Функция белковых молекул. Строение и функции белка или чего не знала анжелина джоли. К углеводам моносахаридам относятся

Белки представляют собой органические высокомолекулярные соединения. Эти вещества также называют протеинами, полипептидами. Далее рассмотрим, каковы структура и функции белков.

Общие сведения

Химическая структура белков представлена альфа-аминокислотами, соединенными в цепочку посредством пептидной связи. В живых организмах состав определяет генетический код. В процессе синтеза в большинстве случаев применяется 20 аминокислот стандартного типа. Множеством их комбинаций формируются белковые молекулы с самыми разнообразными свойствами. Аминокислотные остатки часто подвергаются посттрансляционным модификациям. Они могут возникнуть и до того, как белок станет выполнять свои функции, и в процессе его активности в клетке. В живых организмах часто несколько молекул формируют сложные комплексы. В качестве примера можно привести фотосинтетическое объединение.

Назначение соединений

Белки считаются важной составляющей питания человека и животных в связи с тем, что в их организмах все необходимые аминокислоты синтезироваться не могут. Часть их должна поступать вместе с белковой пищей. Основными источниками соединений выступают мясо, орехи, молоко, рыба, зерновые. В меньшей степени протеины присутствуют в овощах, грибах и ягодах. При пищеварении посредством ферментов потребленные белки подвергаются разрушению до аминокислот. Они уже используются в биосинтезе собственных протеинов в организме либо подвергаются распаду дальше - для получения энергии.

Историческая справка

Последовательность структуры белка инсулина была определена впервые Фредериеом Сенгером. За свою работу он получил Нобелевскую премию в 1958 году. Сенгер использовал метод секвенирования. С помощью дифракции рентгеновского излучения впоследствии были получены трехмерные структуры миоглобина и гемоглобина (в конце 1950 гг.). Работы проводили Джон Кендрю и Макс Перуц.

Структура молекулы белка

Она включает в себя линейные полимеры. Они, в свою очередь, состоят из остатков альфа-аминокислот, являющихся мономерами. Кроме того, структура белка может включать компоненты, имеющие неаминокислотную природу, и аминокислотные остатки модифицированного типа. При обозначении компонентов применяются 1- либо 3-буквенные сокращения. Соединение, в состав которого входит от двух до нескольких десятков остатков, именуется часто как "полипептид". В результате взаимодействия альфа-карбоксильной группы одной аминокислоты с альфа-аминогруппой другой появляются (в процессе формирования структуры белка) связи. В соединении выделяют С- и N- концы, в зависимости от того, какая группа аминокислотного остатка является свободной: -СООН либо -NH 2 . В процессе синтеза белка на рибосоме в качестве первого концевого выступает, как правило, остаток метионина; присоединение последующих осуществляется к С-концу предыдущих.

Уровни организации

Они были предложены Линдрем-Лангом. Несмотря на то что данное деление считается несколько устаревшим, им все еще пользуются. Было предложено выделять четыре уровня организации соединений. Первичная структура молекулы белка определяется генетическим кодом и особенностями гена. Для более высоких уровней характерно формирование в ходе сворачивания протеина. Пространственная структура белка определяется в целом аминокислотной цепью. Тем не менее она достаточно лабильна. На нее могут оказывать влияние внешние факторы. В связи с этим более корректно говорить о конформации соединения, наиболее выгодной и предпочтительной энергетически.

1 уровень

Он представлен последовательностью аминокислотных остатков полипептидной цепи. Как правило, его описывают с использованием одно- либо трехбуквенных обозначений. Первичная структура белков отличается устойчивыми сочетаниями аминокислотных остатков. Они выполняют определенные задачи. Такие "консервативные мотивы" остаются сохраненными в ходе видовой эволюции. По ним достаточно часто можно предсказывать задачу неизвестного протеина. Оценивая степень сходства (гомологии) в аминокислотных цепях от различных организмов, можно определять эволюционное расстояние, образующееся между таксонами, которые составляют эти организмы. Первичная структура белков определяется методом секвенирования либо по исходному комплексу его мРНК с использованием таблицы генетического кода.

