Базальные ганглии строение развитие функции. Базальные ганглии. Афферентные связи базальных ганглиев. Симптомы поражения базальных ганглиев. Виды нарушений и дисфункции ганглий

Тремя бороздами полушария делятся на переднюю(старый мозжечок), заднюю(наиболее молодое образование - Neo cerebellum) и блоково-модулярную зону(узелок и клочок - самые древние части мозжечка)

С точки зрения функциональной мозжечок принято делить на три части -

Первый - вестибулярный мозжечок (узелок, клочок и прилегающие частично к этим образованиям участки задней доли) К этим структурам подходят первичные сигналы от рецепторов вестибулярного аппарата, также вторичные чувствительные сигналы от ядер продолговатого мозга(вестибулярных ядер). Афферентные волокна подходят к ядру шатра, которое расположено в белом веществе шатра. Вестибулярный мозжечок контролирует положении глаз, положение тела и походку.

Второй функциональный отдел мозжечка - спинальный мозжечок . В него входит червь и прилегающие к червю участки передней и задней доли. Именно в этой зоне заканчиваются спиномозжечковые пути, которые передают информацию от проприо рецепторов о положении конечностей и мышечных сокращениях. Эта информация может поступать к мозжечку дискретно(или постоянно). Эта информация используется для регуляции движений туловища(проксимальных отделов конечностей)

Третий - боковые отделы полушарий мозжечка(корковый мозжечок ). Получает информацию от коры больших полушарий. Эти пути идут через ядра моста и средние ножки мозжечка. Участвует в регуляции дистальных отделов конечностей. Участвует в планировании последовательности движений и распределение фаз в движении во времени. Мозжечок принимает в развитии зрительных и слуховых феноменов. На основании этой деятельности человек может предсказать по изменении зрительных явлений, как он быстро приближается к чему-либо.

К мозжечку поступает информация от ядер нижних олив. И к нижним оливам подходят пути от вестибулярной системы, спинного мозга и коры больших полушарий. От нижних олив начинается афферентный оливоцеребеллярный тракт к мозжечку. Этот тракт перекрещивается по средней линии и вступает в мозжечок и волокна этого тракта принадлежат к так называемым лазящим волокнам. Лазящие волокна передают возбуждение на ядра мозжечка, а также активируют главные клетки коры мозжечка - клетки Пуркинье . Все другие афферентные пути к мозжечку состоят из мшистых волокон. Мшистые волокна оказывают возбуждающие влияние на ядра мозжечка и активируют зернистые клетки . В мозжечок афферентная информация поступает из:

Спинного мозга , от проприорецепторов мышц, сухожилий, суставов по вентральному и дорсальному спинно-мозжечковым путям. Второй источник - вестибулярные ядра . Третий - от коры больших полушарий поступает информация, которые содержат копии двигательных команд, которые кора посылает в спинной мозг для исполнения движений. Четвертый источник - ретикулярная формация из которой идет диффузная информация на нейроны коры мозжечка. Мозжечок также получает импульсы от зрительных, слуховых рецепторов, от верхних и нижних бугорков четверохолмия.

Эфферентные пути мозжечка начинаются от 4х его ядер - зубчатого, шаровидного, пробковидного и ядро Шатра. От ядер мозжечка импульс направляется к двигательным центрам - красное ядро, вестибулярное, ядра ретикулярной формации. А также от мозжечка эфферентные пути через вентролатеральный отдел зрительного бугра информация передается в двигательные и соматосенсорные зоны коры больших полушарий. Основными клетками, которые обеспечивают выходной сигнал из мозжечка - клетки Пуркинье - крупные тормозные нейроны. Все выходные сигналы носят тормозной характер. В коре мозжечка выделяют 5 типов клеток - клетки Пуркинье(очень развито дендритное дерево). Клеток Пуркинье - 15000000 в коре мозжечка, клетки Гольджи, корзинчатые, зернистые, звездчатые. Клетки вместе с их волокнами - кора мозжечка. Кора мозжечка составляет 10% от коры больших полушарий(по массе). А по площади кора мозжечка 75% коры больших полушарий - обусловлено многочисленными складками. Различают три слоя: поверхностный - молекулярный, средний- клеток Пуркинье, внутренний - зернистый.

В белом веществе находятся ядра мозжечка. К мозжечку идет информация по 2м типам волооко - по лазящим - клетки Пуркинье, Моховидным - клетки зерна. Зернистые клетки обладаю особенностью - их аксон уходит из зернистого в поверхностный слой, где он Т образно делится на параллельные волокна. Эти волокна от клеток зерен образуют возбуждающие синапсы на 4х клетках мозжечка. Они оказывают более слабое возбуждающие действие, нежели лазящие волокна на клетки Пуркинье. 4 этих типа клеток являются тормозными. Корзинчатые и звездчатые клетки тормозят клетки Пуркинье. Клетки Гольджи тормозят клетки зерна. В начале афферентные волокна возбуждают ядра мозжечка т.е. первый сигнал от ядер мозжечка будет возбуждающим, но позднее, когда будет возбуждаться клетка Пуркинье, она будет оказывать на ядра мозжечка уже тормозное действие. Вначале движения мозжечок усиливает двигательный сигнал.

Все наши движения - маятникообразные, во время движения появляется инерция. Когда мы стремимся достичь какой то цели рука «проходит» эту цель, дальше кора дает сигнал и все заново. Чтобы этого не было мозжечок вовремя включает и выключает мышцы антагонисты. В ходе влияния мозжечка достигается плавность. Клетки Пуркинье хранят информацию необходимую для координации движений. Импульс от стопы до коры доходит за 0,25 мс. Информация от проприорецепторов не дает реального состояния - она показывает скорость. Эта информация используется мозгом для планирования нового этапа движений. Происходит сложная работа для координации движений. Происходит планирование зрительного образа - кора на основе работы с мозжечком предугадывает что будет дальше.

Мозжечок - аппарат сравнения. Он получает информацию от проприорецепторов мышц и в нем хранятся команды для движения. В нем происходит анализ информации и команд. Мозжечок может внести коррекцию. В этом нам помогают обратные связи - от зрительных, слуховых анализаторов. Внести информацию можно только тогда, когда движения исполняются медленно. Быстры движения - бросок мяча в кольцо., на музыкальных инструментах. Высокоскоростные - баллистические движения. Речь - тоже баллистическое движение. Программа формируется при взаимодействия мозжечка, скорой больших полушарий в ходе обучения движения, а затем хранятся в мозжечке и кора при необходимости их совершения достает нужную информацию. Клетки Пуркинье обучаются. Когда они уже обучены - движения слажены.

