внешних факторов и сил.

Рисунок 1. Механика твердого тела. Автор24 - интернет-биржа студенческих работ

Данное научное направление охватывает очень широкий круг вопросов в физике – в ней изучаются различные объекты, а также мельчайшие элементарные частицы вещества. В этих предельных случаях выводы механики представляют чисто теоретический интерес, предметом которого является также проектирование многих физических моделей и программ.

На сегодняшний день различают 5 видов движения твердого тела:

  • поступательное движение;
  • плоскопараллельное движение;
  • вращательное движение вокруг неподвижной оси;
  • вращательное вокруг неподвижной точки;
  • свободное равномерное движение.

Любое сложное движение материального вещества может быть в итоге сведено к совокупности вращательного и поступательного движений. Фундаментальное и важное значение для всей этой тематики имеет механика движения твердого тела, предполагающая математическое описание вероятных изменений в среде и динамику, которая рассматривает движение элементов под действием заданных сил.

Особенности механики твердого тела

Твердое тело, которое систематически принимает разнообразные ориентации в любом пространстве, можно считать состоящим из огромного количества материальных точек. Это просто математический метод, помогающий расширить применимость теорий движения частиц, но не имеющий ничего общего с теорией атомного строения реального вещества. Поскольку материальные точки исследуемого тела будут направляться в разных направлениях с различными скоростями, приходится применять процедуру суммирования.

В этом случае, нетрудно определить кинетическую энергию цилиндра, если заранее известен вращающегося вокруг неподвижного вектора с угловой скоростью параметр. Момент инерции можно вычислить посредством интегрирования, и для однородного предмета равновесие всех сил возможно, если пластина не двигалась, следовательно, компоненты среды удовлетворяют условию векторной стабильности. В результате выполняется выведенное на изначальном этапе проектирования соотношение. Оба эти принципа составляют базу теории строительной механики и необходимы при возведении мостов и зданий.

Изложенное возможно обобщить на тот случай, когда отсутствуют неподвижные линии и физическое тело свободно вращается в любом пространстве. При таком процессе имеются три момента инерции, относящиеся к «ключевым осям». Проводившиеся постулаты в механике твердого вещества упрощаются, если пользоваться существующими обозначениями математического анализа, в которых предполагается предельный переход $(t → t0)$, так что нет надобности все время думать, как решить этот вопрос.

Интересно, что Ньютон первым применил принципы интегрального и дифференциального исчисления при решении сложных физических задач, а последующее становление механики как комплексной науки было делом таких выдающихся математиков, как Ж.Лагранж, Л.Эйлер, П.Лаплас и К.Якоби. Каждый из указанных исследователей находил в ньютоновском учении источник вдохновения для своих универсальных математических изысканий.

Момент инерции

При исследовании вращения твердого тела физики часто пользуются понятием момента инерции.

Определение 2

Моментом инерции системы (материального тела) относительно оси вращения называется физическая величина, которая равна сумме произведений показателей точек системы на квадраты их расстояний до рассматриваемого вектора.

Суммирование производится по всем движущимся элементарным массам, на которые разбивается физическое тело. Если изначально известен момент инерции исследуемого предмета относительно проходящей через его центр масс оси, то весь процесс относительно любой другой параллельной линии определяется теоремой Штейнера.

Теорема Штейнера гласит: момент инерции вещества относительно вектора вращения равен моменту его изменения относительно параллельной оси, которая проходит через центр масс системы, полученному посредством произведения масс тела на квадрат расстояния между линиями.

При вращении абсолютно твердого тела вокруг неподвижного вектора каждая отдельная точка движется по окружности постоянного радиуса с определенной скоростью и внутренний импульс перпендикулярны этому радиусу.

Деформация твердого тела

Рисунок 2. Деформация твердого тела. Автор24 - интернет-биржа студенческих работ

Рассматривая механику твердого тела, часто используют понятие абсолютно твердого тела. Однако в природе не существует таких веществ, так как все реальные предметы под влиянием внешних сил изменяют свои размеры и форму, то есть деформируются.

Определение 3

Деформация называется постоянной и упругой, если после прекращения влияния посторонних факторов тело принимает первоначальные параметры.

