Наиболее часто встречающееся значение единиц совокупности. Основные статистические категории. Структурные средние: мода и медиана

Информатика и математика - Теоретические материалы для первого коллоквиума

1. Предмет математической статистики, её основные разделы. Понятие о статистическом распределении. Нормальное распределение. В каких условиях случайная величина распределена нормально?

Статистика – наука, узучающая совокупн. масс. явл-я с целью выявления закономерн. и изуч-я их с помощью обобщенных показателей.

Все методы математической статистики можно отнести к двум основным ее разделам: теории статистического оценивания параметров и теории проверки статистических гипотез .

Разделы :

1. дескриптивная статистика

2. выборочный метод, доверительные интервалы

3. корреляционный анализ

4. регрессионный анализ

5. анализ качественных признаков

6. многомерный статистический анализ:

а) кластерный

б) факторный

7. анализ временных рядов

8. дифференциальные уравнения

9. математическое моделирование исторических процессов

Распределение:

Теоретическое (бесконечно много объектов и они ведут себя идеально)

Эмпирическое (реальные данные, которые можно выстроить в гистограмму)

Нормальное распределение – когда характер распределения влияют много факторов, и ни один из них не является определяющим. Особенно часто используется на практике.


2. Нормальное распределение можно изобразить графически в виде симметричной одновершинной кривой, напоминающей по форме колокол. Высота (ордината) каждой точки этой кривой показывает, как часто встречается соответствующее значение. Дескриптивная статистика. Средние значения - среднее арифметическое, медиана, мода. В каких ситуациях эти три меры дают близкие значения, а в каких они сильно различаются?

Дескриптивная статистика - Это описательная статистика.

среднее арифметическое, медиана, мода – меры среднего – коэф-ты, которые могут охарактеризовать совокупность объектов

· среднее (арифметическое) значение ‑ сумма всех значений, отнесенная к общему числу наблюдений (принятые обозначения: Mean или ), т.е. средним арифметическим значением признака называется величина

где - значение признака у i -го объекта, n - число объектов в совокупности.

· мода – наиболее часто встречающееся значение переменной (M)

· медиана – среднее по порядку значение (принятые обозначения: Median, m). Медиана - это "серединное" значение признака в том смысле, что у половины объектов совокупности значения этого признака меньше, а у другой половины - больше медианы. Приближенно вычислить медиану можно, упорядочив все значения признака по возрастанию (убыванию) и найдя число в этом вариационном ряду, которое либо имеет номер (n +1)/2 - в случае нечетного n , либо находится посередине между числами с номерами n /2 и (n +1)/2 - в случае четного n .

Не все из перечисленных характеристик можно вычислять для качественных признаков. Если признак качественный и номинальный, то для него можно найти только моду (ее значением будет название наиболее часто встречающейся категории номинального признака). Если признак ранговый, то кроме моды для него можно найти еще и медиану. Среднее арифметическое значение можно вычислять только для количественных признаков.

В случае количественных данных все характеристики среднего уровня измеряются в тех же единицах, что и сам исходный признак.

Значения коэф-тов совпадают, если график распределения симметричен.


3. Показатели неоднородности - дисперсия, среднее квадратическое (стандартное) отклонение, коэффициент вариации. В каких единицах они измеряются? Зачем вводится понятие коэффициента вариации?

· среднее квадратическое или стандартное отклонение ‑ мера разброса значений признака около среднего арифметического значения (принятые обозначения: Std.Dev. (standard deviation ), s или s). Величина этого отклонения вычисляется по формуле

.

· дисперсия признака (s 2 или s 2 )

· коэффициент вариации ‑ отношение стандартного отклонения к среднему арифметическому, выраженное в процентах (обозначается в статистике буквой V ). Коэффициент вычисляется по формуле: .

Все эти меры можно вычислять только для количественных признаков. Все они показывают, насколько сильно варьируют значения признака (а точнее - их отклонения от среднего) в данной совокупности. Чем меньше значение меры разброса, тем ближе значения признака у всех объектов к своему среднему значению, а значит, и друг к другу. Если величина меры разброса равна нулю, значения признака у всех объектов одинаковы.

Наиболее часто используется среднее квадратическое (или стандартное) отклонение s. Оно измеряется, как и среднее арифметическое, в тех же единицах, что и сам исходный признак. При изменении всех значений признака в несколько раз, точно так же изменится и стандартное отклонение, однако если все значения признака увеличить (уменьшить) на некоторую величину, его стандартное отклонение не изменится . Наряду со стандартным отклонением часто пользуются дисперсией (=его квадрату), однако на практике она является менее удобной мерой, т.к. единицы измерения дисперсии не соответствуют единицам измерения.

Смысл коэффициента вариации состоит в том, что он, в отличие от s, измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности.

Чем больше V , тем совокупность менее однородна.

Однородная Переходная Неоднородная

V =0 – 30% V =30 – 50% V =50 – 100%

Может быть »100% (слишком неоднородная совокупность).


4. Понятие о выборочном методе. Репрезентативная выборка, методы её формированияю Два вида ошибок выборки. Доверительная вероятность.

Выборка:

Репрезентативная

Случайная

Механическая выборка – сходна со случайной выборкой (кажд. 10й, 20й и т.п.).

Естественная(то, что осталось от ГС с течением времени) выборки.

Репрезентативная выборка – точно отражает свойства генеральной совокупности.

Чтобы выборка правильно отражала основные свойства, присущие генеральной совокупности, она должна быть случайной , т.е. все объекты генеральной совокупности должны иметь равные шансы попасть в выборку

Выборки формируются с помощью спец. методик. Наиболее простым является случайный отбор, например, при помощи обычной жеребьевки (для небольших совокупностей) или с использованием таблиц случайных чисел. Для более обширных, но достаточно однородных совокупностей используется механический отбор (применявшийся еще в земской статистике). Для неоднородных совокупностей с определенной структурой чаще применяется типический отбор. Существуют и другие методы, в том числе - комбинации разных способов отбора на нескольких этапах построения выборочной совокупности.

В выборочных результатах всегда присутствуют ошибки. Эти ошибки можно разделить на два класса: случайные и систематические. К первым относятся случайные отклонения выборочных характеристик от генеральных, обусловленные самой природой выборочного метода. Величина случайной ошибки поддается вычислению (оценке). Систематические ошибки, наоборот, не носят случайного характера; они связаны с отклонением структуры выборки от реальной структуры генеральной совокупности. Систематические ошибки появляются тогда, когда нарушается основное правило случайного отбора - обеспечение для всех объектов равных шансов поапсть в выборку. Ошибки этого рода статистика не умеет оценивать.

Основными источниками систематических ошибок являются: а) неадекватность сформированной выборки задачам исследования; б) незнание характера распределения в генеральной совокупности и, как следствие, нарушение в выборке структуры генеральной совокупности; в) сознательный отбор наиболее удобных и выигрышных элементов генеральной совокупности.

Доверительная вероятность –


5. Доверительная вероятность. Средняя (стандартная) и предельная ошибки выборки. Доверительный интервал для оценки среднего значения в генеральной совокупности. Проверка гипотезы о статистической значимости различия двух выборочных средних.

Доверительный интервал - тот значений рассчитываемого коэф-та, в к-й, мы считаем,должно попасть это значение для ген. Совокуп-ти.

Доверительная вероятность – вероятность того, что значение рассчитываемого коэф-та для ген. Совокупности попадет в доверительный интервал. Чеи больше ДВ, тем больше ДИ.