Локальное упорядочивание участка цепи

Это следующий уровень организации - вторичная структура белков. Существует несколько ее типов. Локальное упорядочивание участка цепи полипептида стабилизируется водородными связями. Наиболее популярными типами считаются:

Пространственное строение

Третичная структура белков включает в себя элементы предыдущего уровня. Они стабилизируются разными типами взаимодействий. Важнейшее значение при этом имеют гидрофобные связи. В стабилизации участвуют:

  • Ковалентные взаимодействия.
  • Ионные связи, формирующиеся между боковыми аминокислотными группами, имеющими противоположные заряды.
  • Водородные взаимодействия.
  • Гидрофобные связи. В процессе взаимодействия с окружающими элементами Н 2 О происходит сворачивание протеина так, чтобы боковые неполярные аминокислотные группы оказывались изолированными от водного раствора. Гидрофильные группы (полярные) оказываются на поверхности молекулы.

Третичная структура белков определяется методами магнитного (ядерного) резонанса, некоторыми видами микроскопии и прочими способами.

Принцип укладки

Исследования показали, что между 2 и 3 уровнями удобно выделить еще один. Его именуют "архитектурой", "мотивом укладки". Он определяется взаиморасположением компонентов вторичной структуры (бета-тяжей и альфа-спиралей) в границах компактной глобулы - белкового домена. Он может существовать самостоятельно либо быть включенным в состав более крупного протеина вместе с прочими аналогичными. Установлено, что мотивы укладки достаточно консервативны. Они встречаются в протеинах, не обладающих ни эволюционными, ни функциональными связями. Определение архитектуры лежит в основе рациональной (физической) классификации.

Доменная организация

При взаимном расположении нескольких цепей полипептидов в составе одного протеинового комплекса формируется четвертичная структура белков. Элементы, входящие в ее состав, образуются по отдельности на рибосомах. Только по завершении синтеза начинает образовываться данная структура белка. Она может содержать как различающиеся, так и идентичные полипептидные цепи. Четвертичная структура белков стабилизируется за счет тех же взаимодействий, что и на предыдущем уровне. Некоторые комплексы могут включать в себя несколько десятков протеинов.

Структура белка: защитные задачи

Полипептиды цитоскелета, выступая в некотором роде в качестве арматуры, придают многим органоидам форму, участвуют в ее изменении. Структурные протеины обеспечивают защиту организма. К примеру, таким белком является коллаген. Он формирует основу в межклеточном веществе соединительных тканей. Также защитной функцией обладает кератин. Он составляет основу рогов, перьев, волос и прочих производных эпидермиса. При связывании белками токсинов во многих случаях происходит детоксикация последних. Так выполняется задача по химической защите организма. Особенно важную роль в процессе обезвреживания токсинов в человеческом организме играют печеночные ферменты. Они способны расщеплять яды или переводить их в растворимую форму. Это способствует более быстрой транспортировке их из организма. Белки, присутствующие в крови и прочих биологических жидкостях, обеспечивают иммунную защиту, вызывая реакцию как на атаку патогенов, так и на повреждение. Иммуноглобулины (антитела и компоненты системы комплемента) способны нейтрализовывать бактерии, чужеродные протеины и вирусы.

Механизм регуляции

Белковые молекулы, не выступающие ни в качестве источника энергии, ни как строительный материал, контролируют многие внутриклеточные процессы. Так, за счет них осуществляется регулирование трансляции, транскрипции, слайсинга, деятельность прочих полипептидов. Механизм регуляции основывается на ферментативной активности или проявляется благодаря специфичному связыванию с прочими молекулами. К примеру, факторы транскрипции, полипептиды-активаторы и протеины- репрессоры способны контролировать интенсивность генной транскрипции. При этом они взаимодействуют с регуляторными последовательностями генов. Важнейшая роль в контроле над течением внутриклеточных процессов отводится протеинфосфатазам и протеинкиназам. Эти ферменты запускают либо подавляют активность прочих белков посредством присоединения или отщепления от них фосфатных групп.

Сигнальная задача

Ее часто объединяют с регуляторной функцией. Это связано с тем, что многие внутриклеточные, как и внеклеточные, полипептиды могут передавать сигналы. Такой способностью обладают факторы роста, цитокины, гормоны и прочие соединения. Стероиды транспортируются по крови. Взаимодействие гормона с рецептором выступает в качестве сигнала, за счет которого запускается ответная реакция клетки. Стероиды контролируют содержание соединений в крови и клетках, размножение, рост и прочие процессы. В качестве примера можно привести инсулин. Он регулирует уровень глюкозы. Взаимодействие клеток осуществляется посредством сигнальных белковых соединений, передаваемых по межклеточному веществу.

