Экономико математические методы примеры. Экономико-математические методы и модели. Их классификация. Экономико-математические модели и методы, применяемые в экономическом анализе

Все модели, которые человек использует в различных сферах своей деятельности, условно можно поделить на две группы: материальные и абстрактные. Первые являются объективными, их можно реально потрогать руками. Вторые же существуют только в человеческом сознании. В рамках данной статьи будут рассмотрены лишь математические методы и модели в экономике. Они применяются для анализа процессов и явлений, происходящих в этой сфере. Их использование позволяет ставить новые экономические задачи. Благодаря ним руководство принимает решения, касающиеся управления организацией, фирмой, предприятием.

Математические операций в экономике являются самым эффективным инструментом изучения проблем в данной области. В современной научной и технической деятельности они становятся немаловажной формой моделирования. А в практике планирования и управления этот способ - основной.

Экономико-математические методы и модели являются той базой, на основе которой реализуются различные программы, изначально предназначенные для решения задач планирования, анализа и управления. Вместе с техническими средствами, с базами данных они входят в состав человеко-машинной системы. Она позволяет использовать модели и знания для решения разного рода проблем (как неконструктурированных, так и слабоконструктурированных).

В зависимости от критериев, которые лежат в основе деления, экономико-математические методы и модели классифицируются следующим образом.

1. По цели они бывают:

Прикладные, то есть с их помощью решаются конкретные задачи;

Теоретико-аналитические (они применяются, когда нужно исследовать общие закономерности и признаки развития процессов, происходящих в экономике).

2. По тому, какие причинно-следственные связи они отражают:

Детерминированные;

Вероятностные (учитывают фактор возникающей неопределенности).

3.По уровню тех процессов в экономике, которые они исследуют:

Производственные и технологические;

Социально-экономические.

4. По тому способу, которым отражается фактор времени:

Динамические, по ним видны происходящие изменения;

Статические, все зависимости здесь отражают лишь один период времени или момент.

5. По уровню детализации:

Макромодели (агрегированные);

Микромодели (детализированные).

6. По форме, в которой выражаются математические зависимости:

Нелинейные;

Линейные - их очень удобно использовать для вычисления и анализа, что привело к их более широкому распространению.

Экономико-математические методы и модели имеют и свои принципы построения. К ним относятся:

1. Принцип однозначности данных. Согласно ему информация, которая используется в начале моделирования, не должна зависеть от тех параметров будущей системы, которые на данном этапе исследования еще даже неизвестны.

2. Принцип полноты первоначальных сведений. Он означает, что используемая исходная информация должна быть очень точной, так как от нее зависят полученные результаты.

3. Принцип преемственности. Он говорит о том, что те признаки объекта, которые были отражены или установлены в первых моделях, должны сохраняться и в каждой последующей.

4. Принцип эффективной реализации. Каждая модель должна использоваться на практике. В ее реализации должны помогать новейшие вычислительные средства.

Экономико-математические методы и модели всегда строятся в несколько этапов:

1) Определение проблемы, ее анализ.

2) Конструирование Это ее выражение в виде функций, схем, уравнений.

3) Анализ полученной модели с помощью математических приемов.

4) Подготовка первоначальной информации.

5) Это уже собственно разработка программ, составление алгоритмов и проведение расчетов.

6) Анализ полученных результатов, их практическое применение.

Каждый из этих этапов может иметь свою специфику в зависимости от рассматриваемой области знаний.

2.Экономико-математические методы и модели.

Все существующие модели могут быть условно разделены на два класса - модели материальные, т.е. объективно существующие (которые можно "потрогать руками"), и модели абстрактные, существующие в сознании человека. Одним из подклассов абстрактных моделей являются модели математические.

Предметом данного изучения будут математические модели, применяемые для анализа различных явления и процессов, имеющих экономическую природу.

Применение математических методов существенно расширяет возможности экономического анализа, позволяет сформулировать новые постановки экономических задач, повышает качество принимаемых управленческих решений.

Математические модели экономики, отражая с помощью математических соотношений основные свойства экономических процессов и явлений, представляют собой эффективный инструмент исследования сложных экономических проблем.

В современной научно-технической деятельности математические модели являются важнейшей формой моделирования, а в экономических исследованиях и практике планирования и управления – доминирующей формой.

Математические модели экономических процессов и явлений называют экономико-математическими моделями (ЭММ).