Неизбежный разброс выборочных средних вокруг генеральной средней (т.е. стандартное отклонение выборочных средних) называется стандартной ошибкой выборки m , которая выражается формулой (s - среднее квадратическое отклонение, n - объем выборки). стандартная ошибка выборки тем меньше, чем меньше величина s (которая характеризует разброс значений признака) и чем больше объем выборки n .

Если выборочный метод используется для работы с неколичественными данными, то роль среднего арифметического значения в совокупности играет доля или частота q признака. Доля вычисляется как отношение числа объектов, обладающих данным признаком (), к числу объектов во всей совокупности: . Роль меры разброса играет величина .

В этом случае стандарная ошибка выборки m вычисляется по формуле:

Точность и надежность оценки параметров генеральной совокупности по выборке находятся в обратной зависимости: чем больше точность (т.е. чем меньше предельная ошибка и чем уже доверительный интервал), тем меньше надежность такой оценки (степень уверенности). И наоборот - чем ниже точность оценки, тем выше ее надежность. Часто доверительный интервал строят для надежности 95%, соответственно предельная ошибка выборки обычно равна удвоенной средней ошибке m ..

Доверительный интервал для оценки среднего значения в генеральной совокупности:

X (г.с.) = x (выб.) +-Δ = x (выб.) +- = X (выб.) +- σ(г.с.)/√ n

Критерий для разности средних значений

Часто возникает задача сравнения двух выборочных средних с целью проверки гипотезы о том, что эти выборки получены из одной и той же генеральной совокупности, а реальные расхождения в значениях выборочных средних объясняются случайностями выборок.

Испытуемую гипотезу можно сформулировать следующим образом: различие между выборочными средними случайно, т.е. генеральные средние в обоих случаях равны. В качестве статистической характеристики снова используется величина t , предсталяющая собой разность выборочных средних, деленную на усредненную стандартную ошибку среднего по обеим выборкам.

Фактическое значение статистической характеристики сравнивается с критическим значением, соответсвующим выбранному уровню значимости. Если фактическое значение больше, чем критическое, испытуемая гипотеза отклоняется, т.е. различие между средними считается значимым (существенным).


7. Корреляционная связь. Линейный коэффициент корреляции, его формула, пределы его значений. Коэффициент детерминации, его содержательный смысл. Понятие о статистической значимости коеффициента корреляции.

Коэффициент корреляции показывает, насколько тесно две переменных связаны между собой .

Коэффициент корреляции r принимает значения в диапазоне от -1 до +1. Если r = 1, то между двумя переменными существует функциональная положительная линейная связь, т.е. на диаграмме рассеяния соответствующие точки лежат на одной прямой с положительным наклоном. Если r = -1, то между двумя переменными существует функциональная отрицательная зависимость. Если r = 0, то рассматриваемые переменные линейно независимы , т.е. на диаграмме рассеяния облако точек "вытянуто по горизонтали".

Уравнение регрессии и коэффициент корреляции целесообразно вычислять лишь в том случае, когда зависимость между переменными может хотя бы приближенно считаться линейной. В противном случае результаты могут быть совершенно неверными, в частности коэффициент корреляции может оказаться близким к нулю при наличии сильной взаимосвязи. В особенности это характерно для случаев, когда зависимость имеет явно нелинейный характер (например, зависимость между переменными приблизительно описывается синусоидой или параболой). Во многих случаях эту проблему можно обойти, преобразовав исходные переменные. Однако, чтобы догадаться о необходимости подобного преобразования, т.е. для того чтобы узнать, что данные могут содержать сложные формы зависимости, их желательно “увидеть”. Именно поэтому исследование взаимосвязей между количественными переменными обычно должно включать просмотр диаграмм рассеяния.

Коэффициенты корреляции можно вычислять и без предварительного построения линии регрессии. В этом случае вопрос о интерпретации признаков как результативных и факторных, т.е. зависимых и независимых, не ставится, а корреляции понимается как согласованность или синхронность одновременного изменения значений признаков при переходе от объекта к объекту.

Если объекты характеризуются целым набором количественных признаков, можно сразу построить т.н. матрицу корреляции, т.е. квадратную таблицу, число строк и столбцов которой равно числу признаков, а на пересечении каждых строки и столбца стоит коэффициент корреляции соответствующей пары признаков.

Коэффициент корреляции не имеет содержательной интерпретации. Однако его квадрат, называемый коэффициентом детерминации (R 2 ), имеет.

коэффициентом детерминации (R 2) – это показатель того, насколько изменения зависимого признака объясняются изменениями независимого. Более точно, это доля дисперсии независимого признака, объясняемая влиянием зависимого .

Если две переменные функционально линейно зависимы (точки на диаграмме рассеяния лежат на одной прямой), то можно сказать, что изменение переменной y полностью объясняется изменением переменной x, а это как раз тот случай, когда коэффициент детерминации равен единице (при этом коэффициент корреляции может быть равен как 1, так и -1). Если две переменные линейно независимы (метод наименьших квадратов дает горизонтальную прямую), то переменная y своими вариациями никоим образом "не обязана" переменной x – в этом случае коэффициент детерминации равен нулю. В промежуточных случаях коэффициент детерминации указывает, какая часть изменений переменной y объясняется изменением переменной x (иногда удобно представлять эту величину в процентах).


8. Парная и множественная линейная регрессия. Коэффициент множественной корреляции. Содержательный смысл коэффициента регрессии, его значимость, понятие о t -статистике. Содержательный смысл коэффициента детерминации R 2.

Регрессионный анализ - Статистический метод, позволяющий строить объясняющие модели на основе взаимодействия признаков.

Самым простым случаем взаимосвязи является парная взаимосвязь , т.е. связь между двумя признаками. При этом предполагается, что взаимосвязь двух переменных носит, как правило, причинный характер т.е. одна из них зависит от другой. Первая (зависимая) называется в регрессионном анализе результирующей, вторая (независимая) - факторной . Следует заметить, что не всегда можно однозначно определить, какая из двух переменных является независимой, а какая - зависимой. Часто связь может рассматриваться как двунаправленная.

Уравнение парной регрессии : y = kx + b .

Чаще всего на зависимую переменную действуют сразу несколько факторов, среди которых трудно выделить единственный или главный Так, к примеру, доход предприятия зависит одновременно от двух факторов производства - числа рабочих и энерговооруженности. Причем оба этих фактора сами не являются независимыми друг от друга.

Уравнение множественной регрессии : y = k 1 · x 1 + k 2 · x 2 + … + b,

где x 1 , x 2 , . . . – независимые переменные, от которых в той или иной степени зависит исследуемая (результирующая) переменная y;

k 1 , k 2 . . . – коэффициенты при соответствующих переменных (коэффициенты регрессии ), показывающие, насколько изменится значение результирующей переменной при изменении отдельной независимой переменной на единицу.

Уравнение множественной регрессии задает регрессионную модель , объясняющую поведение зависимой переменной. Никакая регрессионная модель не в состоянии указать, какая переменная является зависимой (следствием), а какие – независимыми (причинами).

R – множественный коэф. корреляции, измеряет совокупность воздействия независимых признаков, тесноту связи результирующего признака со всей совокупностью независимых признаков, выраженных в %.

Показывает какова доля учтенных признаков в отделении результата, т.е. на сколько % вариация признака у объясняется вариациями учтенных признаков Х1, Х2, Х3.

T -статистика показывает уровень стат. значимости кажд. ккоэф-та регресии, т.е. его устойчивость по отношению к выборке.