При его поражении возникают различные симптоматики.

Удаление мозжечка. При поражении мозжечка - Стадия выпадения функции, стадия компенсации

  1. Атаксия - невозможность выполнить последовательность движений(пьяная походка - пошатываясь, широко расставляя ноги, что особенно сказывается на поворотах).
  2. Астазия - мышцы утрачивают способность к слитному тетаническому сокращению. Поэтому при попытке сокращения возникает дрожание. Мозжечковый тремор. В покое, когда человек не предпринимает попытку совершить движении, дрожания нет.
  3. Интенционный тремор - при попытке совершить движение возникает дрожание
  4. Дистания - нарушение тонуса мышц. Сначала атония, потом гипертония
  5. Астения - легкая утомляемость.
  6. Адиадохокинез - невозможность совершить противоположные движения - суппонация, пронация.
  7. Дисметрия - нарушение способности оценивать расстояния и появление промахивания.
  8. Асинергия - выражается в том, что движения перестают быть плавными, становятся дерганными, нарушается взаимосвязь
  9. Дезэквилибрация - нарушение равновесия.

Абазия - при нарушении тела в пространстве. Мозжечок контролирует и вегетативные реакции. При расстройствах мозжечка наблюдаются нарушение в сокращении сердца, изменения артериального давления, изменение тонусам мышц в кишечнике. Регуляция вегетативных функций осуществляется через ретикулярную формацию и гипоталамческую область.

Физиология базальных ганглиев.

К базальным ганглиям относят комплекс нейронных узлов серого вещества, которые располагаются в белом веществе больших полушарий головного мозга. Эти образования называют стриополитарной системой. Относится хвостатое ядро, скорлупа - вместе они образуют полосатое тело . Бледный шар на разрезе состоит из 2х сегментов - наружного и внутреннего. Наружный сегмент бледного шара имеет общее происхождение с полосатым телом. Внутренний сегмент развивается из серого вещества промежуточного мозга. Эти образования имеют тесную связь с субталамическими ядрами промежуточного мозга, с черной субстанцией среднего мозга, которая состоит из двух частей - вентральной части(сетчатой) и дорсальной(компактная).

Нейроны компактной части вырабатывают дофамин. А сетчатая часть черной субстанции по строению и функциям напоминает нейроны внутреннего сегмента бледного шара.

Черная субстанция образует связи с передним вентральным ядром зрительного бугра, бугорками четверохолмия, с ядрами моста и двухсторонние связи с полосатым телом. Эти образования получают афферентные сигналы и сами формируют эфферентные пути. Чувствительные пути к базальным ганглиям идут от коры больших полушарий и главный афферентный путь начинается от моторной и премоторной зоны коры.

Корковое поля 2,4,6,8. Эти пути идут к полосатому телу и бледному шару. Имеется определенная топография проекции мышц дорсальной части скорлупы представлены мышцы ног, рук, а в вентральной части - рта и лица. От сегментах бледного шара идут пути к зрительному бугру переднем вентральному и вентролатеральному ядрам, от которых информация будет возвращаться в кору.

Большое значение играют пути к базальным ядрам от зрительных бугров. Обеспечивают получение сенсорной информации. К базальным ядрам также через зрительный бугор передаются влияния от мозжечка. Также имеются чувствительные пути к полосатому телу от черной субстанции. Эфферентные пути представлены связями полосатого тела с бледными шарами, с черной субстанцией, ретикулярной формацией ствола мозга, от бледного шара идут пути к красному ядру, к субталамическим ядрам, к ядрам гипоталамуса и зрительных бугров. На подкорковом уровне сложные кольцевые взаимодействия.

Связи коры больших полушарий, зрительного бугра базальные ганглии и снова кора формируют два пути: прямой(обеспечивает облегчение прохождения импульсов) и непрямой(тормозной)

Непрямой путь. Оказывает тормозящее действие. Этот путь тормозной идет от полосатого тела к наружному сегменту бледного шара и полосатое тело тормозит наружный сегмент бледного шара. Наружный сегмент бледного шара тормозит Люисово тело, которое в норме оказывает возбуждающие действие на внутренний сегмент бледного шара. В этой цепочке есть два последовательных торможения.

Черная субстанция(вырабатывает дофамин) В полосатом теле есть 2 вида рецепторов Д1- возбуждающие, Д2 - тормозящие. Полосатое тело с черной субстанцией два тормозящих пути. Черная субстанция тормозит полосатое тело дофамином, а полосатое тело черную субстанцию ГАМК. Высокое содержание меди в черной субстанции, синем пятне ствола мозга. Возникновение стриополитарной системы было необходимо для совершения перемещения тело в пространстве - плаванье, ползанье, полет. Эта система образует связь с подкорковыми двигательными ядрами(красное ядро, покрышка среднего мозга, ядра ретикулярной формации, вестибулярные ядра) От этих образований - нисходящие пути в спинной мозг. Все это вместе образует экстрапирамидную систему.

Двигательная активность реализуется через пирамидную систему - нисходящие пути. Каждое полушарие связано с противоположной половиной тела. В спинном мозге с альфа моторными нейронами. Через пирамидную систему реализуются все наши желания. Она работает с мозжечком, экстрапирамидной системы и выстраивается несколько контуров - кора мозжечка, кора, экстрапирамидная система. Зарождение мысли возникает в коре. Для того, чтобы его совершить необходим план движения. Который включает в себя несколько компонентов. Они связываются в один образ. Для этого нужны программы. Программы быстрых движений - в мозжечке . Медленных - в базальных ганглиях. Кора выбирает необходимые программы. Она создает единственную общую программу, которая будет реализовано через спинальные пути. Чтобы сделать бросок мяча в кольцо нам нужно принять определенную позу, распределить тонус мышц - это все на подсознательном уровне - экстрапирамидная система. Когда все будет готово произойдет само движение. Стриополитарная система может обеспечивать стереотипные заученные движения - ходьба, плаванье, езда на велосипеде, но только когда они заучены. При выполнение движение стриополитарная система определяет масштаб движений - амплитуда движений. Масштаб определяется стриополитарной системой. Гипотония-пониженный тонус с гиперкинезом - повышенная двигательная активность.