На базе использования ЭММ реализуются прикладные программы, предназначенные для решения задач экономического анализа, планирования и управления.

Математические модели являются важнейшим компонентом (наряду с базами данных, техническими средствами, человеко-машинным интерфейсом) так называемых систем поддержки решений.

Система поддержки решений (CПР) - это человеко-машинная система, позволяющая использовать данные, знания, объективные и субъективные модели для анализа и решения слабоструктурированных и неструктурированных проблем.

Классифицировать экономико-математические модели можно по различным основаниям:

    По целевому назначению модели можно разделить на:

    1. теоретико-аналитические, применяемые для исследования наиболее

      общих свойств и закономерностей развития экономических процессов;

      прикладные, используемые для решения конкретных задач.

    По уровням исследуемых экономических процессов:

    1. производственно-технологические;

      социально-экономические.

    По характеру отражения причинно-следственных связей:

    1. детерминированные;

      недетерминированные (вероятностные, стохастические), учитывающие фактор неопределённости.

    По способу отражения фактора времени:

    1. статические. Здесь все зависимости относятся к одному моменту или периоду времени;

      динамические, характеризующие изменения процессов во времени.

    По форме математических зависимостей:

    1. линейные. Наиболее удобны для анализа и вычислений, вследствие чего получили большое распространение;

      нелинейные.

    По степени детализации (степени огрубления структуры):

    1. агрегированные ("макромодели");

      детализированные ("микромодели").

Для понимания структуры важное значение имеет схема, представленная на рисунке 1.3. В правой части рисунка показаны основные классы экономико-математических методов (классификация по используемому математическому аппарату), а в левой части - важнейшие направления применения методов.

Следует помнить также, что каждый из методов может быть применен для решения различных по специфике задач. И наоборот, одна и та же задача может решаться различными методами.

расход рынок программирование математический

Рисунок 1.3 - Важнейшие области применения основных классов ЭММ

На схеме экономико-математические методы представлены в виде некоторых укрупненных группировок. В двух словах опишем их.

    Линейное программирование - линейное преобразование переменных в системах линейных уравнений. Сюда можно отнести: симплекс-метод, распределительный метод, статический матричный метод решения материальных балансов.

    Дискретное программирование представлено двумя классами методов: локализационные и комбинаторные методы. К локализационным относятся методы линейного целочисленного программирования. К комбинаторным, например, метод ветвей и границ.

    Математическая статистика используется для корреляционного, регрессионного и дисперсионного анализа экономических процессов и явлений. Корреляционный анализ применяется для установления тесноты связи между двумя или более стохастически независимыми процессами или явлениями. Регрессионный анализ устанавливает зависимость случайной величины от неслучайного аргумента. Дисперсионный анализ - установление зависимости результатов наблюдений от одного или нескольких факторов в целях выявления важнейших.

    Динамическое программирование используется для планирования и анализа экономических процессов во времени. Динамическое программирование представляется в виде многошагового вычислительного процесса с последовательной оптимизацией целевой функции. Некоторые авторы относят сюда же имитационное моделирование.

    Теория игр представляется совокупностью методов, используемых для определения стратегии поведения конфликтующих сторон.

    Теория массового обслуживания - большой класс методов, где на основе теории вероятностей оцениваются различные параметры систем, характеризуемых как системы массового обслуживания.

    Теория управления запасами объединяет в себе методы решения задач, в общей формулировке сводящихся к определению рационального размера запаса какой-либо продукции при неопределенном спросе на нее.

    Стохастическое программирование. Здесь исследуемые параметры являются случайными величинами.

    Нелинейное программирование относится к наименее изученному, применительно к экономическим явлениям и процессам, математическому направлению.

    Теория графов - направление математики, где на основе определенной символики представляется формальное описание взаимосвязанности и взаимообусловленности множества элементов (работ, ресурсов, затрат и т.п.). До настоящего времени наибольшее практическое применение получили так называемые сетевые графики.

Принципы построения экономико-математических моделей

Итак, рассмотрим основные принципы построения ЭММ:

    Принцип достаточности исходной информации. В каждой модели должна использоваться только та информация, которая известна с точностью, требуемой для получения результатов моделирования.

    Принцип инвариантности (однозначности) информации требует, чтобы входная информация, используемая в модели, была независима от тех параметров моделируемой системы, которые еще неизвестны на данной стадии исследования.