T = b / Δb

Статистически значимыми явл-ся t >2. Чем больше коэф-т, тем лучше.

через R ² мы делаем заключение о том, на сколько % учтенные признаки объясняют результат.


9.Методы многомерного статистического анализа. Кластер-анализ. Понятие об иерархическом методе и о методе К-средних. Многомерная классификация с использованием нечетких множеств.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

Кластерный анализ – объединение объектов в группу с единой целью (признаков много).

Способы кластерного анализа:

1. иерархический (дерево иерархического анализа):

основная идея иерархического метода заключается в последовательном объединении группируемых объектов - сначала самых близких, а затем все более удаленных друг от друга. Процедура построения классификации состоит из последовательных шагов, на каждом из которых производится объединение двух ближайших групп объектов (кластеров ).

2. метод К-средних .

Требует заранее заданных классов (кластеров). Подчеркивает внутриклассовую дисперсию. основан на гипотезе о наиболее вероятном количестве классов. Задачей метода является построение заданного числа кластеров, которые должны максимально отличаться друг от друга.

Процедура классификации начинается с построения заданного числа кластеров, полученных путем случайной группировки объектов. Каждый кластер должен состоять из максимально "похожих" объектов, причем сами кластеры должны быть максимально "непохожими" друг на друга.

Результаты этого метода позволяют получить центры всех классов (а также и другие параметры дескриптивной статистики) по каждому из исходных признаков, а также увидеть графическое представление о том, насколько и по каким параметрам различаются полученные классы.

Если рез-ты классификаций, полученные разными методами совпадают, то это подтверждает реальн. Сущ-е групп (надежность, достоверность).


10. Методы многомерного статистического анализа. Факторный анализ, цели его использования. Понятие о факторных весах, пределы их значений; доля суммарной дисперсии, объясняемой факторами.

Многомерный статистический анализ. Его цель: построение упрощенного укрупненного ряда объектов.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

В основе факторного анализа лежит идея о том, что за сложными взаимосвязями явно заданных признаков стоит относительно более простая структура, отражающая наиболее существенные черты изучаемого явления, а "внешние" признаки являются функциями скрытых общих факторов, определяющих эту структуру.

Цель: переход от большего числа признаков к небольшому числу факторов.

в факторном анализе все величины, входящие в факторную модель, стандартизированы, т.е. являются безразмерными величинами со средним арифметическим значением 0 и средним квадратическим отклонением 1.

Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору . Это число в интервале от -1 до 1. Чем дальше от 0, тем более сильная связь. Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору. Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором. Факторы являются стандартизованными величинами, не могут быть = нулю. Факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. что она ниже средней.

Таблица факторных весов имеет n строк по числу объектов и k столбцов по числу общих факторов. Положение объектов на оси каждого фактора показывает, с одной стороны, тот порядок, в котором они ранжированы по этому фактору, а с другой стороны, равномерность или же неравномерность в их расположении, наличие скоплений точек, изображающих объекты, что дает возможность визуально выделять более или менее однородные группы.


11. Виды качественных признаков. Номинальные признаки, примеры из исторических источников. Таблица сопряженности. Коэффициент связи номинальных признаков, пределы его значений.

Номинальные данные представлены категориями, для которых порядок абсолютно не важен. Для них не определен никакой другой способ сравнения, кроме как на буквальное совпадение/несовпадение.

Примеры номинальных переменных:

· Национальность: англичанин, белорус, немец, русский, японец и пр.

· Род занятий: служащий, врач, военный, учитель и т.д.

· Профиль образования: гуманитарное, техническое, медицинское, юридическое и т.д.

Если в случае с уровнем образования мы еще могли сравнивать людей в терминах "лучше-хуже" или "выше-ниже", то теперь мы лишены даже этой возможности; единственный корректный способ сравнения ‑ это говорить, что данные персоналии "все являются историками", или "все не являются юристами".

Таблицы сопряженности

Таблицей сопряженности называется прямоугольная таблица, по строкам которой указываются категории одного признака (например, разные социальные группы), а по столбцам - категории другого (например, партийная принадлежность). Каждый объект совокупности попадает в какую-либо из клеток этой таблицы в соответствии с тем, в какую категорию он попадает по каждому из двух признаков. Таким образом, в клетках таблицы стоят числа, представляющие собой частоты совместной встречаемости категорий двух признаков (число людей, принадлежащих конкретной социальной группе и входящих в определенную партию). В зависимости от характера распределения этих частот внутри таблицы можно судить о том, существует ли связь между признаками. Что означает связь между социальным статусом и партийной принадлежностью? В данном случае о наличии связи свидетельствовало бы наличии определенных политических пристрастий у членов разных социальных групп. Формально говоря, эта связь понимается как более частая (или наоборот, редкая) совместная встречаемость отдельных комбинаций категорий по сравнению с ожидаемой встречаемостью - ситуацией чисто случайного попадания объектов туда (например, более высокая доля крестьян в партии трудовиков, а дворян - в партии кадетов, чем доли этих социальных групп во всей совокупности депутатов Думы).


12. Виды качественных признаков. Ранговые признаки, примеры из исторических источников. В каких пределах находятся значения коэффициента ранговой корреляции? Какие коэффициенты следует использовать для оценки связи рангового и номинального признаков?

качественные (или категориальные) данные делятся на два типа: ранговые и номинальные.

Ранговые данные представлены категориями, для которых можно указать порядок, т.е. категории сравнимы по принципу "больше-меньше" или "лучше-хуже".

Примеры ранговых переменных:

· Оценки на экзаменах имеют явно выраженную ранговую природу и выражаются категориями типа: "отлично", "хорошо", "удовлетворительно" и т.д.

· Уровень образования может быть представлен как набор категорий: "высшее", "среднее" и т.п.

Несомненно, мы можем ввести ранговую шкалу и с ее помощью упорядочить всех людей, для которых мы знаем их уровень образования или балл на экзамене. Однако, верно ли, что оценка "хорошо" на столько же хуже, чем "отлично", насколько оценка "удовлетворительно" хуже, чем "хорошо"? Несмотря на то, что формально, в случае с оценками, можно получить разницу в баллах, вряд ли корректно измерять расстояние от "отличника" до "хорошиста" пользуясь теми же правилами, что для расстояния от Москвы до Петербурга. В случае с уровнем образования особенно отчетливо видно, что простые вычисления невозможны, поскольку не существует единого правила вычитания "среднего" уровня образования из "высшего", даже, если мы присвоим высшему образованию код "3", а среднему – код "2".

Своеобразие качественных данных не означает, что их нельзя анализировать с помощью математических и статистических методов.

Ряд объектов, упорядоченных в соответствии со степенью проявления некоторого свойства, называют ранжированным, каждому числу такого ряда присваивается ранг .

Меры взаимосвязи между парой признаков, каждый из которых ранжирует изучаемую совокупность объектов, называются в статистике коэффициентами ранговой корреляции .

Эти коэффициенты строятся на основе следующих трех свойств:

· если ранжированные ряды по обоим признакам полностью совпадают (т.е. каждый объект занимает одно и то же место в обоих рядах), то коэффициент ранговой корреляции должен быть равен +1, что означает полную положительную корреляцию:

· если объекты в одном ряду расположены в обратном порядке по сравнению со вторым, коэффициент равен -1, что означает полную отрицательную корреляцию;

· в остальных ситуациях значения коэффициента заключены в интервале [-1, +1]; возрастание модуля коэффициента от 0 до 1 характеризует увеличение соответствия между двумя ранжированными рядами.