Симптомы поражения базальных ганглиев

К чисту гиперкинезов(сопровождаются снижением тонуса мышц) относятчя

-Хорея - связана с дегеративными поражениями схвостатого ядра и проявляется в возникновении быстрых танцующих движений. Возникает богатая мимика, непрерывная игра пальцами рук, причмокивание, развивается в результате ревматического поражения. Все движения непроизвольные

-Атетоз - обусловлен поражением скорлупы и бледного шара и характеризуется медленными, извивающимися движениями - червеобразными движениями, которые начинаются с дистальных отделов конечностей и постепенно пермещаются на проксимальные.

-Баллизм - размашистые движения верхних и нижних конечностей

-Болезнь Гентингтона - утрата холинергических и ГАМК секретируещих нейронов полосатого тела. Это генетическое заболевание. Оно развивается в результате появление аномального гена в4ой хромосоме. Развивается от 14 до 50 лет, сопровождается с движениями, характерными для «Хорея» и одновременно развивается прогрессирующие слабоумие. Заболевание приводит к гибели через 15-20 лет.

Гиперкинез в сочетании с гипертонией - Болезнь Паркинсона(уменьшение выработки дофамина в нейронах компактной части черной субстанции. Черная субстанция оказывает тормозящее действие на полосатое тело. Таким образом снижается содержание дофамина в полосатом теле. Симптомы - снижение дофамина до 50 % от нормы. Одновременно снижается содержание и норадреналина в гипоталамусе.). Симптомы - мелкие движения пальцев рук, мимика, гипертония(повышается тонус мышц, в основном сгибателей. Поза - руки приведены к туловищу, колени согнуты, голова прижата. Дрожание в покое - Тренор , маскообразное лицо, замедленная речь). Симптом складного ножа -попытка согнуть руку в локтевом суставе - сначала большое сопротивление, а потом легко. Симптом зубчатого колеса - периодическая смена повышения и снижения тонуса.

Вводят препараты Эльдофа - могут проникать через гемоэнцефалический барьер и превращаются в дофамин. Помогают блокаторы, которые разрушает норажреналин и дофамин. Есть попытки вживления клеток, взятых у мертвых новорожденных из черной субстанции

Базальные ганглии , или подкорковые ядра , — это тесно связанные между собой структуры мозга, расположенные в глубине больших полушарий между лобными долями и .

Базальные ганглии являются парными образованиями и состоят из ядер серого вещества, разделенных прослойками белого — волокон внутренней и наружной капсул мозга. В состав базальных ганглиев входят: полосатое тело, состоящее из хвостового ядра и скорлупы, бледный шар и ограда. С функциональной точки зрения иногда к понятию базальных ганглиев относят также субталамическое ядро и черную субстанцию (рис. 1). Большой размер этих ядер и подобие в структуре у различных видов дают основание предполагать, что они вносят большой вклад в организацию работы мозга наземных позвоночных животных.

Основные функции базальных ганглиев:
  • Участие в формировании и хранении программ врожденных и приобретенных двигательных реакций и координация этих реакций (основная)
  • Регуляция тонуса мышц
  • Регуляция вегетативных функций (трофические процессы, углеводный обмен, слюно- и слезотечение, дыхание и т.д.)
  • Регуляция чувствительности организма на восприятие раздражений (соматических, слуховых, зрительных и др.)
  • Регуляция ВНД (эмоциональные реакции, память, скорость выработки новых условных рефлексов, скорость переключения с одной формы деятельности на другую)

Рис. 1. Важнейшие афферентные и эфферентные связи базальных ганглиев: 1 паравентрикулярное ядро; 2 вентролатеральное ядро; 3 срединные ядра таламуса; СЯ — субталамическое ядро; 4 — кортикоспинальный тракт; 5 — кортикомостовой тракт; 6 — эфферентный путь от бледного шара к среднему мозгу

Из клинических наблюдений давно известно, что одним из последствий заболеваний базальных ганглиев является нарушение тонуса мышц и движений . На этом основании можно было бы предполагать, что базальные ганглии должны быть связаны с моторными центрами ствола и спинного мозга. Современными методами исследования показано, что аксоны их нейронов не следуют в нисходящем направлении к моторным ядрам ствола и спинного мозга, а повреждение ганглиев не сопровождается парезами мышц, как это имеет место при повреждении других нисходящих моторных путей. Большая часть эфферентных волокон базальных ганглиев следует в восходящем направлении к моторным и другим областям коры больших полушарий мозга.

Афферентные связи

Структурой базальных ганглиев , к нейронам которой поступает большая часть афферентных сигналов, является полосатое тело . Его нейроны получают сигналы из коры больших полушарий мозга, ядер таламуса, клеточных групп черной субстанции промежуточного мозга, содержащих дофамин, и от нейронов ядра шва, содержащих серотонин. При этом нейроны скорлупы полосатого тела получают сигналы преимущественно из первичной соматосенсорной и первичной моторной коры, а нейроны хвостатого ядра (уже предварительно интегрированные полисенсорные сигналы) из нейронов ассоциативных областей коры больших полушарий мозга. Анализ афферентных связей базальных ядер с другими структурами мозга предполагает, что от них в ганглии поступает не только информация, связанная с движениями, но и информация, которая может отражать состояние общей активности мозга и быть связана с его высшими, познавательными функциями и эмоциями.

Полученные сигналы подвергаются в базальных ганглиях сложной обработке, в которой участвуют его различные структуры, связанные между собой многочисленными внутренними связями и содержащие различные типы нейронов. Среди этих нейронов большинство составляют ГАМК-ергические нейроны полосатого тела, которые посылают аксоны к нейронам бледного шара и черной субстанции. Эти нейроны продуцируют также динорфин и энкефалин. Большой удельный вес в передаче и обработке сигналов внутри базальных ганглиев занимают его возбуждающие холинергические интернейроны с широко ветвящимися дендритами. К этим нейронам конвергируют аксоны нейронов черной субстанции, секретирующие дофамин.

