Понятие гетероскедастичности остатков в регрессионной модели. Обнаружение гетероскедастичности. Тест ранговой корреляции Спирмена

Уравнение парной регрессии .

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Система нормальных уравнений.

a n + b∑x = ∑y

a∑x + b∑x 2 = ∑y x

Для наших данных система уравнений имеет вид

12a + 1042 b = 1709

1042 a + 91556 b = 149367

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 0.9, a = 64.21

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 0.9 x + 64.21

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов β i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров линейной регрессии построим расчетную таблицу (табл. 1)

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация .

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.9 x + 64.21

1.3. Коэффициент эластичности .

Коэффициент эластичности находится по формуле:

1.4. Ошибка аппроксимации .

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

1.5. Эмпирическое корреляционное отношение.

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах .

Индекс корреляции .

Для линейной регрессии индекс корреляции равен коэфииценту корреляции r xy = 0.79.

Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции :

1.6. Коэффициент детерминации.

Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R 2 = 0.79 2 = 0.62

Для оценки качества параметров линейной регрессии построим расчетную таблицу (табл. 2)

2. Оценка параметров уравнения регрессии.

2.1. Значимость коэффициента корреляции .

Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H 1 ≠ 0, надо вычислить наблюдаемое значение критерия

и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку t крит двусторонней критической области. Если t набл < t крит оснований отвергнуть нулевую гипотезу. Если |t набл | > t крит - нулевую гипотезу отвергают.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим t крит:

где m = 1 - количество объясняющих переменных.

2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал).

2.3. Анализ точности определения оценок коэффициентов регрессии.

Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 53.63 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

S y = 7.32 - стандартная ошибка оценки (стандартная ошибка регрессии).

S a - стандартное отклонение случайной величины a.

S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.

(a + bx p ± ε)

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 107

Индивидуальные доверительные интервалы для Y при данном значении X.

(a + bx i ± ε)

t крит (n-m-1;α/2) = (10;0.025) = 2.228

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.

1) t-статистика. Критерий Стьюдента.

t крит (n-m-1;α/2) = (10;0.025) = 2.228

Доверительный интервал для коэффициентов уравнения регрессии .

(b - t крит S b ; b + t крит S b)

(a - t крит S a ; a + t крит S a)

2) F-статистика. Критерий Фишера.

Табличное значение критерия со степенями свободы k 1 =1 и k 2 =10, F табл = 4.96

Назначение сервиса . С помощью сервиса в онлайн режиме можно найти:
  • параметры уравнения линейной регрессии y=a+bx , линейный коэффициент корреляции с проверкой его значимости;
  • тесноту связи с помощью показателей корреляции и детерминации, МНК-оценку, статическую надежность регрессионного моделирования с помощью F-критерия Фишера и с помощью t-критерия Стьюдента , доверительный интервал прогноза для уровня значимости α

Уравнение парной регрессии относится к уравнению регрессии первого порядка . Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии .

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте . Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования .
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели - определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

Где y – зависимая переменная (результативный признак); x – независимая, или объясняющая, переменная (признак-фактор). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина y складывается из двух слагаемых:

Где y – фактическое значение результативного признака; y x – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; ε – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.
Графически покажем регрессионную зависимость между выработкой продукции на одного работника и удельного веса рабочих высокой квалификации.


3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными. Выбор вида функциональной зависимости в уравнении регрессии называется параметризацией модели. Выбираем уравнение парной регрессии , т.е. на конечный результат y будет влиять только один фактор.
4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей. Выборка состоит из 10 предприятий отрасли.
5-й этап (идентификация модели) – оценивание неизвестных параметров модели по имеющимся статистическим данным.
Чтобы определить параметры модели, используем МНК - метод наименьших квадратов . Система нормальных уравнений будет выглядеть следующим образом:
a n + b∑x = ∑y
a∑x + b∑x 2 = ∑y x
Для расчета параметров регрессии построим расчетную таблицу (табл. 1).
x y x 2 y 2 x y
10 6 100 36 60
12 6 144 36 72
15 7 225 49 105
17 7 289 49 119
18 7 324 49 126
19 8 361 64 152
19 8 361 64 152
20 9 400 81 180
20 9 400 81 180
21 10 441 100 210
171 77 3045 609 1356