Указанными свойствами обладают коэффициенты ранговой корреляции Спирмена r и Кедалла t .

Коэффициент Кедалла дает более осторожную оценку корреляции, чем коэффициент Спирмена (числовое значение t всегда меньше, чем r ).

Коэффициенты взаимосвязи качественных признаков

Для оценки связи качественных признаков необходим коэффициент, к-й имел бы определенный максимум в случае максимальной связи и позволял бы сравнивать между собой разные таблицы по силе связи между признаками. В данном случае нам подходит коэффициент Крамера V .

Базируясь на значении критерия хи-квадрат, коэффициент Крамера позволяет измерять силу связи между двумя категоризованными переменными - измерить ее числом, принимающим значения от 0 до 1, т.е. от полного отсутствия связи до максимальной сильной связи. Коэффициент позволяет сравнить зависимости разных признаков, с тем, чтобы выявить более и менее сильные связи.


13. Математическое моделирование исторических процессов и явлений. Определение понятия «модель». Три типа моделей, примеры их использования в исторических исследованиях.

14. Дифференциальные уравнения как основной инструмент построения математических моделей теоретического типа. Их особенности в сравнении с моделями иммитационного и статистического типа. Пример такой модели.

В процессе обработки и обобщения статистических данных существует необходимость определения средних величин. Каждая однородная статистическая совокупность состоит из достаточно большого числа единиц, которые отличаются размерами количественных признаков. Вместе с тем, каждая единица совокупности по определению несет черты, свойственные всей совокупности. Расчёт средних величин позволяет выявить типичный уровень признаков и черт изучаемой совокупности.

Средними величинами называются обобщающие показатели, характеризующие типичный уровень варьирующего признака в расчёте на единицу совокупности в конкретных условиях места и времени.

Правильное понимание сущности средней величины определяет её особую значимость в условиях рыночной экономики, когда среднее через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. В условиях реальной экономической, в том числе коммерческой, деятельности постоянные причины (факторы) действуют одинаково на каждое изучаемое явление и именно они делают эти явления похожими друг на друга и создают общие для всех закономерности. Результатом учения об общих и индивидуальных причинах явлений стало выделение средних величин в качестве основного приёма статистического анализа, базирующегося на утверждении, что статистические средние величины представляют собой не просто меру математического измерения, а категорию объективной действительности. В статистической теории типическая реально существующая средняя величина отожествляется с истинной для данной совокупности величиной, отклонения от которой могут быть только случайными.

Например, выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, воспитания, здоровья и т.д. А средняя выработка (продажа) на одного продавца отражает общее типичное свойство всей совокупности продавцов. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Таким образом, средние величины – обобщающие показатели, в которых находит выражение действие общих условий, закономерность изучаемого явления.

В практике статистической обработки данных возникают различные задачи, имеются особенности изучаемых явлений, и поэтому для их решения требуются различные средние.

По уровню обобществления данных изучаемой совокупности средние могут быть общими и групповыми. Средняя, рассчитанная по совокупности в целом, называется общей средней, а средние, исчисленные для каждой группы, - групповыми средними.

Различают степенные и структурные средние.

Степенные средние выводятся из общей формулы вида:



С изменением показателя степени приходим к определенному виду средней:

при - средняя гармоническая ;

при - средняя геометрическая ;

при - средняя арифметическая ;

при - средняя квадратическая .

Вопрос о том, какой вид средней необходимо применять в отдельном случае, решается путём конкретного анализа изучаемой совокупности, материальным содержанием изучаемого явления, осмыслением результатов осреднения. Только тогда средняя величина применена правильно, когда в результате осреднения получают величины, имеющие реальный смысл.

Вводятся следующие обозначения:

– количественный признак, по которому находится средняя, называется осредняемым признаком;

среднее значение признака (с чертой сверху), представляющее результат осреднения;

Индивидуальные значения признака у единиц совокупности называемые вариантами;

– общее число единиц совокупности;

- частота или повторяемость индивидуального значения признака (его вес);

Усредняющий признак (индекс).

В зависимости от наличия исходных данных средние можно рассчитать различным образом. В случае, если индивидуальные значения осредняемого признака (варианты) не повторяются при конкретных значениях усредняющего признака применяются формулы простых степенных средних. Однако, когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторения индивидуальных значений признака (- вес признака) присутствует в формулах степенных средних. В этом случае они называются формулами взвешенных степенных средних. В формулах взвешенных средних вместо частот может содержаться частость

определяемая как отношение частоты признака к сумме частот.

В табл.9 приведены формулы расчёта различных видов степенных простых и взвешенных средних величин.

Табл.9. Формулы расчёта степенных средних величин

Значение Название средней Формула средней
простая взвешенная
- 1 Средняя гармоническая
Средняя геометрическая
Средняя арифметическая
Средняя квадратическая

Средняя арифметическая – наиболее распространённый вид средней. Она исчисляется в случаях, когда объём осредняемого признака образуется как сумма его значений у отдельных единиц совокупности. Например, требуется вычислить средний стаж десяти работников предприятия, причём дан ряд одиночных значений признака 6, 5, 4, 3, 3, 4, 5, 4, 5, 4. Тогда объём осредняемого признака

а среднее значение вычисляется по формуле простой средней

Если те же данные сгруппированы по величине признака, то среднее значение вычисляется по формуле взвешенной средней

Средняя гармоническая величина чаще всего вычисляется, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а имеются данные по объёмам осредняемого признака, относящимся к отдельным вариантам совокупности. Например, необходимо вычислить среднюю цену единицы товара, причём даны объёмы реализации по каждому виду товара в виде ряда 600, 1000, 850 (тыс. руб.) и соответствующие цены по каждому виду товара в виде ряда 20, 40, 50 (тыс. руб./шт.). Тогда средняя цена вычисляется по формуле средней гармонической взвешенной

Можно видеть, что средняя гармоническая является превращённой (обратной) формой средней арифметической. Вместо средней гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака.

При использовании формулы средней геометрической индивидуальные значения признака, как правило, представляют собой относительные величины динамики, построенные в виде цепных величин (как отношения последующих уровней показателя к предыдущим уровням в ряду динамики), причём временные отрезки ряда динамики одинаковы (сутки, месяц, год). Средняя геометрическая величина характеризует, таким образом, средний коэффициент роста. Например, для данных ряда динамики, представленных в табл.10,

Табл.10. Ряд динамики роста доходов населения

средний темп роста доходов населения вычисляется по формуле средней геометрической простой

Формула средней квадратической величины используется для измерения средней степени колеблемости значений признака около среднего арифметического значения в рядах распределения. Так, например, при расчёте такого показателя вариации, как дисперсия, среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины (см. в главе 6).

Степенные средние разных видов, исчисленные по одной и той же совокупности, имеют различные количественные значения, причём чем больше показатель степени тем больше и величина соответствующей средней

Это свойство степенных средних называется мажорантностью средних.

Для характеристики структуры совокупности применяются особые показатели, которые называют структурными средними. К таким показателям относятся мода и медиана.

Модой называется наиболее часто встречающееся значение признака у единиц данной совокупности. Она соответствует определенному значению признака.

Например, выборочное обследование 8 пунктов обмена валюты позволило зафиксировать различные цены за доллар (табл.11). В этом случае модальной ценой за доллар является величина поскольку в обследованной совокупности пунктов обмена валюты она встречается наиболее часто (3 раза).