Эфферентные связи базальных ганглиев используются для посылки сигналов, обработанных в ганглиях, в другие структуры мозга. Нейроны, формирующие основные эфферентные пути базальных ганглиев, располагаются главным образом в наружном и внутреннем сегментах бледного шара и в черной субстанции, получающих афферентные сигналы в основном из полосатого тела. Часть эфферентных волокон бледного шара следует в интраламинарные ядра таламуса и оттуда — в полосатое тело, образуя подкорковую нейронную сеть. Большая часть аксонов эфферентных нейронов внутреннего сегмента бледного шара следует через внутреннюю капсулу к нейронам вентральных ядер таламуса, а от них — в префронтальную и дополнительную моторную кору больших полушарий. Через связи с моторными областями коры мозга базальные ганглии оказывают влияние на контроль движений, осуществляемый корой через кортикоспинальный и другие нисходящие двигательные пути.

Хвостатое ядро получает афферентные сигналы с ассоциативных областей коры мозга и, обработав их, посылает эфферентные сигналы преимущественно в префронтальную кору. Предполагается, что эти связи являются основой для участия базальных ганглиев в решении задач, связанных с подготовкой и исполнением движений. Так, при повреждении хвостатого ядра у обезьян нарушается способность выполнять движения, требующие сведений из аппарата пространственной памяти (например, учета, где расположен предмет).

Базальные ганглии связаны эфферентными связями с ретикулярной формацией промежуточного мозга, через которые участвуют в контроле ходьбы, а также с нейронами верхних холмиков, через которые они могут контролировать движения глаз и головы.

С учетом афферентных и эфферентных связей базальных ганглиев с корой и другими структурами мозга выделяют несколько нейронных сетей или петель, проходящих через ганглии или заканчивающихся внутри их. Моторная петля образована нейронами первичной моторной, первичной сенсомоторной и дополнительной моторной коры, чьи аксоны следуют к нейронам скорлупы и затем через бледный шар и таламус достигают нейронов дополнительной моторной коры. Глазодвигательная петля образована нейронами моторных полей 8, 6 и сенсорного поля 7, аксоны которых следуют в хвостатое ядро и далее к нейронам лобного глазного поля 8. Префронтальные петли образованы нейронами префронтальной коры, аксоны которых следуют к нейронам хвостатого ядра, черного тела, бледного шара и вентральных ядер таламуса и затем достигают нейронов прсфронтальной коры. Каемчатая петля образована нейронами круговой извилины, орбитофронтальной коры, некоторых областей височной коры, тесно связанных со структурами лимбической системы. Аксоны этих нейронов следуют к нейронам вентральной части полосатого тела, бледного шара, медиодорсального таламуса и далее — к нейронам тех областей коры, в которых петля начиналась. Как можно видеть, каждая петля формируется множественными корковостриарными связями, которые после их прохождения через базальные ганглии следуют через ограниченную область таламуса в определенную одиночную область коры.

Области коры, посылающие сигналы в ту или иную петлю, функционально связаны друг с другом.

Функции базальных ганглиев

Нейронные петли базальных ганглиев являются морфологической основой выполняемых ими основных функций. Среди них — участие базальных ганглиев в подготовке и осуществлении движений. Особенности участия базальных ганглиев в выполнении этой функции вытекают из наблюдений за характером нарушения движений при заболеваниях ганглиев. Предполагается, что базальные ганглии играют важную роль в планировании, программировании и выполнении сложных движений, инициируемых корой больших полушарий.

С их участием абстрактный замысел движения превращается в моторную программу сложных произвольных действий. Их примером могут быть такие действия, как одновременное осуществление нескольких движений в отдельных суставах. Действительно, при регистрации биоэлектрической активности нейронов базальных ганглиев во время выполнения произвольных движений отмечается се повышение в нейронах субталамических ядер, ограды, внутреннего сегмента бледного шара и ретикулярной части черного тела.

Повышение активности нейронов базальных ганглиев инициируется притоком возбуждающих сигналов к нейронам полосатого тела из коры больших полушарий, опосредованных высвобождением глутамата. К этим же нейронам поступает поток сигналов из черной субстанции, оказывающий на нейроны полосатого тела притормаживающее действие (через высвобождение ГАМК) и способствующий фокусированию влияния нейронов коры на определенные группы нейронов полосатого тела. В это же время к его нейронам поступают афферентные сигналы из таламуса с информацией о состоянии активности других областей мозга, имеющих отношение к организации движений.

Нейроны полосатого тела интегрируют все эти потоки информации и передают ее нейронам бледного шара и ретикулярной части черной субстанции и далее но эфферентным путям эти сигналы передаются через таламус в моторные области коры мозга, в которых осуществляется подготовка и инициирование предстоящего движения. Предполагается, что базальные ганглии еще на этапе подготовки движения осуществляют выбор типа движения, необходимого для достижения поставленной цели, отбор мышечных групп, необходимых для его эффективного выполнения. Вероятно, базальные ганглии участвуют в процессах моторного обучения путем повторения движений, причем их роль заключается в выборе оптимальных путей осуществления сложных движений для достижения желаемого результата. С участием базальных ганглиев достигается устранение избыточности движений.

Еще одной из моторных функций базальных ганглиев является участие в осуществлении автоматических движений или моторных навыков. Когда базальные ганглии повреждены, человек выполняет их в более замедленном темпе, менее автоматизировано, с меньшей точностью. Двустороннее разрушение или повреждение ограды и бледного шара у человека сопровождается возникновением навязчиво-принудительного двигательного поведения и появлением элементарных стереотипных движений. Двустороннее повреждение или удаление бледного шара ведет к снижению двигательной активности и гипокинезии, в то время как одностороннее повреждение этого ядра или не влияет, или слабо сказывается на двигательных функциях.

Поражение базальных ганглиев

Патология в области базальных ганглиев у человека сопровождается появлением непроизвольных и нарушением произвольных движений, а также нарушением распределения тонуса мышц и позы. Непроизвольные движения проявляются обычно при спокойном бодрствовании и исчезают во время сна. Различают две большие группы нарушения движений: с доминированием гипокинезии — брадикинезии, акинезии и ригидности, которые наиболее выражены при паркинсонизме; с доминированием гиперкинезии, которая наиболее характерна для хореи Хантингтона.