Деформации, которые сохраняются в веществе после прекращения взаимодействия сил, называются остаточными или пластическими.

Деформации абсолютного реального тела в механике всегда пластические, так как они после прекращения дополнительного влияния никогда полностью не исчезают. Однако если остаточные изменения малы, то ими возможно пренебречь и исследовать более упругие деформации. Все виды деформации (сжатие или растяжение, изгиб, кручение) могут быть в итоге сведены к происходящим одновременно трансформациям.

Если сила движется строго по нормали к плоской поверхности, напряжение носит название нормальным, если же по касательной к среде – тангенциальным.

Количественной мерой, которая характеризует характеризующей деформации, испытываемой материальным телом, является его относительное изменение.

За пределом упругости в твердом теле появляются остаточные деформации и график, детально описывающий возвращение вещества в первоначальное состояние после окончательного прекращения действия силы, изображается не на кривой, а параллельно ей. Диаграмма напряжений для реальных физических тел напрямую зависит от различных факторов. Один и тот же предмет может при кратковременном воздействии сил проявлять себя как совершенно хрупкое, а при длительных - постоянным и текучим.

Задачи науки

Это наука о прочности и податливости (жесткости) элементов инженерных конструкций. Методами механики деформируемого тела ведутся практические расчеты и определяются надежные (прочные, устойчивые) размеры деталей машин и различ­ных строительных сооружений. Вводной, начальной частью механи­ки деформируемого тела является курс, получивший название сопротивление материалов . Основные положения сопротивления материалов опираются на законы общей механики твердого тела и прежде всего на законы статики, знание которых для изучения механики деформируемого тела является совершенно необходимым. К механике деформируемых тел относятся и другие разделы, такие, как теория упругости, теория пластичности, теория ползучести, где рассматриваются те же вопросы, что и в сопротивлении материалов, но в более полной и строгой постановке.

Сопротивление же материалов ставит своей задачей создание практически приемлемых и простых приемов расчета на прочность и жесткость типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до числового результата заставляет прибегать в ряде слу­чаев к упрощающим гипотезам-предположениям, которые оправдыва­ются в дальнейшем путем сопоставления расчетных данных с экспе­риментом.

Общий подход

Многие физические явления удобно рассмат­ривать при помощи схемы, изображенной на рисунке 13:

Через X здесь обозначено некоторое воздействие (управление), подаваемое на вход системы А (машина, испытуемый образец материала и т. п.), а через Y – реакция (отклик) системы на это воздействие. Будем считать, что реакции Y снимаются с вы­хода системы А .

Под управляемой системой А условимся понимать любой объект, способный детерминированно реагировать на некоторое воздействие. Это значит, что все копии системы А при одинаковых условиях, т.е. при одинаковых воздействиях x(t) , ведут себя строго оди­наково, т.е. выдают одинаковые y(t) . Такой подход, конечно, явля­ется лишь некоторым приближением, так как практически невозможно получить ни две совершенно одинаковые системы, ни два одинаковых воздействия. Поэтому, строго говоря, следовало бы рассматривать не детерминированные, а вероятностные системы. Тем не менее, для ряда явлений удобно игнорировать этот очевидный факт и систему считать детерминированной, понимая все количественные соотношения между рассматриваемыми величинами в смысле соотношений между их математическими ожиданиями.

Поведение всякой детерминированной управляемой системы может быть определено некоторым соотношением, связывающим выход с входом, т.е. х с у . Это соотношение будем называть уравнением состояния системы. Символически это записывается так

где буква А , использованная ранее для обозначения системы может быть истолкована как некоторый оператор, позволяющий определить у(t) , если задается х(t) .

Введенное понятие о детерминированной системе с входом и выходом является весьма общим. Вот некоторые примеры таких сис­тем: идеальный газ, характеристики которого связаны уравнением Менделеева-Клапейрона, электрическая схема, подчиняющаяся тому или иному дифференциальному уравнению, лопатка паровой или газовой турбины, деформирующаяся во времени, действующими на нее силами и т. д. Нашей целью не является изучение произвольной управляемой системы, и поэтому в процессе изложения мы будем вводить необходимые дополнительные предположения, которые, ограничивая общность, позволят рассмотреть систему частного ви­да, наиболее подходящую для моделирования поведения деформируемого под нагрузкой тела.