    Принцип преемственности. Сводится к тому, что каждая последующая модель не должна нарушать свойств объекта, установленных или отраженных в предыдущих моделях.

    Принцип эффективной реализуемости. Необходимо, чтобы модель могла быть реализована при помощи современных вычислительных средств.

Основные этапы процесса моделирования были рассмотрены выше (рисунок 1.2). В различных отраслях знаний они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования (рисунок 1.4).

Рисунок 1.4 - Этапы экономико-математического моделирования

1. Постановка проблемы и её качественный анализ. Главное на этом этапе - чётко сформулировать сущность проблемы, определить принимаемые допущения, а также определить те вопросы, на которые требуется получить ответ.

Этап включает выделение важнейших черт и свойств моделируемого объекта, основных зависимостей, связывающих его элементы. Здесь же происходит формулирование гипотез, хотя бы предварительно объясняющих поведение объекта.

2. Построение математической модели. Это этап формализации задачи, т.е. выражения ее в виде математических зависимостей и отношений (функций, уравнений, неравенств, схем). Как правило, сначала определяется тип математической модели, а затем уточняются детали.

Неправильно полагать, что, чем больше факторов учитывает модель, тем лучше она работает и дает лучшие результаты. Излишняя сложность модели затрудняет процесс исследования. При этом нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

3. Математический анализ модели. Цель - выявление общих свойств и характеристик модели. Применяются чисто математические приёмы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удастся доказать, что задача не имеет решения, то необходимость в последующей работе по данному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации.

Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда не удается выяснить общих свойств модели аналитическими методами, а упрощение модели приводит к недопустимым результатам, прибегают к численным методам исследования.

4. Подготовка исходной информации. Численное моделирование предъявляет жесткие требования к исходной информации. В то же время реальные возможности получения информации существенно ограничивают выбор используемых моделей. При этом принимается во внимание не только возможность подготовки информации (за определенный срок), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффекта от использования данной информации.

5. Численное решение. Это составление алгоритмов, разработка программ и непосредственное проведение расчётов на ЭВМ.

6. Анализ результатов и их применение. На заключительной стадии проверяются правильность, полнота и степень практической применимости полученных результатов.

Естественно, что после каждой из перечисленных стадий возможен возврат к одной из предыдущих в случае необходимости уточнения информации, пересмотра результатов выполнения отдельных этапов. Например, если на этапе 2 формализовать задачу не удается, то необходимо вернуться к постановке проблемы (этап 1). Соответствующие связи на рисунке 1.4 не показаны, чтобы не загромождать схему. Таким образом, выясним, как соотносятся между собой общая схема процесса моделирования (рисунок 1.2) и этапы экономико-математического моделирования (рисунок 1.4). Первые пять стадий более дифференцированно характеризуют процесс экономико-математического исследования, чем общая схема: стадии 1 и 2 соответствуют этапу I общей схемы, стадии 3, 4 и 5 - этапу II. Напротив, стадия 6 включает этапы III и IV общей схемы.

Современная экономическая теория включает в качестве необходимого инструмента математические модели и методы. Использование математики в экономике позволяет решить комплекс взаимосвязанных проблем.

Во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов.

Это положение имеет принципиальный характер, поскольку изучение любого явления или процесса ввиду определенной степени сложности предполагает высокую степень абстракции.

Во-вторых, из сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки.

В-третьих, методы математики и статистики позволяют путем индукции получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных в наибольшей степени соответствующие имеющимся наблюдениям.

В-четвертых, использование математической терминологии позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Развитие макроэкономического планирования в современных условиях связано с ростом уровня его формализации. Основу для этого процесса заложил прогресс в области прикладной математики, а именно: теории игр, математического программирования, математической статистики и других научных дисциплин. Большой вклад в математическое моделирование экономики бывшего СССР внесли известные советские ученые В.С. Немчинов, В.В. Новожилов, Л.В. Канторович, Н.П. Федоренко. С. С. Шаталин и др. Развитие экономико-математического направления было связано в основном с попытками формально описать так называемую «систему оптимального функционирования социалистической экономики» (СОФЭ), в соответствии с которой строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий.

Экономико-математические методы имеют следующие направления:

Экономико-статистические методы, включают методы экономической и математической статистики. Экономическая статистика занимается статистическим изучением народного хозяйства в целом и отдельных его отраслей на основе периодической отчетности. Инструментарием математической статистики, используемым для экономических исследований, являются дисперсионный и факторный анализ корреляции и регрессии.