Гиперкинетические моторные нарушения могут проявляться тремором покоя — непроизвольными ритмическими сокращениями мышц дистальных и проксимальных отделов конечностей, головы и других частей тела. В других случаях они могут проявляться хореей — внезапными, быстрыми, насильственными движениями мышц туловища, конечностей, лица (гримасы), появляющимися вследствие дегенерации нейронов хвостатого ядра, голубоватого пятна и других структур. В хвостатом ядре обнаружено снижение уровня нейромедиаторов — ГАМК, ацетилхолина и нейромодуляторов — энкефалина, вещества Р, динорфина и холецистокинина. Одним из проявлений хореи является атетоз — медленные, продолжительные корчащие движения дистальных частей конечностей, обусловленных нарушением функции ограды.

В результате одностороннего (при кровоизлиянии) или двустороннего повреждения субталамических ядер может развиться баллизм , проявляющийся внезапными, насильственными, большой амплитуды и интенсивности, молотящими, стремительными движениями на противоположной (гемибаллизм) или обеих сторонах тела. Заболевания в области полосатого тела могут вести к развитию дистонии , которая проявляется насильственными, медленными, повторяющимися, скручивающими движениями мышц руки, шеи или торса. Примером локальной дистонии может быть непроизвольное сокращение мышц предплечья и кисти во время письма — писчий спазм. Заболевания в области базальных ганглиев могут вести к развитию тиков, характеризующихся внезапными, кратковременными насильственными движениями мышц различных частей тела.

Нарушение мышечного тонуса при заболеваниях базальных ганглиев проявляется ригидностью мышц. При ее наличии попытка изменения положения в суставах сопровождается у больного движением, напоминающим таковое для зубчатого колеса. Оказываемое мышцами сопротивление возникает через определенные интервалы. В других случаях может развиться восковая ригидность, при которой сохраняется сопротивление во всем интервале движения в суставе.

Гипокинетические моторные нарушения проявляются задержкой или невозможностью начать движение (акинезия), замедленностью выполнения движений и их завершения (брадикинезия).

Нарушения моторных функций при заболеваниях базальных ганглиев могут иметь смешанный характер, напоминая парезы мышц или, наоборот, их спастичность. При этом может развиться нарушение движений от неспособности начать движение к неспособности подавить непроизвольные движения.

Наряду с тяжелыми, инвалидизирующими нарушениями движений другим диагностическим признаком паркинсонизма является невыразительное лицо, часто называемое паркинсонической маской. Одним из его признаков является недостаточность или невозможность спонтанного смещения взора. Взор больного может оставаться застывшим, но он может перемещать его по команде в направлении визуального объекта. Эти факты предполагают, что базальные ганглии вовлечены в контроль смещения взора и зрительного внимания, используя сложную глазодвигательную нейронную сеть.

Одним из возможных механизмов развития двигательных и, в частности, глазодвигательных нарушений при повреждении базальных ганглиев может быть нарушение передачи сигналов в нейронных сетях вследствие нарушения нейромеднаторного баланса. У здоровых людей активность нейронов полосатого тела находится под уравновешенным влиянием афферентных тормозных (дофамин, ГАМ К) сигналов черной субстанции и возбуждающих (глутамат) сенсомоторной коры. Одним из механизмов поддержания этого равновесия является его регуляция сигналами бледного шара. Нарушение равновесия в сторону преобладания тормозных влияний ограничивает возможность достижения сенсорной информации моторных областей коры мозга и ведет к снижению моторной активности (гипокинезии), что наблюдается при паркинсонизме. Потеря базальными ганглиями (при заболеваниях или с возрастом) части тормозных дофаминовых нейронов может вести к облегчению поступления сенсорной информации в моторную систему и увеличению ее активности, как это наблюдается при хорее Хантингтона.

Одним из подтверждений того, что нейромедиаторный баланс имеет важное значение в осуществлении моторных функций базальных ганглиев, а его нарушение сопровождается двигательной недостаточностью, является клинически подтвержденный факт, что улучшение двигательных функций при паркинсонизме достигается при приеме L-dopa — предшественника синтеза дофамина, который проникает в мозг через гематоэнцефалический барьер. В мозге под влиянием фермента дофаминкарбоксилазы происходит его превращение в дофамин, что способствует ликвидации дофаминовой недостаточности. Лечение паркинсонизма приемом L-dopa является в настоящее время наиболее эффективным методом, применение которого позволило не только облегчить состояние больных, но и увеличить продолжительность их жизни.

Разработаны и применены методы хирургической коррекции двигательных и других нарушений у больных посредством стереотаксического разрушения бледного шара или вентролатерального ядра таламуса. После этой операции удается устранить ригидность и тремор мышц на противоположной стороне, но не устраняются акинезии и нарушение позы. В настоящее время используется также операция вживления постоянных электродов в таламус, через которые проводится его хроническая электростимуляция.

Осуществлены трансплантация в мозг клеток, продуцирующих дофамин, и пересадка в область желудочковой поверхности мозга больных мозговых клеток одного из их надпочечников, после которой в части случаев достигалось улучшение состояния больных. Предполагается, что пересаженные клетки могли стать в течение некоторого времени источником образования дофамина или факторов роста, способствовавших восстановлению функции пострадавших нейронов. В других случаях в мозг имплантировалась ткань базальных ганглиев эмбрионов, результаты которой оказались лучше. Трансплантационные методы лечения пока не получили широкого распространения и их эффективность продолжает изучаться.

Функции других нейронных сетей базальных ганглиев остаются малоизученными. На основании клинических наблюдений и экспериментальных данных предполагается, что базальные ганглии участвуют в изменении состояния активности мышц и позы при переходе от сна к бодрствованию.

Базальные ганглии участвуют в формировании настроения, мотиваций и эмоций человека, в особенности связанных с исполнением движений, направленных на удовлетворение жизненно важных потребностей (прием пищи, питье) или получение морального и эмоционального удовольствия (вознаграждения).

У большинства больных с нарушением функций базальных ганглиев выявляются симптомы психомоторных изменений. В частности, при паркинсонизме может развиваться состояние депрессии (подавленное настроение, пессимизм, повышенная ранимость, печаль), беспокойства, апатии, психоз, снижение познавательных и умственных способностей. Это свидетельствует о важной роли базальных ганглиев в осуществлении высших психических функций у человека.