№ пункта
Цена за 1 $

Медиана – это величина признака, которая делит численность упорядоченного вариационного ряда на две равные части.

Для примера возьмём данные табл.10 и расположим индивидуальные значения признака в возрастающем порядке.

2150 2155 2155 2155 2160 21652165 2175

Порядковый номер медианы определяется по формуле

а) В случае чётного числа номер медианы имеет не целое значение (в нашем случае 4,5). Медиана будет равна средней арифметической из соседних значении и

б) В случае нечётного числа индивидуальных признаков (допустим, )

Следовательно, в этом случае

В рассмотренном примере нахождение таких средних, как мода и медиана, было целесообразно, поскольку исследователь не располагал объёмом продаж по каждому пункту и не мог поэтому с хорошей точностью провести расчёт средней арифметической цены за доллар. Также рассмотренный пример иллюстрирует положение о том, что выбор вида соответствующей средней всегда зависит от имеющихся в наличии данных.

4.3. Свойства и методы расчёта средних величин

Наиболее часто используемая в экономико-статистической практике средняя арифметическая величина обладает рядом математических свойств, которые иногда упрощают её расчёт. Эти свойства следующие:

1. Если варианты уменьшить или увеличить на некоторое постоянное число, то

средняя арифметическая величина соответственно уменьшится или увеличится на это

2. Если варианты изменить в постоянное число раз то средняя тоже изменится во

столько же раз

3. Если частоты разделить или умножить на некоторое постоянное число, то средняя не изменится

4. Произведение средней арифметической на сумму частот равно сумме произведений вариантов на частоты

5. Алгебраическая сумма отклонения вариантов от средней величины равна нулю

Все перечисленные свойства следуют из определения средней арифметической взвешенной (см.раздел 4.2).

Иногда расчёт средней арифметической величины удобно упростить, используя её математические свойства. Для этого нужно из всех вариант вычесть произвольную постоянную величину, полученную разность разделить на общий множитель, а затем исчисленную среднюю величину умножить на общий множитель и прибавить произвольную постоянную. В результате формула средней арифметической взвешенной получит следующий вид.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

Реферат

Средние величины и показатели вариации

1.Сущность средних в статистике

2.Виды средних величин и способы их расчёта

3.Основные показатели вариации и их значение в статистике

1. Сущность средних ве личин в статистике

В процессе изучения массовых социально-экономических явлений возникает необходимость выявления их общих свойств, типичных размеров и характерных признаков. Необходимость в обобщающем среднем показателе возникает в том случае, когда признаки, характеризующие единицы изучаемой совокупности, количественно варьируют. Например, размер дневной выработки ткачей на текстильной фабрике зависит от общих условий производства, ткачи используют одинаковое сырьё, работают на одинаковых станках и т.д. В то же время часовая выработка отдельных ткачей колеблется, т.е. варьирует, так как зависит от индивидуальных особенностей каждого ткача (его квалификации, профессионального опыта и т.д.). Чтобы характеризовать дневную выработку всех ткачей предприятия, необходимо исчислить среднюю величину дневной выработки, так, как, только, в, этом, показателе найдут отражение общие для ткачей условия производства.

Таким образом, исчисление средних обобщающих показателей означает отвлечение (абстрагирование) от особенностей, отражающихся в величине признака у отдельных единиц, и выявление общих для данной совокупности типичных черт и свойств.

Таким образом, средней величиной в статистике является обобщённая, количественна характеристика признака и статистической совокупности. Она выражает характерную, типичную величину признака у единиц совокупности, образующихся в данных условиях места и времени под влиянием всей совокупности факторов. Действие разнообразных факторов порождает колебание, вариацию усредняемого признака. Средняя величина является общей мерой их действия, равнодействующей всех этих факторов. Средняя величина характеризует совокупность по усредняемому признаку, но относится к единице совокупности. Например, средняя выработка продукции на одного рабочего данного предприятия представляет собой отношение всей выработки (за любой период времени) к общей (средней за тот же период) численности его рабочих. Она характеризует производительность труда данной совокупности, но относится к одному рабочему. В средней величине массового явления погашаются индивидуальные различия единиц статистической совокупности в значениях усредняемого признака, обусловленные случайными обстоятельствами. Вследствие этого взаимопогашения в средней проявлявляется общее, закономерное свойство данной статистической совокупности явлений. Между средней и индивидуальными значениями осреднённого признака существует диалектическая связь как между общим и отдельным. Средняя является важнейшей категорией статистической науки и важнейшей формой обобщающих показателей. Многие явления общественной жизни становятся ясными, определёнными, лишь, будучи обобщенными, в форме средних величин. Таковы, например, упомянутая выше производительность труда, совокупность рабочих, урожайность сельскохозяйственных культур и т.д. Средняя выступает в статистике важнейшим методом научного обобщения. В этом смысле говорят о методе средних величин, который широко применяется в экономической науке. Многие категории экономической науки определяются с использованием понятия средней.

Основным условием правильного применения средней величины является однородность статистической совокупности по усредняемому признаку. Однородной статистической совокупностью называется такая совокупность, в которой её составные элементы (единицы) сходны между собой по существенным для данного исследования признакам и относятся к одному и тому же типу явлений. Однородная совокупность, будучи однородна по одним признакам, может быть разнородной по другим. Только в средних для таких совокупностей проявляются специфические особенности, закономерности развития анализируемого явления. Средняя вычисленная для неоднородной статистической совокупности, т.е. такой в которой объединены качественно различные явления, теряет своё научное значений. Такие средние являются фиктивными, не только не дающими представления о действительности, но и искажающими её. Для формирования однородных статистических совокупностей производится соответствующая группировка. С помощью группировок и в качественно однородной совокупности могут быть выделены характерные в количественном отношении группы. Для каждой из них может быть вычислена своя средняя, называемая средней групповой (частной) в отличие от общей средней (для совокупности в целом).

2. Виды средних величин

Большое значение в методологии средних величин имеют вопросы выбора формы средней, т.е. формулы по которой можно правильно вычислить среднюю величину, и выбора весов средней. Наиболее часто в статистике применяются средняя агрегатная, средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратичная, мода и медиана. Применение той или иной формулы зависит от содержания усредняемого признака и конкретных данных, по которым её необходимо рассчитать. Для выбора формы средней можно воспользоваться так называемым средним исходным соотношением.

2.1 Средняя арифметическая

Средняя арифметическая - одна из наиболее распространенных форм средней величины. Средняя арифметическая рассчитывается как частное от деления суммы индивидуальных значений (вариантов) варьирующего признака на их число. Средняя арифметическая применяется в тех случаях, когда объём варьирующего признака явлений однородной статистической совокупности, образуется путём суммирования значений признака всех единиц явлений статистической совокупности. Различают следующие средне арифметические величины:

1) Простая средняя арифметическая , которая определяется путём простого суммирования количественных значений варьирующего признака и деления этой сумы на их варианты и рассчитывается по следующей формуле:

Х - средняя величина статистической совокупности,

x i - сумма отдельных варьирующих вариантов явлений статистической совокупности,

n i - количество варьирующих вариантов явлений статистической совокупности.