Данные берем из таблицы 1 (последняя строка), в итоге имеем:
10a + 171 b = 77
171 a + 3045 b = 1356
Эту СЛАУ решаем методом Крамера или методом обратной матрицы .
Получаем эмпирические коэффициенты регрессии: b = 0.3251, a = 2.1414
Эмпирическое уравнение регрессии имеет вид:
y = 0.3251 x + 2.1414
6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Анализ проводим с помощью







5 Модели с гетероскедастичными остатками Причиной непостоянства дисперсии эконометрической модели часто является ее зависимость от масштаба рассматриваемых явлений. В модель ошибка входит как аддитивное слагаемое. В то же время часто она имеет относительный характер и определяется по отношению к измеренному уровню рассматриваемых факторов.


7 Примеры моделей с гетероскедастичным случайным членом а)в)б) а) Дисперсия 2 растет по мере увеличения значений объясняющей переменной X б) Дисперсия 2 имеет наибольшие значения при средних значениях X, уменьшаясь по мере приближения к крайним значениям в) Дисперсия ошибки наибольшая при малых значениях X, быстро уменьшается и становится однородной по мере увеличения X




12 Источники гетероскедастичности – 2 Истинная гетероскедастичность возникает также и во временных рядах, когда зависимая переменная имеет большой интервал качественно неоднородных значений или высокий темп изменения (инфляция, технологические сдвиги, изменения в законодательстве, потребительские предпочтения и т.д.).






15 Последствия гетероскедастичности 1. Истинная гетероскедастичность не приводит к смещению оценок коэффициентов регрессии 2. Стандартные ошибки коэффициентов (вычисленные в предположении. гомоскедастичности) будут занижены. Это приведет к завышению t-статистик и даст неправильное (завышенное) представление о точности оценок.


16 Обнаружение гетероскедастичности Обнаружение гетероскедастичности в каждом конкретном случае – довольно сложная задача. Для знания необходимо знать распределение случайной величины Y/X=x i. На практике часто для каждого конкретного значения x i известно лишь одно y i, что не позволяет оценить дисперсию случайной величины Y/X=x i. Не существует какого-либо однозначного метода определения гетероскедастичности.






19 Тест ранговой корреляции Спирмена При использовании данного теста предполагается, что дисперсии отклонений остатков будут монотонно изменяться (увеличиваться или уменьшаться) с увеличением фактора пропорциональности Z. Поэтому значения e i и z i будут коррелированы (возможно, нелинейно!).








25 Тест Глейзера. Алгоритм применения 1. Строится уравнение регрессии: и вычисляются остатки. 2. Выбирается фактор пропорциональности Z и оценивают вспомогательное уравнение регрессии: Изменяя, строят несколько моделей: 3. Статистическая значимость коэффициента 1 в каждом случае означает наличие гетероскедастичности. 4. Если для нескольких моделей будет получена значимая оценка 1, то характер гетероскедастичности определяют по наиболее значимой из них.


26 Тесты Парка и Глейзера. Выводы Отметим, что как в тесте Парка, так и в тесте Глейзера для отклонений i может нарушаться условие гомоскедастичности. Однако, во многих случаях используемые в тестах модели являются достаточно хорошими для определения гетероскедастичности.




28 Тест Голдфелда-Квандта. Алгоритм применения 1. Выделяют фактор пропорциональности Z = X k. Данные упорядочиваются в порядке возрастания величины Z. 2. Отбрасывают среднюю треть упорядоченных наблюдений. Для первой и последней третей строятся две отдельные регрессии, используя ту же спецификацию модели регрессии. 3. Количество наблюдений в этих подвыборках должно быть одинаково. Обозначим его l.


29 Тест Голдфелда-Квандта. Алгоритм применения 4. Берутся суммы квадратов остатков для регрессий по первой трети RSS 1 и последней трети RSS 3. Рассчитывают их отношение: 5. Используем F-тест для проверки гомоскедастичности. Если статистика GQ удовлетворяет неравенству то гипотеза гомоскедастичности остатков отвергается на уровне значимости.