Базальные ганглии – это совокупность трех парных образований, расположенных в конечном мозге в основании больших полушарий: филогенетически более древней его части – бледного шара, более позднего образования – полосатого тела т наиболее молодой в эволюционном плане – ограды.

Бледный шар состоит из наружного и внутреннего сегментов. Полосатое тело – из хвостатого ядра и скорлупы. Ограда – это образование, которое располагается между скорлупой и островковой корой.

Функциональные связи базальных ганглиев. Возбуждающая афферентная импульсация поступает в полосатое тело в основном из трех источников:

      от всех областей коры мозга непосредственно через таламус;

      от неспецифических интраламинарных ядер таламуса;

      от черного вещества.

Среди эфферентных связей базальных ганглиев можно выделить три главных выхода:

      от полосатого тела тормозящие пути идут к бледному шару непосредственно и с участием субталамического ядра. От бледного шара начинается самый важный эфферентный путь базальных ганглиев, идущий преимущественно в таламус (а именно в его двигательные вентральные ядра), а от них возбуждающий путь идет в двигательную кору;

      часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;

      от полосатого тела тормозящие пути идут к черному веществу, и после переключения – к ядрам таламуса.

Оценивая связи базальных ганглиев в целом, ученые отмечают, что данная структура является специфическим промежуточным звеном (станцией переключения), связывающей ассоциативную и, частично, сенсорную кору с двигательной корой.

В структуре связей базальных ганглиев выделяют несколько параллельно действующих функциональных петель, соединяющих базальные ганглии и кору больших полушарий.

Скелетно-моторная петля . Соединяет премоторную, двигательную и соматосенсорную области коры со скорлупой базальных ганглиев, импульсация из которых идет в бледный шар и черное вещество и далее через двигательное вентральное ядро возвращается в премоторную область коры. Ученые полагают, что эта петля служит для регуляции таких параметров движения, как амплитуда, сила и направление.

Глазодвигательная петля . Соединяет области коры, контролирующие направление взгляда (поле 8 лобной коры и поле 7 теменной коры), с хвостатым ядром базальных ганглиев. Оттуда импульсация поступает в бледный шар и черное вещество, из которых она проецируется соответственно в ассоциативное медиодорсальное и переднее релейное вентральное ядра таламуса, а из них возвращается в лобное глазодвигательное поле 8. Данная петля принимает участие в регуляции, например, скачкообразных движений глаз.

Ученые также предполагают существование сложных петель, по которым импульсация из лобных ассоциативных зон коры поступает в структуры базальных ганглиев (хвостатое ядро, бледный шар, черное вещество) и через медиодорсальное и вентральное переднее ядра таламуса возвращается в ассоциативную лобную кору. Считается, что эти петли участвуют в осуществлении высших психофизиологических функций мозга: контроле мотиваций, прогнозировании результатов действий, познавательной (когнитивной) деятельности.

Наряду с выделением непосредственных функциональных связей базальных ганглиев в целом, ученые выделяют и функции отдельных образований базальных ганглиев. Одним из таких образований, как было отмечено выше, является полосатое тело.

Функции полосатого тела . Основными объектами функционального влияния полосатого тела являются бледный шар, черное вещество, таламус и моторная кора.

Влияние полосатого тела на бледный шар . Осуществляется преимущественно через тонкие тормозные волокна. В связи с этим, полосатое тело оказывает на бледный шар, в основном, тормозящее влияние.

Влияние полосатого тела на черное вещество . Между черным веществом и полосатым телом имеются двусторонние связи. Нейроны полосатого тела оказывают тормозящее влияние на нейроны черного вещества. В свою очередь, нейроны черного вещества через медиатор дофамин оказывают на фоновую активность нейронов полосатого тела модулирующее воздействие. Характер этого влияния (тормозной, возбуждающий или и тот и другой) учеными до настоящего времени не установлен. Кроме влияния на полосатое тело, черное вещество оказывает тормозящее действие на нейроны таламуса и получает возбуждающие афферентные входы от субталамического ядра.

Влияние полосатого тела на таламус . В середине ХХ столетия учеными было установлено, что раздражение участков таламуса вызывает появление проявлений, типичных для фазы медленного сна. Впоследствии было доказано, что этих проявлений можно добиться не только раздражением таламуса, но и полосатого тела. Разрушение же полосатого тела нарушает цикличность сон – бодрствование (уменьшает время сна в этом цикле).

Влияние полосатого тела на моторную кору . Клинические исследования, проведенные в 1980 гг. О.С.Андриановым доказали тормозное воздействие хвоста полосатого тела на двигательную кору.

Прямая стимуляция полосатого тела посредством вживления электродов, по данным клиницистов, вызывает относительно простые двигательные реакции: поворот головы и туловища в сторону, противоположную раздражению, сгибание конечности на противоположной стороне и пр. Стимуляция некоторых зон полосатого тела вызывает задержку поведенческих реакций (ориентировочной, пищедобывательной и пр.), а также подавление ощущения боли.

Поражение полосатого тела (в частности его хвостатого ядра) вызывает избыточные движения. Больной как бы не может справиться со своей мускулатурой. Экспериментальные исследования, проведенные на млекопитающих, показали, что при повреждении полосатого тела у животных стабильно развивается синдром гиперактивности. Число бесцельных движений в пространстве увеличивается в 5 – 7 раз.

Еще одним образованием базальных ганглиев является бледный шар, который также выполняет свои функции.

Функции бледного шара. Получая из полосатого тела преимущественно тормозные влияния, бледный шар оказывает модулирующее воздействие на двигательную кору, ретикулярную формацию, мозжечок и красное ядро. При стимуляции бледного шара у животных преобладающими являются элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и т.д. Кроме того, выявлено влияние бледного шара и на некоторые зоны гипоталамуса (центр голода и задний гипоталамус), о чем свидетельствует отмечаемая учеными активация пищевого поведения. Разрушение бледного шара сопровождается снижением двигательной активности. Возникает отвращение к каким-либо движениям (адинамия), сонливость, эмоциональная тупость, затрудняются осуществление имеющихся и выработка новых условных рефлексов.

Таким образом, участие базальных ганглиев в регуляции движений является главной, но не единственной их функцией. Наиболее важной двигательной функцией является выработка (наряду с мозжечком) сложных двигательных программ, которые реализуются через моторную кору и обеспечивают двигательный компонент поведения. Вместе с тем, базальные ганглии контролируют такие параметры движений, как сила, амплитуда, скорость и направление. Кроме этого, базальные ганглии включаются в регуляцию цикла сон – бодрствование, в механизмы формирования условных рефлексов, в сложные формы восприятия (например, осмысление текста).