Моделирование экономических процессов заключается в построении экономикоматематических моделей и алгоритмов, проведении расчетов по ним с целью получения новой информацию о моделируемом объекте. С помощью экономико-математического моделирования могут решаться задачи анализа экономических объектов и процессов, прогнозирования возможных путей их развития (проигрывание различных сценариев), подготовки информации для принятия решений специалистами.

При моделировании экономических процессов широкое распространение получили: производственные функции, модели экономического роста, межотраслевой баланс, методы имитационного моделирования и др.

Исследование операций - научное направление, связанное с разработкой методов анализа целенаправленных действий и количественного обоснования решений.

Типовые задачи исследования операций включают: задачи массового обслуживания, управления запасами, ремонта и замены оборудования, календарного планирования, распределительные задачи и др. Для их решения используются методы математического программирования (линейного, дискретного, динамического и стохастического), методы теории массового обслуживания, теории игр, теории управления запасами, теории расписаний и др., а также программно-целевые методы и методы сетевого планирования и управления.

Экономическая кибернетика - научное направление, занимающееся исследованием и совершенствованием экономических систем на основе общей теории кибернетики. Основные ее направления: теория экономических систем, теория

экономической информации, теория систем управления в экономике. Рассматривая управление народным хозяйством как информационный процесс, экономическая кибернетика служит научной основой разработки автоматизированных систем управления.

В основе экономико-математических методов лежит описание наблюдаемых экономических процессов и явлений посредством моделей.

Математическая модель экономического объекта - его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, объединяющее группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Модель - это условный образ экономического объекта, построенная для упрощения исследования последнего. Предполагается, что изучение модели имеет двоякий смысл: с одной стороны, оно дает новые знания об объекте, с другой - позволяет определить наилучшее решение применительно к различным ситуациям.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария.

Это модели макро- и микроэкономические, теоретические и прикладные, равновесные и оптимизационные, описательные, матричные, статические и динамические, детерминированные и стохастические, имитационные и др. 5.5.

Еще по теме Экономико-математические методы:

  1. Методы моделирования и экономико-математические методы

Экономико-математические методы в настоящее время широко используются и являются важным направлением в совершенствовании анализа деятельности хозяйствующих субъектов, а также их подразделений. Этого можно достигнуть за счет уменьшения сроков выполнения исследования, глубокой характеристики факторов, а также за счет замены сложных вычислений более простыми. Кроме того, в процессе ставятся и решаются многомерные задачи, которые выполнить традиционными методами или вручную просто невозможно.

Математические экономики требуют:

1) системности подходов в изучении экономической деятельности предприятий, а также учета всех взаимосвязанных направлений в различных сферах хозяйствования организации;

2) разработать комплекс которые отражают характеристику поставленных задач и процессов в количественном выражении;

3) усовершенствовать систему подачи информации об экономической деятельности предприятия;

4) наличия автоматизированных систем, которые отвечают за обработку, хранение и передачу данных, необходимых для применения методов;

5) организации специально подготовленного персонала, который будет состоять из , экономистов, операторов и т.д.

Поставленная задача может быть сформулирована соответствующим образом и решена, используя экономико-математические методы. Также широко распространена статистика. Ее методы применяются в случае, когда анализируемые показатели изменяются в случайном порядке. помогают для которых необходим прогноз.

Применение математики в экономике обусловлено повышением эффективности анализа деятельности предприятия за счет того, что используется расширение изучаемых факторов и обоснование принимаемых решений. Также происходит выбор наилучших вариантов использования ресурсов и выявление резервов для повышения результативности производства и выработки труда.

Экономико-математические методы можно условно разделить на 4 группы:

1) точные оптимизационные;

2) приближенные;

3) точные не оптимизационные;

4) приближенные.

Применение этих способов для анализа деятельности предприятия помогает получить ясное представление об исследуемом объекте, количественно описать и охарактеризовать его внешние связи и внутреннюю структуру. Экономико-математические методы используются в первую очередь в моделировании. Образец, который в итоге получается, представляет собой модель Субъект управления создает ее с отображением характеристик: свойств, взаимосвязей, структурных и функциональных параметров объекта и т.д.