33 Тест Уайта. Алгоритм применения (на примере трех переменных) 3. Определяют из вспомогательного уравнения тестовую статистику 4. Проверяют общую значимость уравнения с помощью критерия 2. Если то гипотеза гомоскедастичности отвергается. Число степеней свободы k равно числу объясняющих Переменных вспомогательного уравнения. В частности, Для рассматриваемого случая k = 9.



36


37 Тест Бреуша-Пагана. Алгоритм применения 4. Для вспомогательного уравнения регрессии определяют объясненную часть вариации RSS. 5. Находим тестовую статистику: 6. Если верна гипотеза H 0: гомоскедастичность остатков, то статистика BP имеет распределение. Т.е. о наличии гетероскедастичности остатков на уровне значимости свидетельствует:




40 Обобщенный метод наименьших квадратов При нарушении гомоскедастичности и наличии автокорреляции остатков рекомендуется вместо традиционного МНК использовать обобщенный МНК. Его для случая устранения гетероскедастичности часто называют методом взвешенных наименьших квадратов. Основан на делении каждого наблюдаемого значения на соответствующее ему стандартное отклонение остатков. Метод применим, если известны дисперсии для каждого наблюдения.


41 Метод взвешенных наименьших квадратов. Случай парной регрессии Получили уравнение регрессии без свободного члена, но с дополнительной объясняющей переменной Z и с «преобразованным» остатком. Можно показать, что для него выполняются предпосылки 1 0 – 5 0 МНК.


42 Метод взвешенных наименьших квадратов. Случай парной регрессии На практике, значения дисперсии остатков, как правило, не известны. Для применения метода ВНК необходимо сделать реалистичные предположения об этих значениях. Например: Дисперсии пропорциональны X i: Дисперсии пропорциональны X i 2:



Лекция 5. Гетероскедастичность и автокорреляция регрессионных остатков

Литература:

    Эконометрика: учебник / И.И. Елисеева, С.В. Курышева, Т.В. Костеева и др.; под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006.

    Бородич С.А. Эконометрика: учебное пособие. – Минск: ООО «Новое знание», 2005 – 408с.

    Еремеева Н.С., Лебедева Т.В. Эконометрика: учебн. Пособие для вузов. – Оренбург: ОАО «ИПК «Южный Урал», 2010. – 296 с.

    Кремер Н.Ш. Эконометрика: учебник (Н.Ш. Кремер, Б.А. Путко). – М.: ЮНИТИ-ДАНА, 2006 – 311с.

1. Гетероскедастичность. Тесты на гетероскедастичность

2. Автокорреляция регрессионных остатков. Методы выявления

3. Обобщенный метод наименьших квадратов для смягчения гетероскедастичности и устранения автокорреляции

Для получения качественных оценок параметров уравнения регрессии необходимо следить за выполнимостью предпосылок МНК. Применяя МНК мы предполагаем, что остатки ε i подчиняются условиям Гаусса-Маркова, данное предположение необходимо проверить, после построения уравнения регрессии.

1. Гетероскедастичность. Тесты на гетероскедастичность

Допущение о постоянстве дисперсии остатков известно какдопущение о гомоскедастичности. Если это допущение нарушено и дисперсия остатков не является постоянной, то говорят, что оценки гетероскедастичны.

На практике, для каждого i-го наблюдения определяется единственное значение ε i , но мы говорим об определении дисперсии остатков, т.е. о множестве ε i для каждого i-го наблюдения. Это объясняется тем, что мы имеем дело с выборочной совокупностью, а априори ε i могли принимать любые значения на основе некоторых вероятностных распределений.

Гетероскедастичность приводит к тому, что коэффициенты регрессии не являются оценками с минимальной дисперсией, следовательно, они больше не являются наиболее эффективными коэффициентами. Вследствие, выводы, получаемые на основе t и F-статистик, а также интервальные оценки будут ненадежными. Дисперсии и, следовательно, стандартные ошибки этих коэффициентов будут смещенными. Если смещение отрицательно, то оценочные стандартные ошибки будут меньше, чем они должны быть, а критерий проверки - больше чем в реальности. Таким образом, можно сделать вывод, что коэффициент значим, когда он таковым не является. И наоборот если смещение положительно, то оценочные ошибки будут больше чем они должны быть, а критерии проверки - меньше. Значит, возможно ошибочное принятие нулевой гипотезы.