Транспорт элементов

Растворимые протеины, участвующие в перемещении малых молекул, имеют высокое сродство к субстрату, присутствующему в повышенной концентрации. Они обладают также способностью к легкому его высвобождению в областях с низким его содержанием. В качестве примера можно привести транспортный белок гемоглобин. Он перемещает из легких кислород к прочим тканям, а от них - переносит углекислый газ. В транспортировке малых молекул через стенки клетки, изменяя их, участвуют и некоторые мембранные белки. Липидный слой цитоплазмы обладает водонепроницаемостью. Благодаря этому предотвращается диффузия заряженных или полярных молекул. Мембранные транспортные соединения принято разделять на переносчиков и каналы.

Резервные соединения

Эти белки формируют так называемые запасы. Они накапливаются, например, в семенах растений, животных яйцеклетках. Такие белки выступают в качестве резервного источника вещества и энергии. Некоторые соединения используются организмом как аминокислотный резервуар. Они, в свою очередь, являются предшественниками активных веществ, участвующих в регулировании метаболизма.

Клеточные рецепторы

Такие белки могут располагаться как непосредственно в цитоплазме, так и встраиваться в стенку. Одной своей частью соединение принимает сигнал. В качестве него, как правило, выступает химическое вещество, а в ряде случаев - механическое воздействие (растяжение, к примеру), свет и прочие стимулы. В процессе воздействия сигнала на определенный фрагмент молекулы - полипептид-рецептор - начинаются ее конформационные изменения. Они провоцируют смену конформации остальной части, выполняющей передачу стимула на прочие компоненты клетки. Отправка сигнала может осуществляться разными способами. Одни рецепторы способны катализировать химическую реакцию, вторые - выступают в качестве ионных каналов, закрывающихся либо открывающихся под воздействием стимула. Некоторые соединения специфически связывают молекулы-посредники внутри клетки.

Моторные полипептиды

Существует целый класс белков, обеспечивающих движения организма. Моторные белки участвуют в сокращении мышц, перемещении клеток, активности жгутиков и ресничек. За счет них также выполняется направленные и активный транспорт. Кинезины и динеины осуществляют перенос молекул по ходу микротрубочек с использованием в качестве энергетического источника гидролиза АТФ. Вторые перемещают органоиды и прочие элементы по направлению к центросоме из периферических клеточных участков. Кинезины движутся в обратном направлении. Динеины, кроме того, отвечают за активность жгутиков и ресничек.

Белки (протеины) составляют 50% от сухой массы живых организмов.


Белки состоят из аминокислот. У каждой аминокислоты есть аминогруппа и кислотная (карбоксильная) группа, при взаимодействии которых получается пептидная связь , поэтому белки еще называют полипептидами.

Структуры белка

Первичная - цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.


Вторичная - спираль. Удерживается водородными связями (слабыми).


Третичная - глобула (шарик). Четыре типа связей: дисульфидная (серный мостик) сильная, остальные три (ионные, гидрофобные, водородные) - слабые. Форма глобулы у каждого белка своя, от нее зависят функции. При денатурации форма глобулы меняется, и это сказывается на работе белка.


Четвертичная - имеется не у всех белков. Состоит из нескольких глобул, соединенных между собой теми же связями, что и в третичной структуре. (Например, гемоглобин.)

Денатурация

Это изменение формы глобулы белка, вызванное внешними воздействиями (температура, кислотность, соленость, присоединение других веществ и т.п.)

  • Если воздействия на белок слабые (изменение температуры на 1°), то происходит обратимая денатурация.
  • Если воздействие сильное (100°), то денатурация необратимая . При этом разрушаются все структуры, кроме первичной.

Функции белков

Их очень много, например:

  • Ферментативная (каталитическая) - белки-ферменты ускоряют химические реакции за счет того, что активный центр фермента подходит к веществу по форме, как ключ к замку ( , специфичность).
  • Строительная (структурная) - клетка, если не считать воду, состоит в основном из белков.
  • Защитная - антитела борются с возбудителями болезней (иммунитет).