2) Среднеарифметическая взвешенная - средняя величина признака явления, вычисленная с учётом весов. Веса средних величин - частоты, с которыми отдельные значения признака осредняемого принимаются в расчёт при исчислении его средней величины. Выбор весов средней величины зависит от сущности усредняемого признака и характера данных, которыми располагают для вычисления средних величин. В качестве весов средних величин могут быть показатели численности единиц или размеры частей статистической совокупности (в форме абсолютных или относительных величин), обладающих данным вариантом (значением) усредняемого признака явления статистической совокупности, а также величины показателя связанного с усредняемым признаком. Среднеарифметическая взвешенная рассчитывается по следующей формуле:

X- средняя арифметическая взвешенная,

х - величина отдельных варьирующих вариантов явлений статистической совокупности,

Назначение простой, и взвешенной средней арифметической является определение среднего значения варьирующего признака. Если в изучаемой статистической совокупности варианты значений признака встречаются по одному разу или имеют одинаковый вес, то применяется простая средняя арифметическая, если же варианты значений данного признака встречаются в изучаемой совокупности по несколько раз или имеют различные веса, для определения среднего значения варьирующего признака применяется средняя арифметическая взвешенная.

2.2 Средняя гармоническая

Средняя гармоническая применяется для расчёта средней величины тогда, когда непосредственные данные о весах отсутствуют, а известны варианты усредняемого признака (х) и произведения значений вариантов на количество единиц, обладающих данным его значением w (w = xf).

Данная средняя рассчитывается по следующим формулам:

1.) Среднегармоническая простая:

Х - средняя гармоническая простая,

n - количество варьирующих вариантов явлений статистической совокупности.

2) Среднегармоническая взвешенная:

Х - средняя гармоническая взвешенная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

При использовании гармонической взвешенной выявляют веса и таким образом получают тот же результат, который дал бы расчёт по средней арифметической взвешенной, если бы были известны все необходимые для этого данные.

2.3 Средняя агрегатная

Средняя агрегатная рассчитывается по формуле:

X - средняя агрегатная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

Средняя агрегатная вычисляется в тех случаях, когда известны (имеются) значения числителя и значения знаменателя исходного соотношения средней.

2.4 Средняя геометрическая

Средняя геометрическая является одной из форм средней величины и вычисляется как корень n-й степени из произведения отдельных значений - вариантов признака (х) и определяется по следующей формуле:

Средняя геометрическая применяется в основном при расчётах средних темпов роста.

2.5 Мода и медиана

Наряду с рассмотренными выше средними в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода и медиана.

Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности . Для дискретных рядов - этот вариант, имеющий наибольшую частоту.

В интервальных вариационных рядах можно определить, прежде всего, интервал, в котором находится мода, т.е. так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами по наибольшей плотности распределения.

Для определения моды в рядах с равными интервалами пользуются формулой следующего вида:

Хн - нижняя граница модального интервала,

h - величина интервала,

f 1 , f 2 , f 3 - частоты (или частности) соответственно предмодального, модального и послемодального интервалов.

В интервальном ряду моду можно найти графически. Для этого в самом высоком столбце гистограммы от границ двух смежных столбцов проводят две линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, и будет модой.

Во многих случаях при характеристике совокупности в качестве обобщённого показателя отдаётся предпочтение моде, а не средней арифметической.

Так, при изучении цен на рынке фиксируется и изучается в динамике не средняя цена на определённую продукцию, а модальная; при изучении спроса населения на определённый размер обуви или одежды представляет интерес определение модального размера обуви, а средний размер как таковой здесь вообще не имеет значения. Мода представляет не только самостоятельный интерес, но и исполняет роль вспомогательного показателя при средней, характеризуя её типичность. Если средняя арифметическая близка по значению к моде, значит она типична.

Медианой (Ме) называется значение признака у средней единицы ранжированного ряда. (Ранжированным называют ряд, у которого значения признака записаны в порядке возрастания или убывания.)

Чтобы найти медиану, сначала определяется её порядковый номер. Для этого при нечётном числе единиц к сумме всех частот прибавляется единица, и всё делится на два. При чётном числе единиц в ряду будет две средних единицы, и по всем правилам медиана должна определяться как средняя из значений этих двух единиц. При этом практически при чётном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер которой определяется по общей сумме частот, делённой на два. Зная порядковый номер медианы, легко по накопленным частотам найти её значение.

В интервальных рядах после определения порядкового номера медианы по накопительным частотам (частностям) отыскивается медиальный интервал, а затем при помощи простейшего интерполяционного приёма определяется значение самой медианы. Этот расчёт выражает следующая формула:

X n - нижняя граница медианного интервала,

h - величина медианного интервала,

Порядковый номер медианы,

S Me - 1 частота (частотность), накопленная до медианного интервала,

F Me - частота (частность) медианного интервала.

Согласно записанной формуле к нижней границе медианного интервала прибавляется такая часть величины интервала, которая приходится на долю единиц этой группы, недостающих до порядкового номера медианы. Другими словами, расчёт медианы построен на предположении, что нарастание признака среди единиц каждой группы происходит равномерно. На основе сказанного можно рассчитать медиану и по иному. Определив медианный интервал, можно из верхней границы медианного интервала (Хв) вычесть ту часть интервала, которая приходится на долю единиц, превышающих порядковый номер медианы, т.е. по следующей формуле:

Медиану можно также определить и графически. Для этого строиться кумулята и из точки на шкале накопленных частот (частностей), соответствующей порядковому номеру медианы, проводится прямая, параллельная оси х до пересечения с кумулятой. Затем из точки пересечения указанной прямой с куммулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведённой ординате (перпендикуляру), и будет медианой.

По такому же принципу легко найти значение признака у любой единицы ранжированного ряда.

Таким образом, для расчёта средней величины вариационного ряда можно использовать целую совокупность показателей.

3. Основные показатели вари ации и их значение в статистике

При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчётом средней величины из отдельных вариантов, так как одна и та же средняя может относиться далеко не к одинаковым по составу совокупностям. Это можно проиллюстрировать следующим условным примером, отражающим данные о числе дворов в агрохозяйствах двух районов:

Среднее число дворов в агрохозяйствах двух районов одинаково - 160. При этом состав этих агрохозяйств в двух районах далеко не одинаков. Поэтому возникает необходимость измерить вариацию признака в совокупности.

Для этой цели в статистике рассчитывают ряд характеристик, т.е. показателей. Самым элементарным показателем вариации признака является размах вариации R , представляющий собой разность между максимальными и минимальными значениями признака в данном вариационном ряду, т.е. R = Xmax - Xmin. В нашем примере в 1 районе R = 300 - 80 - 220, а во втором районе R = 180 - 145 = 35.

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц. Иногда находят отношение размаха вариации к средней арифметической и пользуются этой величиной, именуя её показателем осцилляции.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической. Таких показателей в статистике два - среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений вариантов от средней. Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Данный показатель рассчитывается по формуле:

б) для вариационного ряда:

Следует иметь в виду, что среднее линейное отклонение будет минимальным, если отклонения рассчитаны от медианы, т.е. по формуле:

Среднее квадратическое отклонение () исчисляется следующим образом - каждое отклонение от средней возводится в квадрат, все квадраты суммируются (с учётом весов), после чего сумма квадратов делиться на число членов ряда и из частного извлекается корень квадратный.

Все данные действия выражаются следующими формулами:

а) для несгрупированных данных:

б) для вариационного ряда:

f, т.е. среднее квадратическое отклонение предятавляет собой корень квадратный из средней арифметической квадратов отклонений средней. Выражение под корнем носит название дисперсии. Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

?m- 1 – сумма накопленных членов ряда, предшествующих данному.