Анализ всякой управляемой системы может быть в принципе осуществлен двумя способами. Первый из них микроскопический , основан на детальном изучении устройства системы и функционирова­ния всех образующих ее элементов. Если все это удается выполнить, то появляется возможность написать уравнение состояния всей системы, так как известно поведение каждого ее элемента и способы их взаимодействия. Так, например, кинетическая теория газов позволяет написать уравнение Менделеева-Клапейрона; знание устройства электрической цепи и всех ее характеристик дает возможность написать ее уравнения на основе законов электротех­ники (закона Ома, Кирхгофа и т. п.). Таким образом, микроскопи­ческий подход к анализу управляемой системы основан на рас­смотрении элементарных процессов, из которых складывается дан­ное явление, и в принципе способен дать прямое исчерпывающее описание рассматриваемой системы.

Однако микроподход не всегда может быть осуществлен ввиду сложного или еще не исследованного строения системы. Например, в настоящее время не представляется возможным написать урав­нение состояния деформируемого тела, как бы тщательно оно не было изучено. То же относится и к более сложным явлениям, протекающим в живом организме. В подобных случаях применяется так называемый макроскопический феноменологический (функциональный) подход, при котором не интересуются детальным устройством системы (например, микроскопическим строением деформиру­емого тела) и ее элементов, а изучают функционирование системы в целом, которое рассматривается как связь между входом и выходом. Вообще говоря, эта связь может быть произвольной. Одна­ко для каждого конкретного класса систем на эту связь наклады­ваются ограничения общего характера, а проведение некоторого минимума экспериментов может оказаться достаточным, чтобы выяснить эту связь с необходимыми подробностями.

Использование макроскопического подхода является, как уже отмечалось, во многих случаях вынужденным. Тем не менее, даже создание последовательной микротеории явления не может полностью обесценить соответствующую макротеорию, так как последняя основана на эксперименте и потому более надежна. Микротеория же при построении модели системы всегда вынуждена идти на некоторые упрощающие предположения, приводящие к различного рода неточностям. Например, все «микроскопические» уравнения состоя­ния идеального газа (уравнения Менделеева-Клапейрона, Ван-дер-Ваальса и др.) имеют неустранимые расхождения с эксперимен­тальными данными о реальных газах. Соответствующие же «макро­скопические» уравнения, основанные на этих экспериментальных данных, могут описать поведение реального газа как угодно точ­но. Более того, микроподход является таковым лишь на опреде­ленном уровне – уровне рассматриваемой системы. На уровне же элементарных частей системы он все же является макроподходом, так что микроанализ системы может рассматриваться как синтез ее составных частей, проанализированных макроскопически.

Поскольку в настоящее время микроподход еще не в силах привести к уравнению состояния деформируемого тела, естест­венно решать эту задачу макроскопически. Такой точки зрения и будем придерживаться в дальнейшем.

Перемещения и деформации

Реальное твердое тело, лишен­ное всех степеней свободы (возможности перемещаться в прост­ранстве) и находящееся под действием внешних сил, деформируется . Под деформацией понимаем изменение формы и размеров те­ла, связанное с перемещением отдельных точек и элементов тела. В сопротивлении материалов рассматриваются только такие пере­мещения.

Различают линейные и угловые перемещения отдельных точек и элементов тела. Этим перемещениям соответствуют линейные и уг­ловые деформации (относительное удлинение и относительный сдвиг).

Деформации делятся на упругие , исчезающие после снятия нагрузки, и остаточные .

Гипотезы о деформируемом теле. Упругие деформации обыч­но (во всяком случае, в конструкционных материалах, таких, как металлы, бетон, дерево и др.) незначительны, поэтому принимаются следующие упрощающие положения:

1. Принцип начальных размеров. В соответствии с ним принима­ется, что уравнения равновесия для деформируемого тела могут быть составлены без учета изменения формы и размеров тела, т.е. как для абсолютно твердого тела.