Выберите один, наиболее правильный вариант. Вторичная структура молекулы белка имеет форму
1) спирали
2) двойной спирали
3) клубка
4) нити

Ответ


Выберите один, наиболее правильный вариант. Водородные связи между СО- и NН-группами в молекуле белка придают ей форму спирали, характерную для структуры
1) первичной
2) вторичной
3) третичной
4) четвертичной

Ответ


Выберите один, наиболее правильный вариант. Процесс денатурации белковой молекулы обратим, если не разрушены связи
1) водородные
2) пептидные
3) гидрофобные
4) дисульфидные

Ответ


Выберите один, наиболее правильный вариант. Четвертичная структура молекулы белка образуется в результате взаимодействия
1) участков одной белковой молекулы по типу связей S-S
2) нескольких полипептидных нитей, образующих клубок
3) участков одной белковой молекулы за счет водородных связей
4) белковой глобулы с мембраной клетки

Ответ


Установите соответствие между характеристикой и функцией белка, которую он выполняет: 1) регуляторная, 2) структурная
А) входит в состав центриолей
Б) образует рибосомы
В) представляет собой гормон
Г) формирует мембраны клеток
Д) изменяет активность генов

Ответ


Выберите один, наиболее правильный вариант. Последовательность и число аминокислот в полипептидной цепи – это
1) первичная структура ДНК
2) первичная структура белка
3) вторичная структура ДНК
4) вторичная структура белка

Ответ


Выберите три варианта. Белки в организме человека и животных
1) служат основным строительным материалом
2) расщепляются в кишечнике до глицерина и жирных кислот
3) образуются из аминокислот
4) в печени превращаются в гликоген
5) откладываются в запас
6) в качестве ферментов ускоряют химические реакции

Ответ


Выберите один, наиболее правильный вариант. Вторичная структура белка, имеющая форму спирали, удерживается связями
1) пептидными
2) ионными
3) водородными
4) ковалентными

Ответ


Выберите один, наиболее правильный вариант. Какие связи определяют первичную структуру молекул белка
1) гидрофобные между радикалами аминокислот
2) водородные между полипептидными нитями
3) пептидные между аминокислотами
4) водородные между -NH- и -СО- группами

Ответ


Выберите один, наиболее правильный вариант. Первичная структура белка образована связью
1) водородной
2) макроэргической
3) пептидной
4) ионной

Ответ


Выберите один, наиболее правильный вариант. В основе образования пептидных связей между аминокислотами в молекуле белка лежит
1) принцип комплементарности
2) нерастворимость аминокислот в воде
3) растворимость аминокислот в воде
4) наличие в них карбоксильной и аминной групп

Ответ


Перечисленные ниже признаки, кроме двух, используются для описания строения, функций изображенного органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) имеет структурные уровни организации молекулы
2) входит в состав клеточных стенок
3) является биополимером
4) служит матрицей при трансляции
5) состоит из аминокислот

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания ферментов. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) входят в состав клеточных мембран и органоидов клетки
2) играют роль биологических катализаторов
3) имеют активный центр
4) оказывают влияние на обмен веществ, регулируя различные процессы
5) специфические белки

Ответ



Рассмотрите рисунок с изображением полипептида и укажите (А) уровень его организации, (Б) форму молекулы и (В) вид взаимодействия, поддерживающий эту структуру. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) вторичная структура
3) третичная структура
4) взаимодействия между нуклеотидами
5) металлическая связь
6) гидрофобные взаимодействия
7) фибриллярная
8) глобулярная

Ответ



Рассмотрите рисунок с изображением полипептида. Укажите (А) уровень его организации, (Б) мономеры, которые его образуют, и (В) вид химических связей между ними. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) водородные связи
3) двойная спираль
4) вторичная структура
5) аминокислота
6) альфа-спираль
7) нуклеотид
8) пептидные связи

Ответ


Известно, что белки – нерегулярные полимеры, имеющие высокую молекулярную массу, строго специфичны для каждого вида организма. Выберите из приведенного ниже текста три утверждения, по смыслу относящиеся к описанию этих признаков, и запишите цифры, под которыми они указаны. (1) В состав белков входит 20 различных аминокислот, соединенных пептидными связами. (2) Белки имеют различное количество аминокислот и порядок их чередования в молекуле. (3) Низкомолекулярные органические вещества имеют молекулярную массу от 100 до 1000. (4) Они являются промежуточными соединениями или структурными звеньями - мономерами. (5) Многие белки характеризуются молекулярной массой от нескольких тысяч до миллиона и выше, в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка. (6) Каждый вид живых организмов имеет особый, только ему присущий набор белков, отличающий его от других организмов.

Ответ

© Д.В.Поздняков, 2009-2019

    Классификация белков.

    Состав и строение

    пептидная связь

    элементарный состав

    молекулярная масса

    аминокислоты

    Химические и физические свойства.