    Понятие вариации и её значение. Основные показатели вариации, их достоинства и значение.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изу­чаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации. Задачи статистического изучения вариации: 1) изучение характера и степени вариации признаков у отдельных единиц совокупности; 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых изме­ряется вариация. Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения. Различают вариацию в пространстве и вариацию во времени . Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени. Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями – wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой: Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

    Виды дисперсий и правило их сложения. Коэффициент детерминации и эмпирическое корреляционное отношение: экономическое значение и их расчёт.

Показатели вариации

Одних только средних недостаточно для оценки тех или иных явлений, так как средние уравнивают, сглаживают индивидуальные особенности отдельных единиц совокупности, показывают типичный для данных условий уровень варьирующих признаков, и тем самым могут затушевывать различные тенденции в развитии. В этом случае исчисляют показатели вариации ,характеризующие средние отклонения каждой единицы совокупности от среднего значения признака в целом .

Вариация имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов, описательная характеристика которых представлена в табл. 5.6.

Дисперсия имеет ряд математических свойств, упрощающих технику ее расчета.

1. Если из всех вариант отнять какое-то постоянное число А , то дисперсия от этого не изменится.

2. Если все значения вариант разделить на какое-то постоянное число h , то дисперсия уменьшится от этого в h 2 раз, а среднее квадратическое отклонение – в h раз.

Таблица 5.6.

Показатели вариации

Название показателя

Обозначение и методика расчета

Сущностная храктеристика

по несгруппированным данным

по сгруппированным данным

Размах вариации

Улавливает только крайние отклонения значений признака, но не отражает отклонений от средней всех вариант в ряду. Чем больше размах вариации, тем менее однородна исследуемая совокупность

Среднее линейное отклонение

Представляет собой среднее арифметическое значение абсолютных отклонений признака от его среднего уровня. Чем меньше среднее линейное отклонение, тем более однородны значения признака изучаемого явления

Дисперсия

Представляет собой средний квадрат отклонений значений признака от его среднего уровня

Среднее квадратическое отклонение

Является абсолютной мерой вариации и зависит не только от степени вариации признака, но и от абсолютных уровней вариант и средней, что не позволяет непосредственно сравнивать средние квадратические отклонения вариационных рядов с разными уровнями. Оно выражается в тех именованных числах, в которых выражены варианта и средняя

Коэффициент вариации

Является относительной мерой вариации. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна (типична) средняя

Методика расчета показателя дисперсии упрощенными способами показана на рис. 5.4. Отметим, что способ моментов применим в том случае, если задан интервальный ряд с равными интервалами , а способ разности применяется в любых рядах распределения : дискретных и интервальных с равными и неравными интервалами.

Вариация признака определяется различными факторами, в результате чего различают общую дисперсию, межгрупповую дисперсию и внутригрупповую дисперсию.

Общая дисперсия (σ 2 ) измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Вместе с тем, благодаря методу группировок можно выделить и измерить вариацию, обусловленную группировочным признаком, и вариацию, возникающую под влиянием неучтенных факторов.

Межгрупповая дисперсия (σ 2 м.гр ) характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака – фактора, положенного в основание группировки.

Рис.5.4. Упрощенные способы расчета дисперсии

,

где k – количество групп, на которые разбита вся совокупность;

m j – количество объектов, наблюдений, включенных в группу j ;

–среднее значение признака по группе j ;

–общее среднее значение признака.

Внутригрупповая дисперсия (σ 2 j,вн.гр ) отражает случайную вариацию, т.е. часть вариации, возникающую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.

, или, на основе метода разностей ,

где x ij – значение i -ой варианты в группе j .

Если в сформированных группах отдельные данные встречаются не один раз, то для расчета внутригрупповой дисперсии используется формула средней арифметической взвешенной.

Среднее значение внутригрупповых дисперсий рассчитывается по формуле:

.

Существует закон согласно которому, общая дисперсия, возникающая под воздействием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака и дисперсии, появляющейся под влиянием всех прочих факторов. Этот закон связывает три вида дисперсии.

Правило сложения дисперсий : .

Правило сложения дисперсии широко применяется при исчислении тесноты связей между признаками (факторным и результативным). Для этого определяют эмпирический коэффициент детерминации и эмпирическое корреляционное отношение.

Эмпирический коэффициент детерминации (η 2) показывает, какая доля всей вариации признака обусловлена признаком, положенным в основание группировки . (η – греческая буква «эта»).

Эмпирическое корреляционное отношение (η ) показывает тесноту связи между признаками - группировочным и результативным.

Оно изменяется в пределах от 0 до 1. Если η = 0, то группировочный признак не оказывает влияния на результативный, если η =1,то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторов равно нулю. Характеристика связи между признаками при соответствующих значениях эмпирического корреляционного отношения приведена в табл. 5.7.

Таблица 5.7

Качественная оценка связи между признаками

  1. Понятие и классификация рядов динамики. Сопоставимость уровней и смыкание рядов динамики.

Динамика – процесс развития движения соц.эк. явлений во времени. Для её отображения строят ряды динамики. Ряд динамики представл. Собой ряд расположенных в хронологической последовательности знач. Стат. показателей, характер. развитие явления Анализ рядов динамики позволяет выявить тенденции и закономерности соц.эк развития. Ряд динамики состоит из 2-ух элементов: 1)показатели времени (t) – либо определенные даты, либо отдельные периоды (годы, кварталы и тд.) 2)Уровни ряда (y) – они отображают количественную оценку развития во времени изучаемого явления. Виды рядов динамики : 1. По времени отражаемому в динамич. Рядах они делятся на: -моментальные отображают состояние изучаемых явлений на опр даты (моменты времени) С помощью моментных рядов изучают: численность населения, стоимость осн средств, товар запасы. Уровни мом. Рядов динамики суммировать не имеет смысла, т.к. мож. Возникнуть повторный счет – интервальные – отображают итоги развития изучаемого явления за отдельные периоды (интервалы времени) : ряды динамики произ-ва прод-ции, инвестиций, затраченных средств. Уровни интервального ряда динамики абсолют. Величин мож суммировать, т.к. их можно рассматривать как итог за более длительный период времени. 2. В зависимости от способа выражения уровней ряда динамики различают ряды: - абсолютных величин, - относительных, - средних величин. 3. В зависимости от расстояния м/у уровнями различ. ряды динамики с равностоящими и не равностоящими уровнями во времени. Основ условием для получения правильных выводов при анализе ряда динамики явл-ся сопоставимость его уровней. Условия сопоставимости уров. Ряда динамики. 1)Долж. Быть обеспечена одинаковая полнота охвата различных частей явления. Уровни динамического ряда за отдельные периоды времени долж харка-вать размер явления по одному и тому же кругу, входящий в его состав частей. 2)При определении сравниваемых уровней ряда динамики необх. Использовать единую методологию их расчета. 3)Равенство периодов, за к-рые приводятся данные. 4)Необходимо использовать одинаковые единицы измерения. При харак-ки стоимостных показателей во времени долж. б. устранено влияние изменение цен необх. оценка изучаемого показ-ля в ценах одного периода (в сопоставимых ценах) 5)Исходя из цели исследов-ия данные по тер-риям, границы которые изменились долж. б. пересчитаны в старых пределах. Для приведения уровней ряда дин-ки к сопоставимому виду использ. Прием, который наз-ся Смыкание рядов динамики. Смыкание- объединение в один ряд двух или нескольких рядов динам., уровни которых исчислены по разной методике или разными территориальными границами. Чтобы произвести смыкание рядов необх, чтобы для одного из периодов (переходного) имелись данные, рассчитанные по разной методике или в разных границах.

