Если газ сжимают то при упругих соударениях. Работа в термодинамике определение

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1). Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \Delta l = pS \Delta l = p \Delta V, \qquad (1)\)

где ΔV - изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Сила давления газа выполняет работу только в процессе изменения объема газа .

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0), положительную работу совершают внешние силы А’ = -А > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~pV_1 = \frac mM RT_1 ; pV_2 = \frac mM RT_2 \Rightarrow\) \(~p(V_2 - V_1) = \frac mM R(T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \frac mM R \Delta T .\)

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A . Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

На графике p = f (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \Delta V_i\), или \(~A = \int p(V) dV,\)

т.е. будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p (V ).

Таким образом, газ при расширении совершает работу. Приборы и агрегаты, действия которых основаны на свойстве газа в процессе расширения совершать работу, называются пневматическими . На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и др.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 155-156.

Внутренняя энергия газа при переходе его из одного состояния в другое изменяется. Рассмотрим, как это изменение связано с работой внешних сил над газом или газа против внешних сил. Для этого рассмотрим цилиндр с подвижным поршнем. На произвольном малом участке при движении поршня изменяется объем газа и совершается работа, равная произведению силы, действующей на поршень со стороны газа, находящегося внутри цилиндра, на перемещение поршня под действием этой силы: ΔА i = F i Δx .Работа положительна, если направление силы и перемещения совпадают и отрицательна, если они противоположны. Из этого следует, что при сжатии газа положительна работа внешних сил, а при расширении положительную работу совершает газ.Для вычисления работы, совершаемой газом при изменении его объема, в определяющем уравнении работы можно заменить силу, действующую на поршень в цилиндре, через произведение давления газа на площадь поршня. Получаем, что работа в термодинамике определяется произведением давления газа на изменение его объема:

ΔA i = p i S Δx = p i ΔV .

Термодинамическая работа - способ передачи энергии, связанный с изменением внешних параметров системы.

Механическая работа определяется как:

δA =(F dr −→), где F → - сила, а dr −→ - элементарное (бесконечно малое) перемещение.Элементарная работа термодинамической системы над внешней средой может быть вычислена так:

δA =(F dr −→)=P (ds −→dr −→)=PdV , где ds −→ - нормаль элементарной (бесконечно малой) площадки, P - давление и dV - бесконечно малое приращение объёма. Работа в термодинамическом процессе 1→2, таким образом, выражается так: A =∫12PdV .

Величина работы зависит от пути, по которому термодинамическая система переходит из состояния 1 в состояние 2, и не является функцией состояния системы. Это легко доказать, если учесть, что геометрический смысл определённого интеграла - площадь под графиком кривой. Так как работа определяется через интеграл, то в зависимости от пути процесса площадь под кривой, а значит, и работа, будет различна. Такие величины называют функциями процесса.Несмотря на то, что до сих пор и в физической химии используется обозначение работы A , в соответствии с рекомендациями ИЮПАК работу в химической термодинамике следует обозначать как W . Впрочем, авторы могут использовать какие угодно обозначения, если только дадут им расшифровку.

Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой . Теплота - это одна из основных термодинамических величин в классической феноменологическойтермодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.Для изменения внутренней энергии системы посредством теплообмена также необходимо совершить работу. Однако это не макроскопическая работа, которая связана с перемещением границы системы. На микроскопическом уровне эта работа складывается из работ сил, действующих на молекулы системы на границе контакта более нагретого тела с менее нагретым, то есть энергия передаётся посредством столкновений молекул. Поэтому с точки зрения молекулярно-кинетической теории различие между работой и теплотой проявляется только в том, что совершение механической работы требует упорядоченного движения молекул на макроскопических масштабах, а передача энергии от более нагретого тела менее нагретому этого не требует.Энергия может также передаваться излучением от одного тела к другому и без их непосредственного контакта.Количество теплоты не является функцией состояния, и количество теплоты, полученное системой в каком-либо процессе, зависит от способа, которым она была переведена из начального состояния в конечное.Единица измерения в Международной системе единиц (СИ) - джоуль. Как единица измерения теплоты используется также калория. В Российской Федерации калория допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «промышленность» .