Вопросы для самоконтроля:

    Чем представлены базальные ганглии?

    Общая характеристика функциональных связей базальных ганглиев.

    Характеристика функциональных петель базальных ганглиев.

    Функции полосатого тела.

    Функции бледного шара.

– сложная и уникальная структура, все элементы которой связаны множеством нейронных связей. В нем различают серое вещество – скопление тел нервных клеток и белое, отвечающее за передачу импульса от одного нейрона к другому. Помимо коры головного мозга, которая представлена серым веществом и является центром нашего сознательного мышления, выделяют множество других подкорковых структур. Они представляют собой отдельные ганглии (ядра) из серого вещества в толще белого и обеспечивают нормальное функционирование нервной системы человека. Одна из них – базальные ганглии, анатомическое строение и физиологическую роль которых мы рассмотрим в этой статье.

Строение базальных ганглиев

Базальными ганглиями (ядрами) в анатомии принято называть комплекс скоплений серого вещества в центральном белом веществе полушарий головного мозга. К этим неврологическим структурам относят:

  • хвостатое ядро;
  • скорлупу;
  • черное вещество;
  • красные ядра;
  • бледный шар;
  • ретикулярная формация.

Расположены базальные ядра в основании полушарий и имеют множество тонких длинных отростков (аксонов), по которым информация передается в другие структуры мозга.

Клеточное строение этих образований отличается, и принято разделять их на stiatum (относится к экстрапирамидной системе) и pallidum (относится к ). И stiatum, и pallidum имеют многочисленные связи с корой головного мозга, в частности лобными, теменными долями, а также таламусом. Эти подкорковые структуры создают мощную разветвленную сеть экстрапирамидной системы, которая контролирует многие аспекты жизнедеятельности человека.

Функции базальных ганглиев

Базальные ганглии имеют тесные связи с остальными структурами головного мозга и выполняют следующие функции:

  • регулируют двигательные процессы;
  • отвечают за нормальное функционирование вегетативной нервной системы;
  • осуществляют интеграцию процессов высшей нервной деятельности.

Отмечено участие базальных ганглиев в таких действиях, как:

  1. Сложные двигательные программы с участием мелкой моторики, например, движение руки при письме, рисовании (при поражении этой анатомической структуры почерк становится грубым, «неуверенным», сложным к прочтению, как будто человек впервые взял в руки ручку).
  2. Использование ножниц.
  3. Забивание гвоздей.
  4. Игра в баскетбол, футбол, волейбол (ведение мяча, попадание в корзину, отбивание мяча бейсбольной битой).
  5. Копание земли лопатой.
  6. Пение.

Согласно последним данным, базальные ядра отвечают за определенный тип движений:

  • спонтанные, а не контролируемые;
  • повторяемые до этого многократно (заученные), а не новые, требующие контроля;
  • последовательные или одновременные, а не простые одноэтапные.

Важно! По мнению многих неврологов, базальные ганглии – это наш подкорковый автопилот, позволяющий выполнять автоматизированные действия без расходования резервов центральной нервной системы. Таким образом, этот отдел мозга контролирует выполнение движений в зависимости от ситуации.

В обычной жизни они получают нервный импульс от лобной доли и несут ответственность за выполнение многократно повторяющихся целенаправленных действий. При форс-мажорах, изменяющих привычное течение событий, базальные ганглии способны перестраиваться и переключаться на оптимальный в данной ситуации алгоритм.

Симптомы нарушения работы базальных ганглиев

Причины поражения базальных ядер многообразны. Это могут быть:

  • дегенеративные поражения головного мозга ( , хорея Гентингтона);
  • наследственные болезни обмена веществ (болезнь Вильсона);
  • генетическая патология, связанная с нарушением работы ферментных систем;
  • некоторые эндокринные заболевания;
  • хорея при ревматизме;
  • отравление марганцем, хлорпромазином;

Выделяют две формы патологии базальных ядер:

  1. Функциональная недостаточность. Чаще встречается в детском возрасте и вызвана генетическими заболеваниями. У взрослых провоцируется инсультом, травмой. Недостаточность экстрапирамидной системы – основная причина формирования болезни Паркинсона в пожилом возрасте.
  2. Кисты, опухоли. Эта патология характеризуется серьезными неврологическими проблемами и требует своевременного лечения.
  3. При поражениях базальных ганглиев происходит нарушение гибкости поведения: человек с трудом адаптируется к возникшим трудностям при выполнении привычного алгоритма. Ему сложно перестроиться на выполнение более логичных в этих условиях действий.

Кроме того, снижается способность к обучению, которое проходит медленно, а результаты долгое время остаются минимальными. Также пациенты нередко сталкиваются с двигательными расстройствами: все движения становятся прерывистыми, словно дергающимися, возникает тремор (дрожание конечностей) или непроизвольные действия (гиперкинезы).

Диагностика поражения базальных ганглиев проводится на основании клинических проявлений болезни, а также современных инструментальных методов (КТ, МРТ головного мозга).

Коррекция неврологического дефицита

Терапия заболевания зависит от вызвавшей его причины и проводится врачом-невропатологом. Как правило, требуется пожизненный прием . Самостоятельно ганглий не восстанавливается, лечение народными средствами также часто неэффективно.

Таким образом, для правильного функционирования нервной системы человека необходима четкая и слаженная работа всех ее компонентов, даже самых незначительных. В этой статье мы рассмотрели, что такое базальные ганглии, их строение, расположение и функции, а также причины и признаки поражения этой анатомической структуры головного мозга. Своевременное выявление патологии позволит скорректировать неврологические проявления заболевания и полностью избавить от нежелательных симптомов.

В статье поговорим о базальных ганглиях. Что это такое и какую роль эта структура играет в здоровье человека? Все вопросы будут подробно рассмотрены в статье, после чего вы поймёте важность абсолютно каждой «детали» в вашем теле и голове.

О чем идет речь?