Обнаружение гетероскедастичности

Существует несколько формальных тестов, позволяющих обнаружить гетероскедастичность (графический анализ остатков, тест ранговой корреляции Спирмена, тест Парка, тест Голфелда-Квандта, тест Уайта).

Графический анализ остатков

Использование графического представления отклонений позволяет определиться с наличием гетероскедастичности. В этом случае по оси абсцисс откладываются значения x i объясняющей переменной X (либо линейной комбинации объясняющих переменных

а по оси ординат либо отклонения ε i либо их квадраты , i = 1, 2, ..., п . Если все отклонения находятся внутри полуполосы постоянной ширины, параллельной оси абсцисс, это говорит о независимости дисперсий от значений переменной X и их постоянстве, т.е. в этом случае выполняются условия гомоскедастичности. Графический анализ отклонений является удобным и достаточно надежным в случае парной регрессии.

Обычно не ограничиваются визуальной проверкой гетероскедастичности, а проводят ее эмпирическое подтверждение.

Постоянство дисперсии случайных остатков называют гомоскедастичностью случайных остатков. Напротив, если эта дисперсия не постоянна, то такое явление называют гетероскедастичностью случайных остатков.

Проверка выполнения требования гомоскедастичности случайных остатков может быть произведена визуально, на основе графика остатков, или с помощью специальных критериев.

Для проведения визуального анализа необходимо построить график зависимости величин случайных остатков от выровненного значения результирующей переменной. В случае гомоскедастичности "облако" случайных остатков находится в области, параллельной оси абсцисс (рис. 2.2, а). Все прочие случаи соответствуют гетероскедастичности случайных остатков (например, как на рис. 2.2, б). Аналогичные графики можно построить также для зависимости случайных остатков от значений конкретных независимых переменных, входящих в регрессию.

К тестам, позволяющим выявить наличие гетероскедастичности случайных остатков, относят тесты Гольдфельда – Квандта, Парка, Глейзера, Уайта, Бреуша – Пагана, ранговой корреляции Спирмена и т.д.

Тест Гольдфельда Квандта применяется, если случайные остатки предполагаются нормально распределенными величинами и объем наблюдений достаточно большой. Процедура проверки следующая.

  • 1. Все наблюдения упорядочивают по мере возрастания какой-либо независимой переменной, которая, как предполагается, оказывает влияние на изменение дисперсии случайных остатков.
  • 2. Упорядоченную совокупность делят на три группы, причем первая и последняя должны быть равного объема, с числом наблюдений, больших, чем число параметров модели регрессии. Пусть в первую и третью группы отобрано по к наблюдений.
  • 3. По первой и третьей группам находят параметры уравнений регрессии той же структуры, что и исходное уравнение регрессии, и остаточные суммы квадратов по каждой модели.
  • 4. Используя данные об остаточных суммах квадратов моделей первой и третьей групп, рассчитывают фактическое значение F-критерия Фишера по формуле

Рис. 2.2.

а – нет зависимости (гомоскедастичность); б – дисперсия остатков увеличивается с увеличением выровненного значения результата (один из случаев гетероскедастичности)

где – большая остаточная сумма квадратов; – меньшая остаточная сумма квадратов.

5. Сравнивают фактическое значение F-критерия с табличным, найденным для df l=df 2 = k-m- 1 степеней свободы. Если F-фактическое больше табличного, то гипотеза об отсутствии гетероскедастичности отклоняется.

Тесты Парка, Глейзера, Уайта и Бреуша – Пагана основываются на предположении, чт.д.сперсия случайных остатков представляет собой определенную функцию от некоторой независимой переменной (или переменных). Перед применением этих тестов по уравнению регрессии необходимо рассчитать случайные остатки е,.