    Значение белков.

Список использованной литературы.

Введение

Белк и - высокомолекулярные азотистые органические вещества, построенные из аминокислоти играющие фундаментальную роль в структуре и жизнедеятельности организмов. Белки – основная и необходимая составная часть всех организмов. Именно Белки осуществляютобмен веществи энергетические превращения, неразрывно связанные с активными биологическими функциями. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному – повышения. Микроорганизмы обычно богаче белком (некоторые же вирусы являются почти чистыми белками). Таким образом, в среднем можно принять, что 10% биомассы на Земле представлено белком, то есть его количество измеряется величиной порядка 10 12 - 10 13 тонн. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов, являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий) , покровы организма (кожа, волосы, ногти и т.п.) , состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества. Роль белков в живом организме подчеркивается уже самим их названием «протеины» (в переводе с греческого protos – первый, первичный) , предложенным в 1840 голландским химиком Г. Мульдером, который обнаружил, что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок. Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существования белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.

Классификация белков.

Из-за относительно больших размеров белковых молекул, сложности их строения и отсутствия достаточно точных данных о структуре большинства белков еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения, биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные, на гидрофильные(растворимые) и гидрофобные (нерастворимые) и т.п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т.п.; по биологической активности – на белки-ферменты, белки-гормоны, структурные белки, сократительные белки, антитела и т.д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.

Все белки принято делить на простые белки,или протеины, и сложные белки, или протеиды (комплексы белков с небелковыми соединениями).Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.

Гистоны

Имеют сравнительно низкую молекулярную массу (12-13 тыс.), с преобладанием щелочных свойств. Локализованы в основном в ядрах клеток. Растворимы в слабых кислотах, осаждаются аммиаком и спиртом. Имеют только третичную структуру. В естественных условиях прочно связаны с ДНК и входят в состав нуклеопротеидов. Основная функция - регуляция передачи генетической информации с ДНК и РНК (возможна блокировка передачи).

Протамины

Самая низкая молекулярная масса (до 12 тыс.). Проявляет выраженные основные свойства. Хорошо растворимы в воде и слабых кислотах. Содержатся в половых клетках и составляют основную массу белка хроматина. Как и гистоны образуют комплекс с ДНК, функция - придают ДНК химическую устойчивость.

Глютелины

Растительные белки, содержащиеся в клейковине семян злаковых и некоторых других, в зеленых частях растений. Нерастворимые в воде, растворах солей и этанола, но хорошо растворимы в слабых растворах щелочей. Содержат все незаменимые аминокислоты, являются полноценными продуктами питания.

Проламины

Растительные белки. Содержатся в клейковине злаковых растений. Растворимы только в 70%-м спирте (это объясняется высоким содержанием пролина и неполярных аминокислот).

Протеиноиды

Белки опорных тканей (кость, хрящ, связки, сухожилия, ногти, волосы). Нерастворимые или трудно растворимые в воде, солевых и водно-спиртовых смесях белки с высоким содержанием серы. К протеиноидам относятся кератин, коллаген, фиброин.

Альбумины

Невысокой молекулярной массой (15-17 тыс.). Характерны кислые свойства. Растворимы в воде, и слабых солевых растворах. Осаждаются нейтральными солями при 100%-м насыщении. Участвуют в поддержании осмотического давления крови, транспортируют с кровью различные вещества. Содержатся в сыворотке крови, молоке, яичном белке.

Глобулины

Молекулярная масса до 100 тыс.. В воде нерастворимы, но растворимы в слабых солевых растворах и осаждаются в менее концентрированных растворах (уже при 50%-м насыщении). Содержатся в семенах растений, особенно в бобовых и масленичных; в плазме крови и в некоторых других биологических жидкостях. Выполняющие функцию иммунной защиты, обеспечивают устойчивость организма к вирусным инфекционным заболеваниям.

Сложные белки делят на ряд классов в зависимости от характера простетической группы.

Фосфопротеины

Имеют в качестве небелкового компонента фосфорную кислоту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц). Такая локализация фосфопротеидов свидетельствует о важном их значении для развивающегося организма. У взрослых форм эти белки присутствуют в костной и нервной тканях.

Липопротеины

Сложные белки, простетическая группа которых образована липидами. По строению это небольшого размера (150-200 нм) сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть - липидами и их производными. Основная функция липопротеинов - транспорт по крови липидов. В зависимости от количества белка и липидов, липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП), которые иногда обозначаются как - и -липопротеиды.