Все мы прекрасно знаем, что мозг человека является очень сложной уникальной структурой, в которой абсолютно все элементы неразрывно и прочно связаны при помощи миллионов нейронных связей. В мозгу есть серое и Первое является обычным скоплением множества нервных клеток, а второе отвечает за скорость передачи импульсов между нейронами. Кроме коры, естественно, есть и другие структуры. Они представляют собой ядра или базальные ганглии, состоящие из серого вещества и находящиеся в белом. Во многом именно они отвечают за нормальную работу нервной системы.

Базальные ганглии: физиология

Расположены эти ядра возле полушарий головного мозга. Они имеют очень много отростков большой длины, которые называются аксонами. Благодаря им информация, то есть нервные импульсы, передается к разным структурам мозга.

Строение

Строение базальных ганглий разнообразное. В основном по этой классификации их делят на те, которые относятся к экстрапирамидной и лимбической системе. Обе эти системы имеют огромное влияние на работу головного мозга, находятся с ним в тесном взаимодействии. Они оказывают воздействие на таламус, теменные и лобные доли. Экстрапирамидная сеть состоит из базальных ганглий. Ей полностью пронизаны подкорковые части мозга, и она оказывает важнейшее влияние на работу всех функций организма человека. Эти скромные образования очень часто остаются недооценёнными, а ведь их работа ещё полностью не изучена.

Функции

Функций базальных ганглий не так много, но они существенны. Как мы уже знаем, они сильно связаны со всеми остальными структурами мозга. Собственно, из понимания этого утверждения и вытекают основные :

  1. Контроль за осуществлением процессов по интеграции в высшей нервной деятельности.
  2. Влияние на работу вегетативной нервной системы.
  3. Регулирование двигательных процессов человека.

В чём участвуют?

Есть ряд процессов, в которых ядра принимают непосредственное участие. Базальные ганглии, строение, развитие и функции которых мы рассматриваем, участвуют в таких действиях:

  • влияют на ловкость человека при использовании ножниц;
  • точность забивания гвоздей;
  • скорость реакции, ведение мяча, точность попадания в корзину и ловкость отбивания мяча при игре в баскетбол, футбол, волейбол;
  • владение голосом во время пения;
  • координация действий во время копания земли.

Также эти ядра влияют на сложные двигательные процессы, например на мелкую моторику. Это выражается в том, как двигается рука во время письма или рисования. Если работа этих структур головного мозга нарушена, то почерк будет неразборчивым, грубым, «неуверенным». Другими словами, будет казаться, что человек только недавно взял в руки ручку.

Новые исследования доказали, что базальные ганглии также могут влиять на тип движения:

  • поддающиеся контролю или внезапные;
  • повторяемые много раз или новые, совершенно неизвестные;
  • простые односложные или последовательные и даже одновременные.

Многие исследователи небезосновательно считают, что функции базальных ганглий заключаются в том, что человек может действовать автоматически. Это говорит о том, что многие действия, которые человек выполняет на ходу, не обращая на них особого внимания, возможны именно благодаря ядрам. Физиология базальных ганглий такова, что они контролируют и регулируют автоматическую деятельность человека, не забирая при этом ресурсы у центральной нервной системы. То есть мы должны понимать, что именно эти структуры во многом контролируют то, как человек действует при стрессе или в непонятной опасной ситуации.

В обычной жизни базальные ядра просто передают импульсы, которые поступают от лобных долей, к другим структурам мозга. Целью является целенаправленное выполнение известных действий без нагрузки на ЦНС. Однако в опасных ситуациях ганглии «переключаются» и позволяют человеку автоматически принять наиболее оптимальное решение.

Патологии

Поражения базальных ганглиев могут быть очень разными. Рассмотрим некоторые из них. Это дегенеративные поражения мозга человека (например, болезнь Паркинсона или хорея Гентингтона). Это могут быть наследственные генетические болезни, которые связаны с нарушением обмена веществ. Патологии, характеризующиеся сбоями в работе ферментных систем. Заболевания щитовидной железы тоже могут происходить из-за нарушений в работе ядер. Возможные патологии, возникающие вследствие отравления марганцем. Влиять на работу базальных ядер могут опухоли мозга, и, пожалуй, это самая неприятная ситуация.

Формы патологий

Исследователи условно выделяют две основных формы патологии, которые могут возникать у человека:

  1. Функциональные проблемы. Такое часто встречается у детей. Причиной в большинстве случаев является генетика. Могут возникать у взрослых людей после инсульта, сильной травмы или кровоизлияния. Кстати, в пожилом возрасте именно нарушения работы экстрапирамидной системы человека вызывают болезнь Паркинсона.
  2. Опухоли и кисты. Такая патология очень опасна, она требует немедленного врачебного вмешательства. Характерным симптомом является наличие серьезных и затяжных неврологических болезней.

Также стоит отметить, что базальные ганглии головного мозга могут влиять на гибкость поведения человека. Это означает, что человек начинает теряться в различных ситуациях, не может быстро среагировать, приспособиться к трудностям или просто действовать по своему привычному алгоритму. Также сложно дается понимание того, как надо по логике вещей поступить в простой для нормального человека ситуации.

Поражение базальных ганглиев опасно тем, что человек становится практически необучаем. Это логично, ведь обучение похоже на автоматизированную задачу, а за такие задачи, как мы знаем, отвечают именно эти ядра. Однако это поддаётся лечению, хоть и очень медленному. При этом результаты будут незначительны. На фоне этого человек перестает управлять своей координацией движений. Со стороны кажется, что он двигается резко и порывисто, как будто дергается. При этом действительно может возникать тремор конечностей или какие-то непроизвольные действия, над которыми больной не властен.

Коррекция

Терапия расстройства полностью зависит от того, чем оно было вызвано. Лечением занимается врач-невропатолог. Очень часто решить проблему можно только при помощи постоянного приема препаратов. Самостоятельно восстанавливаться эти системы не способны, а народные методы эффективными бывают крайне редко. Главное, что требуется от человека - это своевременное обращение к врачу, так как только это позволит улучшить ситуацию и даже избежать очень неприятных симптомов. Врач проводит диагностику, наблюдая за пациентом. Также используются современные методы диагностики, как МРТ и КТ мозга.

Подводя итоги статьи, хочется сказать о том, что для нормальной работы человеческого организма, и в частности мозга, очень важно правильное функционирование всех его структур и даже тех, которые на первый взгляд могут показаться совершенно незначительными.