К сожалению, в экономико-математическом моделировании может возникнуть ситуация, когда изучаемый объект имеет сложную структуру. Вследствие этого сложно создать образец, который охватит все особенности исследуемой системы. Примером может служить экономика хозяйствующего субъекта в целом.

ЛЕКЦИИ

По дисциплине:

Экономико-математические

методы и модели

ПРЕПОДАВАТЕЛЬ МАЦНЕВ А.П.

Москва 2004 год

1. Моделирование экономических систем.

Основные понятия и определения

1.1. Возникновение и развитие системных представлений

1.2. Модели и моделирование. Классификация моделей

1.3. Виды подобия моделей

1.4. Адекватность моделей

2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ИХ РАСЧЕТА

2.1. Понятие операционного исследования

2.2. Классификация и принципы построения математических моделей

3. Некоторые сведения из математики

3.1. Выпуклые множества

3.2. Линейные неравенства

3.3. Значения линейной формы на выпуклом множестве

4. ПРИМЕРЫ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

4.1. Транспортная задача

4.2. Общая формулировка задачи линейного программирования

4.3. Графическая интерпретация решения задач линейного программирования

5. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

5.1. Общая и основная задачи линейного программирования

5.2. Геометрический метод решения задач линейного программирования

5.3. Графическое решение задачи распределения ресурсов

5.4. Симплексный метод

5.5. Анализ симплекс-таблиц

5.6. Решение транспортных задач

6. МЕТОДЫ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

И МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

6.1. Постановка задачи нелинейного программирования

6.2. Постановка задачи динамического программирования

Основные условия и область применения

6.3. Многокритериальная оптимизация

1. Моделирование экономических систем.

Основные понятия и определения.

1.1. Возникновение и развитие системных представлений

Научно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы , обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.

В начале 80-х годов системность стала не только теоретической категорией, но и осознанным аспектом практической деятельности. Широко распространилось понятие того, что наши успехи связаны с тем, насколько системно мы подходим к решению возникающих проблем, а наши неудачи вызваны отсутствием системности в наших действиях. Сигналом о недостаточной системности в нашем подходе к решению какой-либо задачи является появление проблемы, разрешение же возникшей проблемы происходит, как правило, при переходе на новый, более высокий, уровень системности нашей деятельности. Поэтому системность не только состояние, но и процесс.

В различных сферах человеческой деятельности возникли различные подходы и соответствующие методы решения специфических проблем, которые получили различные названия: в военных и экономических вопросах - «исследование операций» , в политическом и административном управлении - «системный подход» , в философии «диалектический материализм» , в прикладных научных исследованиях - «кибернетика» . Позже стало ясно, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение», которое постепенно оформилось в науку, получившую название «системный анализ». В настоящее время системный анализ является самостоятельной дисциплиной, имеющей свой объект деятельности, свой достаточно мощный арсенал средств и свою прикладную область. Являясь по существу прикладной диалектикой, системный анализ использует все средства современных научных исследований - математику, моделирование, вычислительную технику и натурные эксперименты.

Самая интересная и сложная часть системного анализа - это «вытаскивание» проблемы из реальной практической задачи, отделение важного от несущественного, поиск правильной формулировки для каждой из возникающих проблем, т.е. то, что называется «постановкой задачи».

Многие довольно часто недооценивают работу, связанную с формулировкой задачи. Однако многие специалисты полагают, что «хорошо поставить задачу - значит на половину ее решить». Хотя в большинстве случаев заказчику кажется, что он уже сформулировал свою проблему, системный аналитик знает, что предлагаемая клиентом постановка задачи является моделью его реальной проблемной ситуации и неизбежно имеет целевой характер, оставаясь приблизительной и упрощенной. Поэтому необходимо проверить эту модель на адекватность, что приводит к развитию и уточнению первоначальной модели. Очень часто первоначальная формулировка изложена в терминах не тех языков, которые необходимы для построения модели.

1.2. Модели и моделирование. Классификация моделей

Первоначально моделью называли некое вспомогательное средство, объект, который в определенных ситуациях заменял другой объект. Например, манекен в определенном смысле заменяет человека, являясь моделью человеческой фигуры. Древние философы считали, что отобразить природу можно только с помощью логики и правильных рассуждений, т.е. по современной терминологии с помощью языковых моделей. Через несколько столетий девизом английского Научного общества стал лозунг: «Ничего словами!», признавались только выводы, подкрепленные экспериментально или математическими выкладками.