Определение

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как ΔQ = A + ΔU . Здесь ΔU - изменение внутренней энергии системы, ΔQ - количество теплоты, переданное системе, а A - работа, совершённая системой. Однако определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота - это энергия переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного закона и превращается в бесполезное для расчётов определение количества теплоты.Пусть в системе, состоящей из двух тел X и Y , тело Y (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X . Предположим, что тело X также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь сY . Количеством теплоты , переданным телу X в некотором процессе, называется величина Q X = −ΔU Y , где ΔU Y - изменение внутренней энергии тела Y . Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A = −ΔU x ΔU y , где A - макроскопическая работа, совершенная телом X , что позволяет записать это соотношение в форме первого начала термодинамики: ΔQ = A +ΔU x .Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо.

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца . Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению кинетической энергии тела.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В результате меняется объем тела, а его скорость остается равной нулю. Следовательно, работа в термодинамике, определяемая так же, как и в механике, равна изменению не кинетической энергии тела, а его внутренней энергии.

Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении меняется внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры в процессе сжатия газа состоит в следующем: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется . При движении навстречу молекулам поршень передает им во время столкновений часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара.

Если газ, напротив, расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист, для того чтобы уменьшить скорость летящего мяча или остановить его; нога футболиста движется от мяча, как бы уступая ему дорогу.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 39). Проще всего вначале вычислить не работу силы F, действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой F". Согласно третьему закону Ньютона F" = –F.

Модуль силы, действующей со стороны газа на поршень, равен: F" = pS, где p – давление газа, а S – площадь поршня. Пусть газ расширяется и поршень смещается в направлении силы F" на малое расстояние ∆h = h 2 – h 1 . Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

A" = F"∆h = pS(h 2 – h 1) = p(Sh 2 – Sh 1). (4.2)

Эту работу можно выразить через изменение объема газа. Начальный объем V 1 = Sh 1 , а конечный V 2 = Sh 2 . Поэтому

A" = p(V 2 – V 1) = p∆V, (4.3)

где ∆V = V 2 – V 1 - изменение объема газа.

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают. В процессе расширения газ передает энергию окружающим телам.

Если газ сжимается, то формула (4.3) для работы газа остается справедливой. Но теперь V 2 1 и поэтому A"

Работа A, совершаемая внешними телами над газом, отличается от работы газа A" только знаком: A = –A", так как сила F, действующая на газ, направлена против силы F", а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

A = –A" = –p∆V (4.4)

Знак минус указывает, что при сжатии газа, когда ∆V = V 2 – V 1 0: при сжатии газа направления силы и перемещения совпадают. Совершая над газом положительную работу, внешние тела передают ему энергию. При расширении газа, наоборот, работа внешних тел отрицательна (A 2 – V 1 > 0. Теперь направления силы и перемещения противоположны.

Выражения (4.3) и (4.4) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный (p = const), то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы. Работе A" газа для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 41) . Здесь площадь прямоугольника abcd, ограниченная графиком p 1 = const, осью V и отрезками ab и cd, равными давлению газа, численно равна работе (4.3).

В общем случае при произвольном изменении объема газа давление не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 42). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости p от V, осью V и отрезками ab и cd, равными давлениям p1, p2 в начальном и конечном состояниях.

1. От каких физических величин зависит внутренняя энергия тела? 2. Приведите примеры превращения механической энергии во внутреннюю и обратно в темнике и быту. 3. Чему равна внутренняя энергия идеального одноатомного газа? 4. Моль какого газа – водорода или гелия – имеет большую внутреннюю энергию при одинаковой температуре газов? 5. Почему газ при сжатии нагревается? 6. Чему равна работа, совершаемая внешними силами при сжатии и расширении тел?

В механике работа A связана с перемещением x тела как целого под действием силы F

В термодинамике рассматривается перемещение частей тела. Например, если газ, находящийся в цилиндре под поршнем, расширяется, то, перемещая поршень, он производит над ним работу. При этом объем газа изменяется (рис. 2.1).

Рассчитаем работу, совершаемую газом при изменениях его объема. Элементарная работа при перемещении поршня на величину dx равна

.

Сила связана с давлением соотношением

где S - площадь поршня.

Изменение объема равно

Таким образом

(2.5)

Полную работу A , совершаемую газом при изменениях его объема от V 1 до V 2 , найдем интегрированием формулы (2.5)

(2.6)

Выражение (2.6) справедливо при любых процессах

Вычислим работу при изопроцессах:

1) для изохорного процесса V 1 = V 2 = const, А = 0;
2) для изобарного процесса p = const, A = p(V 2 – V 1) = pΔV ;
3) для изотермического процесса T = const. Из уравнения (1.6) следует, что

.