    Показатели интенсивности изменения уровня ряда динамики. Цепной и базисный способы расчёта.

Для качественной оценки динамики, изучаемых явлений применяется ряд стат. показателей получаемых в результате сравнения уровней м/у собой. При этом сравниваемый уров. Наз-ся отчетный, а уров., с которым происх. Сравнение базисным. К основ. показателям динамики относятся абсолют. Прирост, темп роста, темп прироста, абсолют. Значение одного % прироста. В зависимости от применяемого способа сопоставления показатели динамики мог. вычисляться с постоянной и переменной базой сравнения y 1← y 2← y 3← y 4← y 5 Абсолютный прирост характ. размер увеличения или уменьшения уровня ряда динамики за определенный период времени и определ-ся как разность м/у 2-мя уровнями ряда. ∆y ц = y i – y i - 1 ∆ y б = y i – y 0 м/у цепным и базисными абсолютными приростами сущ-ет взаимосвязь: сумма ценных абсол-ых приростов равна базисному абсол-му приросту последнего периода ряда динамики. ∑∆y ц = ∆ y бп Темп роста характеризует интенсивность изменения уравнения ряда и показывает во сколько раз уров. текущего периода больше или меньше уровня предыдущего (базисного) периода или сколько % он составляет по отношению к предыдущему периоду Трц = y i /y i-1 * 100% Трб = y i /y 0 * 100% м/у цепными и базис темпами роста имеется взаимосвязь: произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста последнего периода ряда динамики. П Крц = Крб Темп прироста показывает на сколько % - ов уров. данного периода больше или меньше уровня принятого за базу сравнения: Он мож б рассчитан 2 способами: а) как отношение абсол.-го прироста к уровню, принятому за базу сравнения Тпрц = ∆ y i / y i-1 * 100% Тпрб = ∆ y i / y 0 * 100% б) как разность м/у темпом роста и 100%-ми Тпр = Тр – 100% Абсолютное значение 1% присрота показывает какая абсло-ая величина содержится в относ-ном показателе – одном % прироста. Это отношение абсло-ого прироста к темпу прироста, выраженному в %-ах. Данный показатель рассчитывается по цепным данным А % =∆ y i / Тпр % = ∆ y i / (∆ y i / y i-1)*100 = y i-1 / 100 Для получения обобщающих показателей динамики соц.эк. явлений определяют средние величины: ср уровень ряда, сред абсол-ый прирост, след темп роста, сред темп прироста. Средний уровень ряда динамики дает общую характ-ку уровня явлен. За весь период. Методы его расчета зависят от вида ряда динамики. а) для моментных рядов для ровно стоящими расчит сред. уров. ряда осущ-ся по форм. средней хронологич-кой. y` = (½ y 1 + y 2 + y 3 + ….½y n)/n-1 n – число уровней ряда. б)для моментных рядов с не равностоящими уров-ми предварительно находятся значения уровней в серединах интервалов y` 1 = y 1 + y 2 /2 ; y 2 = y 2 + y 3 /2,……..,y` n = y n-1 + y n /2 Затем определяется общий сред уров. ряда по формуле средней арифм-ой взвешенной: y` = ∑y` i * t i / ∑t i y` I – сред уровни в интервалах м/у датами, ti – длительность интервала времени м/у уровнями. в) Для интервальных рядов с равностоящими уровн-ми во времени, сред уров расситыв-ся по формуле средней арифм-кой простой y` = ∑ y i /n Средний абсолютгый прирост показывает на сколько в среднем за единицу времени увеличивается (уменьшается) уровень ряда. ∆ y i = ∑ y iц / n-1 или ∆ y i = y n – y 1 /n-1

y1 – начальный уровень ряда динамики yn – конечный уровень ряда динамики. Средний темп роста показывает во сколько раз в среднем за единицу времени изменился уровень ряда динамик. Он опред-ся по форм. средней геометрической из цепных коэф-тов роста. Т`р = n – 1 √К ц р 1 * К ц р 2 *……*К ц р n – 1 = n – 1 √ ПКр ц = n -1 √Крб = n – 1 √ y n /y 1 * x 100%

Средний темп прироста показ-ет на сколько % в среднем за единицу времени увеличился (уменьшился) уровень ряда Т`пр = Т` - 100%.

    Средние показатели ряда динамики, их расчёт.

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда . Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный).

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е.

Если имеетсямоментный ряд, содержащий n уровней (y1, y2, …, yn ) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет. Как указывалось ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической. Следовательно, можно записать. После преобразования числителя получаем,

где Y1 и Yn - первый и последний уровни ряда; Yi - промежуточные уровни.

Эта средняя известна в статистике каксредняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей.

В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е. . В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi+1 ) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода. Если же предполагается, что каждое значение yi остается неизменным до следующего (i+ 1)- го момента, т.е. известна точная дата изменения уровней, то расчет можно осуществлять по формуле средней арифметической взвешенной: ,

где – время, в течение которого уровеньоставался неизменным.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения .

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Базисное среднее относительное изменение определяется по формуле

Цепное среднее относительное изменение определяется по формуле

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения , по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

    Методы анализа основной тенденции в рядах динамики.

Измените уровней ряда динамики обуславливается на изучаемое явление определяющее влияние и формируют в рядах динамики основную тенденцию развития (тренд) Воздействие факторов действующих периодически вызывает повторяемые во времени колебания уровней ряда динамики. Действие разовых факторов отображается случайными (кратковременных) изменениями уровней ряда дин-ки. Т.т ряд дин-ки вкл след основ. компоненты: 1)основ тенденция (тренд) 2)циклические (периодические колебания) 3)Случайные колебания Основной тенденцией развития (трендом) наз-ся плавное и устойчивое изменения уровня явлений во времени свободное от случ. Колебний. Выявление основ тенденции изменения уровней ряда предполагает её количественное выражение в некоторой мере свободное от случайных воздействий. Для выявления тренда испо-ся различные способы сглаживания (выравнивания ряда) : 1)Метод укрепления интервалов – заключ-ся в том что первоначальный ряд динамики преобразуется в ряд более продолжительных периодов (Напр. ряд, содержащий данные в месячном выпуске продукции преобразуется в ряд квартальных данных) 2)Метод скользящей средней. Состоит в том сто исходные уровни ряда заменяются средними величинами, к-рые получают из данного уровня и нескольких симметрично его окружающих. Число уровней, поск-ым рассчитываются сред. значение наз-ся интервалом сглаживания, он мож. четным и нечетным. Расчет средних ведется способом скольжения, т.е. постепенным исключением их принятого периода скольжения. 1-ого уровня и включением следующего. Нахождение скользящей средней по четному числу уровней осложняется тем, что средняя мож быть отнесена толь. к середине укрупненного интер-ла. Поэт. для определения сглаженных уровней производится центрирование, т.е. нахождение средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. 3)Аналитическое выравнивание. Суть метода заключается в подборе матем. Функции, к-рая наилучшим образом характеризует исходные уровни ряда динамики. Эмпирические (фактические) уровни ряда динамики заменяют на плавно изменяющиеся теоретические уровни, рассчитанные по какой-либо функц. Зависимости отклонение исходных уровней ряда от уровней, соответ-щих общей тенденции объясняется действием случайных или периодических факторов. Для выравнивания используют след. матем. Функции: а) линейная y t =a 0 +a 1 t