В настоящее время для постижения истины существует 3 пути:

теоретическое исследование;

 эксперимент;

 моделирование.

Моделью называется объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества:

- дешевизну;

- наглядность;

- легкость оперирования и т.п.

 В теории моделей моделированием называется результат отображения одной абстрактной математической структуры на другую - тоже абстрактную, либо как результат интерпретации первой модели в терминах и образах второй.

Paзвитие понятия модели вышло за пределы математических моделей и стало относиться к любым знаниям и представлениям о мире. Поскольку модели играют чрезвычайно важную роль в организации любой деятельности человека их можно разделить на познавательные (когницитивные) и прагматические , что соответствует делению целей на теоретические и практические .

Познавательная модель ориентирована на приближении модели к реальности, которую эта модель отображает. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели.

Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтомy при обнаружении расхождения между моделью и реальностью надо направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль образца, под который подгоняется действительность. Примерами прагматических моделей служат планы, кодексы законов, рабочие чертежи и т.д.

Другим принципом классификации целей моделирования может служить деление моделей на статические и динамические .

 Для одних целей нам может понадобиться модель конкретного состояния объекта в определенный момент времени, своего рода «моментальная фотография» объекта. Такие модели называются статическими . Примером являются структурные модели систем.

 В тех же случаях, когда возникает необходимостъ в отображении процесса изменения состояний, требуются динамические модели систем.

В распоряжении человека имеется два типа материалов для построения моделей - средства самого сознания и средства окружающею материального мира. Соответственно этому модели делятся на абстрактные (идеальные) и материальные .

 Очевидно, что к абстрактным моделям относятся языковые конструкции и математические модели. Математические модели обладают наибольшей точностью, но чтобы дойти до их использования в данной области, необходимо получить достаточное количество знаний. По мнению Канта, любая отрасль знания может тем более именоваться наукой, чем в большей степени в ней используется математика.

1.3. Виды подобия моделей

Чтобы некоторая материальная конструкция могла быть моделью, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение подобия. Существуют разные способы установления такого подобия, что придает моделям особенности, специфичные для каждого способа.

 Прежде всего, это подобие, устанавливаемое в процессе создания модели. Назовем такое подобие прямым . Примером такого подобия являются фотографии, масштабированные модели самолетов, кораблей, макеты зданий, выкройки, куклы и т.д.

Следует помнить, что как бы хороша ни была модель, она все-таки лишь заменитель оригинала, только в определенном отношении. Даже тогда, когда модель прямого подобия выполнена из того же материала, что и оригинал, т.е. подобна ему субстратно, возникают проблемы переноса результатов моделирования на оригинал. Например, при испытании уменьшенной модели самолета в аэродинамической трубе задача пересчета данных модельного эксперимента становится нетривиальной и возникает разветвленная, содержательная теория подобия, позволяющая привести в соответствие масштабы и условия эксперимента, скорость потока, вязкость и плотность воздуха. Трудно достигается взаимозаменяемость модели и оригинала в фотокопиях произведений искусства, голографических изображениях предметов искусства.

 Второй тип подобия между моделью и оригиналом называется косвенным . Косвенное подобие между оригиналом и моделью объективно существует в природе и обнаруживается в виде достаточной близости или совпадения их абстрактных математических моделей и вследствие этого широко используется в практике реального моделирования. Наиболее характерным примером может служить электромеханическая аналогия между маятником и электрическим контуром.

Оказалось, что многие закономерности электрических и механических процессов описываются одинаковыми уравнениями, различие состоит в разной физической интерпретации переменных, входящих в это уравнение. Роль моделей, обладающих косвенным подобием, очень велика и роль аналогий (моделей косвенного подобия) в науке и практике трудно переоценить. Аналоговые вычислительные машины позволяют найти решение почти всякого дифференциального уравнения, представляя собой, таким образом, модель, аналог процесса, описываемого этим уравнением. Использование электронных аналогов в практике определяется тем, что электрические сигналы легко измерить и зафиксировать, что дает известные преимущества модели.

 Третий, особый класс моделей составляют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения . Такое подобие называется условным. С моделями условного подобия приходится иметь дело очень часто, поскольку они являются способом материального воплощения абстрактных моделей. Примерами условного подобия служат деньги (модель стоимости), удостоверение личности (модель владельца), всевозможные сигналы (модели сообщения).