2. Принцип независимости действия сил. В соответствии с ним, если к телу приложена система сил (несколько сил), то действие каждой из них можно рассматривать независимо от действия остальных сил.

Напряжения

Под действием внешних сил в теле возникают внутренние силы, являющиеся распределенными по сечениям тела. Для определения меры внутренних сил в каждой точке вводится понятие напряжения . Напряжение определяется как внутренняя сила, приходящаяся на единицу площади сечения тела. Пусть упруго-деформированное тело находится в состоянии равновесия под действием некоторой системы внешних сил (рис.1). Через точку (например, k ), в которой хотим определить напряжение, мыс­ленно проводится произвольное сечение и отбрасывается часть тела (II) .Чтобы оставшаяся часть тела находилась в равновесии, взамен отброшенной части должны быть приложены внутренние силы. Взаимодействие двух частей тела происходит во всех точ­ках проведенного сечения, а потому внутренние силы действуют по всей площади сечения. В окрестности исследуемой точки выде­лим площадку . Равнодействующую внутренних сил на этой пло­щадке обозначим dF . Тогда напряжение в окрестности точки будет (по определению)

Н/м 2 .

Напряжение имеет размерность силы, деленной на площадь, Н/м 2 .

В данной точке тела напряжение имеет множество значений, в зависимости от направления сечений, которых через точку можно провести множество. Следовательно, говоря о напряжении, необходимо указать сечение.

В общем случае напряжение направлено под некоторым углом к сечению. Это полное напряжение можно разложить на две составляющие:

1. Перпендикулярную плоскости сечения – нормальное напряжение s .

2. Лежащую в плоскости сечения – касательное напряжение t .

Определение напряжений. Задача решается в три этапа.

1. Через рассматриваемую точку проводится сечение, в котором хотят определить напряжение. Одна часть тела отбрасывается и ее действие заменяется внутренними силами. Если все тело находится в равновесии, то и оставшаяся часть также должна нахо­диться в равновесии. Поэтому для сил, действующих на рассматриваемую часть тела, можно составить уравнения равновесия. В эти уравнения войдут как внешние, так и неизвестные внутренние си­лы (напряжения). Поэтому запишем их в виде

Первые слагаемые есть суммы проекций и суммы моментов всех внешних сил, действующих на оставшуюся после сечения часть те­ла, а вторые – суммы проекций и моментов всех внутренних сил, дейст­вующих в проведенном сечении. Как уже отмечено, в эти уравне­ния входят неизвестные внутренние силы (напряжения). Однако для их определения уравнений статики недостаточно , так как в противном случае пропадает разница между абсолютно твердым и деформируемым телом. Таким образом, задача определения напряжений является статически неопределимой .

2. Для составления дополнительных уравнений рассматриваются перемещения и деформации тела, в результате чего получают закон распределения напряжений по сечению.

3. Решая совместно уравнения статики и уравнения деформа­ций можно определить напряжения.

Силовые факторы. Условимся суммы проекций и суммы моментов внешних или внутренних сил называть силовыми факторами . Следовательно, силовые факторы в рассматриваемом сечении определяются как суммы проекций и суммы моментов всех внешних сил, расположенных по одну сторону этого сечения. Точно так же силовые факторы можно определить и по внутренним силам, действующим в рассматриваемом сечении. Силовые факторы, определенные по внешним и внутренним силам равны по величине и противоположны по знаку. Обычно в задачах бывают известны внешние силы, через которые и определяются силовые факторы, а по ним уже определяются напряжения.

Модель деформируемого тела

В сопротивлении материалов рассматривается модель деформируемого тела. Предполагается, что тело является деформируемым, сплошным и изотропным. В соп­ротивлении материалов рассматриваются преимущественно тела, имеющие форму стержней (иногда пластин и оболочек). Это объясняется тем, что во многих практических задачах схема конст­рукции приводится к прямолинейному стержню или к системе та­ких стержней (фермы, рамы).

Основные виды деформированного состояния стержней. Стержень (брус) – тело, у которого два размера малы по срав­нению с третьим (рис.15).

Рассмотрим стержень, находящийся в равновесии под действием приложенных к нему сил, как угодно расположенных в пространстве (рис.16).