Для теста Парка строят зависимость вида

(2.72)

где Χμ – і-e значение j-й независимой переменной, оказывающей влияние на дисперсию остатков; vf – случайный остаток.

По тесту Глейзера находят параметры целой серии уравнений, задаваемых функцией

(2.73)

где к – какое-либо число, например к – -1; -0,5; 0,5; 1 и т.п.

Тест Уайта заключается в построении квадратичной функции, включающей все независимые переменные, входящие в исходную модель, а также их попарные произведения. Включение попарных произведений независимых переменных является необязательным, их можно опустить. Для случая с двумя переменными эта функция будет иметь вид

где α, γ – неизвестные параметры.

Тест Бреуша Пагана предполагает исследование влияния на дисперсию остатков нескольких независимых переменных, которые включают в регрессию вида

где – i-е значения_/-й, (j + 1)-й,...(/ + к)-й независимых переменных, оказывающих влияние на дисперсию остатков; – оценка дисперсии случайных остатков, рассчитанная по формуле

Остатки считаются гетероскедастичными, если параметр а. в функциях по тесту Парка (2.72) или тесту Глейзера (2.73) значим (для теста Глейзера – хотя бы при одном значении к). При проверке по тесту Уайта говорят, что остатки гетероскедастичны, если вся функция (2.74) значима noF-критерию Фишера.

Проверка гетероскедастичности по тесту Бреуша – Пагана заключается в расчете по функции (2.75) факторной суммы квадратов

которое сравнивается с табличным (число степеней свободы равно df = к + 1, т.е. числу независимых переменных в модели (2.75); уровень значимости равен а. Нулевая гипотеза о гомоскедастичности случайных остатков отвергается, если

Тест ранговой корреляции Спирмена, так же как и ранее рассмотренные тесты, основывается на предположении о зависимости (прямой или обратной) величины дисперсии случайных остатков от значений какой-либо независимой переменной. Для проведения проверки по этому тесту значения случайных остатков, взятые по модулю, и значения этой переменной ранжируют (например, по возрастанию), а затем находят коэффициент корреляции рангов Спирмена

где dj – разность между рангами і-го случайного остатка и і-го значения независимой переменной.

Полученное значение коэффициента корреляции проверяют на значимость, рассчитывая фактическое значение t-критерия Стьюдента (2.76) и сравнивая его с табличным значением при числе степеней свободы df=n- 2.

Если фактическое значение критерия больше табличного, то гипотеза о гомоскедастичности остатков отклоняется.

Проверим на гетероскедастичность модель регрессии из нашего примера:

Рассчитаем случайные остатки е для этой модели (табл. 2.5).

Таблица 2.5. Расчет случайных остатков для модели регрессии поступления налогов от количества занятых, объема отгрузки в обрабатывающих производствах и производства энергии

График зависимости случайных остатков от выровненного значения зависимой переменной имеет вид, представленный на рис. 2.3. Можно отметить определенное увеличение разброса точек в центральной части графика и уменьшение разброса для последних нескольких точек. Такая картина может свидетельствовать о наличии гетероскедастичности остатков.

Применим для анализа дисперсии остатков рассмотренные выше тесты. Так как большинство тестов основано на гипотезе, что известна переменная, вызывающая гетероскедастичность остатков, обратимся сначала к тесту Уайта, в котором рассматриваются все независимые переменные, входящие в модель регрессии.

Используем короткую форму теста Уайта, без включения попарных произведений независимых переменных. Получим следующий результат:

Рис. 2.3.

Табличное значение F-критерия равно 2,33 (а = 0,05; d/j = = 6; d/2 = 41). Таким образом, по тесту Уайта нет оснований отвергнуть нулевую гипотезу о гомоскедастичности остатков. Отметим также, что все параметры незначимы, но наибольшее значение ί-критерия (и достаточно близкое к табличному) имеют параметры при переменной х3 (табличное значение t-критерия составило 2,02 (а = 0,05; d/ = 41)). Таким образом, переменная х3 может быть рассмотрена в других тестах как возможная причина гетероскедастичности.