Металлопротеины

Гликопротеины

Простетическая группа представлена углеводами и их производными. Исходя из химического строения углеводного компонента, выделяют 2 группы:

Истинные - в качестве углеводного компонента наиболее часто встречаются моносахариды. Протеогликаны - построены из очень большого числа повторяющихся единиц, имеющих дисахаридный характер (гиалуроновая кислота, гипарин, хондроитин, каротинсульфаты).

Функции: структурно-механическую (имеются в коже, хряще, сухожилиях); каталитическую (ферменты); защитную; участие в регуляции клеточного деления.

Хромопротеины

Выполняют ряд функций: участие в процессе фотосинтеза и окислительно-восстановительных реакциях, транспорт С и СО 2 . Являются сложными белками, простетическая группа которых представлена окрашенными соединениями.

Нуклеопротеины

Роль протеистической группы выполняет ДНК или РНК. Белковая часть представлена в основном гистонами и протаминами. Такие комплексы ДНК с протаминами обнаружены в сперматозоидах, а с гистонами - в соматических клетках, где молекула ДНК “намотана” вокруг молекул белка-гистона. Нуклепротеинами по своей природе являются вне клетки вирусы - это комплексы вирусной нуклеиновой кислоты и белковой оболочки - капсида.

Состав и строение

Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO – . Остатки аминокислот в белках соединены амидной связью между -амино- и -карбоксильными группами. Связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

Все входящие в пептидную связь атомы располагаются в одной плоскости (планарная конфигурация).

Расстояние между атомами С и N (в -СО-NH-связи) равно 0,1325 нм, то есть меньше нормального расстояния между -углеродным атомом и атомом N той же цепи, выражаемого величиной 0,146 нм. Вместе с тем оно превышает расстояние между атомами С и N, соединенными двойной связью (0,127 нм). Таким образом, связь С и N в -СО-NH -группировке может рассматриваться как промежуточная между простой и двойной вследствие сопряжения π-электронов карбонильной группы со свободными электронами атома азота. Это определенным образом сказывается на свойствах полипептидов и белков: по месту пептидных связей легко осуществляется таутомерная перегруппировка, приводящая к образованию енольной формы пептидной связи, отличающейся повышенной реакционной способностью.

Элементный состав белков

Для изучения аминокислотного состава белков используется главным образом метод гидролиза, то есть нагревание белка с 6-10 моль/ литр соляной кислотой при температуре 100-110 0 С. получают смесь -аминокислот, из которых можно выделить индивидуальные аминокислоты. Для количественного анализа этой смеси в настоящее время применяют ионообменную и бумажную хроматографию. Сконструированы специальные автоматические анализаторы аминокислот.

Разработаны также ферментативные методы ступенчатого расщепления белка. Некоторые ферменты расщепляют макромолекулу белка специфически – только в местах нахождения определенной аминокислоты. Так получают продукты ступенчатого расщепления - пептоны и пептиды, последующим анализом которых устанавливают их аминокислотный остаток.

В результате гидролиза различных белков выделено не более 30 -аминокислот. Двадцать из них встречаются чаще других.

При образовании молекулы белка или полипептида -аминокислоты могут соединяться в различной последовательности. Возможно огромное число различных комбинаций, например из 20 -аминокислот можно образовать больше 10 18 комбинаций. Существование различного типа полипептидов практически неограничено.

Последовательность соединения аминокислот в том или ином белке устанавливают путем ступенчатого расщепления или рентгеноструктурным анализом.

Для идентификации белков и полипептидов используют специфические реакции на белки. Например:

а) ксантопротеиновая реакция (появление желтого окрашивания при взаимодействии с концентрированной азотной кислотой, которое в присутствии аммиака становиться оранжевым; реакция связана с нитрованием остатков фенилаланина и тирозина);

б) биуретовая реакция на пептидные связи – действие разбавленного сульфата меди (II) на слабощелочной раствор белка сопровождающийся появлением фиолетово-синей окраски раствора,что обусловлено комплексообразованием между медью и полипептидами.

в) реакция Миллона (образование желто-коричневого окрашивания при взаимодействии с Hg(NO 3) 2 + HNO 3 + HNO 2 ;

Молекулярная масса

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков - мономеров. Соответственно и молекулярная массабелков находится в пределах 10000-1000000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17000, а гемоглобин – 64500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150000, а молекулярная масса белка вируса гриппа – 320 000 000.

Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты - органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу –NH 2 . Из формулы видно, что в состав всех аминокислот входят следующие общие группировки: –C–, –NH 2 , –COOH. Боковые же цепи (радикалы –R) аминокислот различаются. Природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной кислоты - глицина (NH 3 + CH 2 COO) имеют хиральный атом - C*- и могут существовать в виде двух энантиомеров (оптических изомеров): L-изомер и D-изомер.

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO и радикал -R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна - из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построенных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Химические и физические свойства

Несмотря на внешнее несходство, различные представители белков обладают некоторыми общими свойствами.

Так, поскольку все белки являются коллоиднымичастицами (размер молекул лежит в пределах 1 мкм до 1 нм), в воде они образуют коллоидные растворы . Эти растворы характеризуются высокой вязкостью, способностью рассеивать лучи видимого света, не проходят сквозь полупроницаемые мембраны.

Вязкость раствора зависит от молекулярной массы и концентрации растворенного вещества. Чем выше молекулярная масса, тем раствор более вязкий. Белки как высокомолекулярные соединения образуют вязкие растворы. Например, раствор яичного белка в воде.

Коллоидные частицы не проходят через полупроницаемые мембраны (целлофан, коллоидную пленку), так как их поры меньше коллоидных частиц. Непроницаемыми для белка являются все биологические мембраны. Это свойство белковых растворов широко используется в медицине и химии для очистки белковых препаратов от посторонних примесей. Такой процесс разделения называется диализом. Явление диализа лежит в основе действия аппарата “искусственная почка”, который широко используется в медицине для лечения острой почечной недостаточности.

Белки способны к набуханию, характеризуются оптической активностью и подвижностью в электрическом поле, некоторые растворимы в воде. Белки имеют изоэлектрическую точку.

Важнейшим свойством белков является их способность проявлять как кислые, так и основные свойства, то есть выступать в роли амфотерных электролитов . Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой и глутаминовой аминокислот, а щелочные - радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7–14) белок отдает протон и заряжается отрицательно (движение к аноду), тогда как в кислой среде (рН 1–7) подавляется диссоциация кислотных групп и белок становится катионом.

Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, то есть она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8–5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36–7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах, следовательно, существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная, дисульфидная и другие виды связей. К радикалам аминокислот, а, следовательно, и белков, могут присоединяться различные соединения и ионы.

Белки обладают большим сродством к воде, то есть они гидрофильны . Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

Значение белков

Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях - несколько взаимосвязанных. Например, гормон мозгового слоя надпочечников адреналин, поступая в кровь, повышает потребление кислорода и артериальное давление, содержание сахара в крови, стимулирует обмен веществ, а также является медиатором нервной системы у холоднокровных животных.

Многочисленные биохимические реакции в живых организмах протекают в мягких условиях при температурах, близких к 40С, и значениях рН близких к нейтральным. В этих условиях скорости протекания большинства реакций ничтожно малы, поэтому для их приемлемого осуществления необходимы специальные биологические катализаторы - ферменты. Даже такая простая реакция, как дегидратация угольной кислоты:

CO 2 + H 2 O HCO 3 - + H +

катализируется ферментом карбоангидразой. Вообще все реакции, за исключением реакции фотолиза воды 2H 2 O4H + + 4e - + O 2 , в живых организмах катализируются ферментами (реакции синтеза, осуществляются при помощи ферментов синтетаз, реакции гидролиза - при помощи гидролаз, окисление - при помощи оксидаз, восстановление с присоединением - при помощи гидрогеназ и т.д.). Как правило, ферменты - это либо белки, либо комплексы белков с каким-либо кофактором - ионом металла или специальной органической молекулой. Ферменты обладают высокой, иногда уникальной, избирательностью действия. Например, ферменты, катализирующие присоединение -аминокислот к соответствующим т-РНК в процессе биосинтеза белка, катализируют присоединение только L-аминокислот и не катализируют присоединение D-аминокислот.

Транспортная функция белков

Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время все биологические мембраны построены по единому принципу - двойной слой липидов, в который погружены различные белки, причем гидрофильные участки макромолекул сосредоточены на поверхности мембран, а гидрофобные “хвосты” - в толще мембраны. Данная структура непроницаема для таких важных компонентов, как сахара, аминокислоты, ионы щелочных металлов. Их проникновение внутрь клетки осуществляется с помощью специальных транспортных белков, вмонтированных в мембрану клеток. Например, у бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара - лактозы. Лактоза по международной номенклатуре обозначается -галаткозид, поэтому транспортный белок называют -галактозидпермеазой.