Проводим сечение 1-1 и отбрасываем одну часть стержня. Рассмотрим равновесие оставшейся части. Воспользуемся пря­моугольной системой координат, за начало которой примем центр тяжести поперечного сечения. Ось X направим вдоль стержня в сторону внешней нормали к сечению, оси Y и Z – главные центральные оси сечения. Используя уравнения статики найдем силовые факторы

три силы

три момента или три пары сил

Таким образом, в общем случае в поперечном сечении стержня возникают шесть силовых факторов. В зависимости от характера внешних сил, действующих на стержень, возможны различные виды деформации стержня. Основными видами деформаций стержня яв­ляются растяжение , сжатие , сдвиг , кручение , изгиб . Соответственно им простейшие схемы нагружения выглядят следующим образом.

Растяжение-сжатие. Силы приложены вдоль оси стержня. Отбросив правую часть стержня, выделим силовые факторы по левым внешним силам (рис.17)

Имеем один ненулевой фактор – продольную силу F .

Строим диаграмму силовых факторов (эпюру).

Кручение стержня. В плоскостях торцевых сечений стерж­ня приложены две равные и противоположные пары сил с моментом М кр , называемым крутящим моментом (рис.18).

Как видно, в поперечном сечении скручиваемого стержня действует только один силовой фактор – момент Т = F h .

Поперечный изгиб. Он вызывается силами (сосредоточен­ными и распределенными), перпендикулярными оси балки и расположенными в плоскости, проходящей через ось балки, а также парами сил, действующими в одной из главных плоскостей стержня.

Балки имеют опоры, т.е. являются несвободными телами, типичной опорой является шарнирно-подвижная опора (рис.19).

Иногда используется балка с одним заделанным и другим свободным концом – консольная балка (рис.20).

Рассмотрим определение силовых факторов на примере рис.21a. Сначала необходимо найти реакции опор R A и .

Монография представляет собой объединение элементов теории нелинейной упругости, теории пластичности, теории ползучести и теории повреждаемости вследствие ползучести. При изложении материала акцент делается на учет и адекватное описание зависимости деформационных характеристик изотропных и анизотропных тел от вида нагружения, a также на численно-аналитические методы решения начально-краевых задач. Приведено большое число тестовых примеров, результатов экспериментов, задач и компьютерных алгоритмов. Для инженерно-технических и научных работников, а также студентов университетов.

Диаграммы деформирования при растяжении и сжатии.
Перейдем к более подробному анализу закономерностей деформирования материалов. Для этого рассмотрим диаграммы деформирования, полученные при мгновенном нагружении в условиях одноосного растяжения и одноосного сжатия. «Мгновенность» нагружения необходимо понимать в том смысле, что для рассматриваемых механических свойств материалов можно пренебречь зависимостью деформационных характеристик от времени. Другими словами, не учитываются эффекты ползучести, а материалы принимаются находящимися в упругом или упругопластическом состоянии. Отметим также, что все подробности, относящиеся к методике проведения одноосных экспериментов при растяжении и сжатии, включая выбор образцов и скоростей нагружения, описание средств испытаний и т.п., можно найти в многочисленной литературе.

Диаграммы деформирования различных материалов не совпадают при одноосном растяжении и одноосном сжатии, что свидетельствует о разносопротивляемости материалов растяжению-сжатию. По-видимому, впервые на возможность неодинакового деформирования материалов в условиях растяжения и сжатия обратил внимание И. Ходкинсон еще в 1839 г. . В серии экспериментов на чугуне он установил, что материал следует параболическому закону деформирования и неодинаково сопротивляется растяжению и сжатию. Однако в 19 веке основное внимание механики уделяли линейной теории упругости, и у И. Ходкинсона нашлось мало последователей. Исследование в этом направлении проводили лишь Сен-Венан (1864), Э. Винклер (1878), А. Кеннеди (1887), X. Бир (1892), Э. Хартиг (1893), Дж. Бах (1897), которые, подтвердив экспериментальные отклонения от линейности на диаграммах при растяжении и сжатии, предлагали различные аппроксимации связи деформации с напряжением в одноосном случае с учетом разносопротивляемости растяжению-сжатию.