Тест Бреуша – Пагана позволяет рассматривать различные комбинации переменных в качестве объясняющих гетероскедастичность остатков. Уравнение теста, включающее в себя все три независимые переменные, будет иметь вид

Табличное значение критерия χ2 равно 7,82 (а = 0,05; df = = 3), таким образом, нет оснований отвергнуть нулевую гипотезу о гомоскедастичности случайных остатков. Руководствуясь предположениями, сделанными в ходе анализа теста Уайта, проведем тест Бреуша – Пагана применительно только к переменной х3. Получим следующие результаты:

Табличное значение критерия χ2 в данном случае равно 3,84 = 0,05; df= 1), таким образом, мы отвергаем нулевую гипотезу о гомоскедастичности случайных остатков. Остатки гетероскедастичны по переменной х3. Анализ по тесту Бреуша – Пагана при необходимости можно продолжить, исследуя влияние на дисперсию случайных остатков других независимых переменных. Опираясь на выявленное влияние на дисперсию остатков переменной х3, проверим эту связь с помощью других тестов.

Использование критерия Гольдфельда – Квандта предполагает упорядочивание данных, в нашем случае по переменной х3.

Общий объем наблюдений составляет 48 регионов, т.е. их можно разделить на три равные группы по 16 наблюдений в каждой или по 18 наблюдений в первой и третьей группах и 12 наблюдений во второй. Так как критерий Гольдфельда – Квандта предполагает построение уравнений регрессии той же структуры, что и исходное уравнение, остановимся на втором варианте деления совокупности как обеспечивающим большую достоверность регрессионного анализа (18 наблюдений на три коэффициента регрессии, т.е. по шесть наблюдений на каждый коэффициент).

Для первой и третьей совокупностей наблюдений найдем параметры уравнений множественной регрессии вида и рассчитаем случайные остатки по каждому из них. Получим следующие результаты.

Первая группа (минимальные значения х3):

Третья группа (максимальные значения х3):

Разделим большую остаточную сумму квадратов (по третьей группе) на меньшую (по первой группе): = 18,58. Табличное значение F-критерия равно 2,48 при df t = df 2= = 18 – 4 = 14 степенях свободы и уровне значимости 0,05. Следовательно, дисперсия остатков зависит от величины значений переменной х3, гипотеза о гомоскедастичности остатков отвергается.

Расчеты по тестам Парка и Глейзера по переменной х3 приводят к следующим результатам.

Тест Парка:

Тест Глейзера:

Табличное значение критерия Стьюдента равно 2,0129 (а = 0,05; df = 46). Таким образом, по тесту Глейзера при k = 1 и 0,5 гипотеза о гомоскедастичности остатков отвергается, по тесту Парка – нет оснований отвергнуть нулевую гипотезу.

Оценка гетероскедастичности остатков по переменной х3 с использованием коэффициента ранговой корреляции Спирмена привела к следующему результату:

То есть коэффициент ранговой корреляции незначим (табличное значение критерия Стьюдента, так же как в тестах Глейзера и Парка, равно 2,0129), нет оснований отвергнуть нулевую гипотезу о гомоскедастичности остатков.

Подводя итоги выявления гетероскедастичности в нашем примере, отметим, что по ряду тестов (Бреуша – Пагана, Гольдфельда – Квандта, Глейзера) гипотеза о гомоскедастичности остатков была отвергнута, т.е. можно утверждать, что на дисперсию случайных остатков оказывает влияние переменная х3. То, что гетероскедастичность была выявлена не во всех тестах, связано с тем, что разные тесты опираются на разные предпосылки о форме связи величины случайных остатков и независимой переменной. Исследование по тесту Глейзера показывает, что эта форма может быть описана выражением σ ε = Дх3), где / – линейная функция.

Причинами гетероскедастичности случайных остатков могут быть неверная функциональная форма уравнения регрессии (неверная спецификация модели), неоднородность исследуемой совокупности. Соответственно способами устранения гетероскедастичности являются построение модели иной функциональной формы и(или) разбиение совокупности на однородные группы. Если по каким-то причинам это сделать невозможно или нежелательно, т.д.я нахождения параметров уравнения регрессии можно воспользоваться обобщенным методом наименьших квадратов.