Выражение (2.6) будет иметь вид

. (2.7)

2.3. Количество теплоты

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом.

Количество теплоты - это энергия, переданная телу в результате теплообмена. Для изменения температуры вещества массой m от Т 1 до Т 2 ему необходимо сообщить количество теплоты

Коэффициент с в этой формуле называют удельной теплоемкостью: [с]=1 Дж/(кг∙К).

При нагревании тела Q > 0, при охлаждении Q < 0.

2.4. Первое начало термодинамики. Применение для изопроцессов.

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, т.е. изменяются её макроскопические параметры. Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, то отсюда следует, что процессы теплообмена и совершения работы сопровождаются изменением внутренней энергии системы.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними телами.

«Физика - 10 класс»

В результате каких процессов может изменяться внутренняя энергия?
Как определяется работа в механике?


Работа в механике и термодинамике.


В механике работа определяется как произведение модуля силы, модуля перемещения точки её приложения и косинуса угла между векторами силы и перемещения. При действии силы на движущееся тело работа этой силы равна изменению его кинетической энергии.

Работа в термодинамике определяется так же, как и в механике, но она равна не изменению кинетической энергии тела, а изменению его внутренней энергии.


Изменение внутренней энергии при совершении работы.


Почему при сжатии или расширении тела меняется его внутренняя энергия? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры газа в процессе его сжатия состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия .

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Так, при движении навстречу молекулам газа поршень во время столкновений передаёт им часть своей механической энергии, в результате чего увеличивается внутренняя энергия газа и он нагревается. Поршень действует подобно футболисту, встречающему летящий на него мяч ударом ноги. Нога футболиста сообщает мячу скорость, значительно большую той, которой он обладал до удара.

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует и футболист, для того чтобы уменьшить скорость летящего мяча или остановить его, - нога футболиста движется от мяча, как бы уступая ему дорогу.

Вычислим работу силы , действующей на газ со стороны внешнего тела (поршня), в зависимости от изменения объёма на примере газа в цилиндре под поршнем (рис. 13.1), при этом давление газа поддерживается постоянным. Сначала вычислим работу, которую совершает сила давления газа, действуя на поршень с силой ". Если поршень поднимается медленно и равномерно, то, согласно третьему закону Ньютона, = ". В этом случае газ расширяется изобарно.

Модуль силы, действующей со стороны газа на поршень, равен F" = pS, где р - давление газа, а S - площадь поверхности поршня. При подъёме поршня на малое расстояние Δh = h 2 - h 1 работа газа равна:

А" = F"Δh = pS(h 2 - h 1) = p(Sh 2 - Sh 1). (13.2)

Начальный объём, занимаемый газом, V 1 = Sh 1 , а конечный V 2 = Sh 2 . Поэтому можно выразить работу газа через изменение объёма ΔV = (V 2 - V 1):

А" = p(V 2 - V 1) = pΔV > 0. (13.3)

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают.

Если газ сжимается, то формула (13.3) для работы газа остаётся справедливой. Но теперь V 2 < V 1 , и поэтому А < 0.

Работа А, совершаемая внешними телами над газом, отличается от работы А" самого газа только знаком:

А = -А" = -pΔV. (13.4)

При сжатии газа, когда ΔV = V 2 - V 1 < 0, работа внешней силы оказывается положительной. Так и должно быть: при сжатии газа направления силы и перемещения точки её приложения совпадают.

Если давление не поддерживать постоянным, то при расширении газ теряет энергию и передаёт её окружающим телам: поднимающемуся поршню, воздуху и т. д. Газ при этом охлаждается. При сжатии газа, наоборот, внешние тела передают ему энергию и газ нагревается.

Геометрическое истолкование работы. Работе А" газа для случая постоянного давления можно дать простое геометрическое истолкование.

При постоянном давлении график зависимости давления газа от занимаемого им объёма - прямая, параллельная оси абсцисс (рис. 13.2). Очевидно, что площадь прямоугольника abdc, ограниченная графиком рх = const, осью V и отрезками аb и cd равными давлению газа, численно равна работе, определяемой формулой (13.3):

А" = p1(V2 - V2) = |ab| |ас|.

В общем случае давление газа не остаётся неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объёму (рис. 13.3). В этом случае для вычисления работы нужно разделить общее изменение объёма на малые части и вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему численно равна площади фигуры, ограниченной графиком зависимости р от V, осью V и отрезками аb и cd, длина которых численно равна давлениям p 1 р 2 в начальном и конечном состояниях газа.