ОГЛАВЛЕНИЕ
Предисловие
ЧАСТЬ 1. Механика изотропных и анизотропных тел с деформационными характеристиками, зависящими от вида нагружения
Введение
Глава 1. Состояние проблемы и основные цели первой части монографии
1.1. Зависимость деформационных характеристик от вида нагружения
1.2. Анализ определяющих уравнений нелинейного деформирования изотропных сред
1.3. Анализ физических зависимостей для анизотропных сред
1.4. Решение краевых задач для тел с характеристиками, зависящими от вида нагружения
1.5. Основные цели и задачи первой части монографии
Глава 2. Определяющие уравнения для изотропных сред с характеристиками, зависящими от вида нагружения
2.1. Обсуждение роли инвариантов напряжений в определяющих уравнениях на основе экспериментов при сложном напряженном состоянии
2.2. Построение определяющих уравнений
2.3. Конкретизация определяющих уравнений
2.4. Сравнение теоретических и экспериментальных результатов.
2.5. Выводы по второй главе
Глава 3. Определяющие уравнения для анизотропных сред, характеристики которых зависят от вида нагружения
3.1. Вывод определяющих уравнений
3.2. Конкретизация определяющих зависимостей
3.3. Сопоставление расчетных и экспериментальных результатов
3.4. Выводы по третьей главе
Глава 4. Нелинейное деформирование осесимметрично нагруженных тонких оболочек
4.1. Постановка и методика решения одномерных краевых задач для тонких оболочек
4.2. Нелинейно-упругое деформирование оболочек
4.3. Упругопластическое деформирование оболочек
4.4. Нелинейно-упругое деформирование оболочек с учетом усадки
4.5. Ползучесть оболочек
4.6. Нелинейное деформирование составных оболочечных конструкций
4.7. Выводы по четвертой главе
Глава 5. Нелинейные задачи теории тонких оболочек при неосесимметричном нагружении
5.1. Постановка и методика решения двумерных краевых задач.
5.2. Нелинейно-упругое деформирование неосесимметрично нагруженных оболочек
5.3. Ползучесть неосесимметрично нагруженных оболочек
5.4. Выводы но пятой главе
Глава 6. Нелинейное деформирование прямоугольных в плане пространственных тел
6.1. Постановка и методика решения трехмерных краевых задач
6.2. Нелинейно-упругое деформирование прямоугольных в плане тел
6.3. Ползучесть прямоугольных в плане тел
6.4. Выводы по шестой главе
Глава 7. Нелинейное деформирование толстостенных цилиндров
7.1. Постановка и методика решения двумерных краевых задач
7.2. Упругопластическое деформирование цилиндрических тел
7.3. Ползучесть толстостенных цилиндров
7.4. Выводы по седьмой главе
Заключение
Литература
ЧАСТЬ 2. Ползучесть пластинчатых элементов конструкций сложной формы
Введение
Глава 1. Модели ползучести материлов, общая постановка и методы решения задач ползучести пластин
1.1. Модели ползучести, повреждаемости и разрушения
1.2. Основные соотношения
1.3. Определяющие уравнения ползучести
1.4. Методы исследования ползучести пластин
1.5. Краевая задача и структура ее решения
1.6. Выводы по первой главе
Глава 2. Разработка структурного метода для решения задач ползучести пластин
2.1. Вариационная постановка задачи ползучести на основе функционала Сандерса, Мак-Комба и Шлехте
2.2. Вариационная постановка задачи ползучести на основе функционала в форме Лагранжа
2.3. Метод решения начально-краевых задач ползучести пластин
2.4. Развитие конструктивных средств теории R-функций для решения задач ползучести пластин
2.5. Выводы по второй главе
Глава 3. Исследование ползучести пластин сложной формы
3.1. Алгоритм расчета и краткая характеристика программного комплекса
3.2. Решение тестовых задач и анализ достоверности результатов
3.3. Ползучесть пластин сложной формы, нагруженных силами в плоскости
3.4. Изгиб пластин сложной формы при ползучести
3.5. Решение задач изгиба пластин со смешанными условиями закрепления
3.6. Расчеты на ползучесть плоских днищ и трубных досок высокотемпературных установок
3.7. Выводы по третьей главе
Заключение
Литература
ЧАСТЬ 3. Ползучесть и повреждаемость тел сложной формы из материалов с характеристиками, зависящими от вида нагружения
Введение
Глава 1. Анализ современного состояния теории определяющих соотношений для повреждающихся сред и методов решения начально-краевых задач ползучести
1.1. Механика континуальной поврежденности. Классификация основных видов повреждаемости
1.2. Ползучесть и повреждаемость вследствие ползучести в базовых экспериментах
1.3. Ползучесть и повреждаемость вследствие ползучести при сложном напряженном состоянии
1.4. Обзор методов решения начально-краевых задач ползучести и повреждаемости
1.5. Выводы по первой главе
Глава 2. Построение и обоснование определяющих соотношений теории ползучести для повреждающихся материалов с характеристиками, зависящими от вида нагружения
2.1. Термодинамические основы моделирования процессов деформирования твердых тел. Потенциал ползучести
2.2. Построение определяющих уравнений ползучести для повреждающихся материалов с характеристиками, зависящими от вида нагружения
2.3. Базовые эксперименты
2.4. Частные случаи определяющих соотношений
2.5. Первая стадия ползучести
2.6. Вторая стадия ползучести
2.7. Третья стадия ползучести
2.8. Выводы по второй главе
Глава 3. Разработка методики решения начально-краевых задач ползучести для тел произвольной формы из повреждающихся материалов с характеристиками, зависящими от вида нагружения
3.1. Вариационные принципы теории ползучести. Основные уравнения
3.2. Постановка начально-краевых задач ползучести
3.3. Разработка метода решения начально-краевых задач ползучести на базе методов R-функций и Рунге-Кутта-Мерсона
3.4. Структуры решения для трехмерных задач ползучести
3.5. Выводы по третьей главе
Глава 4. Плоские и осесимметричные задачи ползучести и повреждаемости вследствие ползучести
4.1. Основные соотношения обобщенного плоского напряженного состояния
4.2. Основные соотношения плоского деформированного состояния
4.3. Вариационная формулировка плоской задачи теории ползучести. Уравнения равновесия. Граничные условия
4.4. Задача Коши по времени для плоской задачи ползучести
4.5. Структуры решения для плоских задач теории ползучести
4.6. Основные соотношения осесимметричной задачи ползучести.
4.7. Вариационная постановка осесимметричной задачи ползучести. Граничные условия. Задача Коши по времени
4.8. Структуры решения для осесимметричных задач ползучести
4.9. Решение тестовых задач
4.10. Ползучесть пластин сложной формы из повреждающихся материалов с характеристиками, зависящими от вида нагружения
4.11. Ползучесть и повреждаемость осесимметрично нагруженного тела вращения сложной формы
4.12. Выводы по четвертой главе
Глава 5. Ползучесть и повреждаемость пологих оболочек и пластин сложной формы
5.1. Вариационная формулировка задач ползучести и повреждаемости пологих оболочек и пластин
5.2. Структуры решения для основных видов граничных условий. Задача Коши по времени
5.3. Численные исследования ползучести и повреждаемости пологих оболочек и пластин сложной формы
5.5. Выводы по пятой главе
Глава 6. Ползучесть и повреждаемость гибких пологих оболочек и пластин сложной формы
6.1. Математическая постановка задач ползучести и повреждаемости гибких пологих оболочек и пластин
6.2. Численные исследования влияния вида нагружения на ползучесть и повреждаемость гибких пологих оболочек и пластин
6.3. Выводы по шестой главе
Глава 7. Задачи ползучести и повреждаемости пологих оболочек средней толщины
7.1. Вариационная постановка задач ползучести пологих оболочек средней толщины
7.2. Структуры решения для основных типов граничных условий. Задача Коши по времени
7.3. Численные исследования ползучести и повреждаемости пологих оболочек и пластин средней толщины
7.4. Численные исследования ползучести и повреждаемости пластин средней толщины из материала с характеристиками, зависящими от вида нагружения
7.5. Выводы по седьмой главе
Заключение
Литература
Оглавление.