Важным примером транспорта веществ через биологические мембраны против градиента концентрации является К/ Na-ый насос. В ходе его работы происходит перенос трех положительных ионов Na + из клетки на каждые два положительных иона K + в клетку. Эта работа сопровождается накоплением электрической разности потенциалов на мембране клетки. При этом расщепляется АТФ, давая энергию. Молекулярная основа натрий-калиевого насоса была открыта недавно, это оказался фермент, расщепляющий АТФ - калий-натрийзависимая АТФ-аза.

У многоклеточных организмов существует система транспорта веществ от одних органов к другим. В первую очередь это гемоглобин. Кроме того, в плазме крови постоянно находится транспортный белок - сывороточный альбумин. Этот белок обладает уникальной способностью образовывать прочный комплексы с жирными кислотами, образующимися при переваривании жиров, с некоторыми гидрофобными аминокислотами со стероидными гормонами, а также со многими лекарственными препаратами, такими, как аспирин, сульфаниламиды, некоторые пенициллины.

Рецепторная функция

Большое значение, в особенности для функционирования многоклеточных организмов, имеют белки-рецепторы, вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток. В качестве наиболее исследованных можно привести рецепторы ацетилхолина, находящиеся на мембране клеток в ряде межнейронных контактов, в том числе в коре головного мозга, и у нервно-мышечных соединений. Эти белки специфично взаимодействуют с ацетилхолином CH 3 C(O) – OCH 2 CH 2 N + (CH 3) 3 и отвечает на это передачей сигнала внутрь клетки. После получения и преобразования сигнала нейромедиатор должен быть удален, чтобы клетка подготовилась к восприятию следующего сигнала. Для этого служит специальный фермент - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина до ацетата и холина.

Многие гормоны не проникают внутрь клеток-мишеней, а связываются со специфическими рецепторами на поверхности этих клеток. Такое связывание является сигналом, запускающим в клетке физиологические процессы.

Защитная функция

Иммунная система обладает способностью отвечать на появление чужеродных частиц выработкой огромного числа лимфоцитов, способных специфически повреждать именно эти частицы, которыми могут быть чужеродные клетки, например патогенные бактерии, раковые клетки, надмолекулярные частицы, такие как вирусы, макромолекулы, включая чужеродные белки. Одна из групп лимфоцитов - В-лимфоциты, вырабатывает особые белки, выделяемые в кровеносную систему, которые узнают чужеродные частицы, образуя при этом высокоспецифичный комплекс на этой стадии уничтожения. Эти белки называются иммуноглобулины. Чужеродные вещества, вызывающие иммунный ответ называют антигенами, а соответствующие к ним иммуноглобулины - антителами.

Более 4 млрд лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными бло-ками живых организмов. Своим бес-конечным разнообразием всё живое обязано именно уникальным молеку-лам белка, и иные формы жизни во Вселенной науке пока неизвестны.

Белки, или протеины (от греч. «протос» — «первый»), — это природ-ные органические соединения, кото-рые обеспечивают все жизненные процессы любого организма. Из бел-ков построены хрусталик глаза и па-утина, панцирь черепахи и ядовитые вещества грибов... С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глу-бинах океана мерцают таинствен-ным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Учёные вы-яснили, что у большинства организ-мов белки составляют более полови-ны их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia сой" (см. до-полнительный очерк «Объект иссле-дования — прокариоты»), насчиты-вается около 3 тыс. различных белков.

Впервые белок был выделен (в ви-де клейковины) в 1728 г. итальянцем Якопо Бартоломео Беккари (1682— 1766) из пшеничной муки. Это собы-тие принято считать рождением хи-мии белка. С тех пор почти за три столетия из природных источников получены тысячи различных белков и исследованы их свойства.

БИОЛОГИЧЕСКИЕ «БУСЫ»

Молекула белка очень длинная. Хими-ки называют такие молекулы поли-мерными (от греч. «поли» — «много» и «мерос» — «часть», «доля»). Действи-тельно, длинная молекула полимера состоит из множества маленьких мо-лекул, связанных друг с другом. Так нанизываются на нить бусинки в ожерелье. В полимерах роль нити иг-рают химические связи между бусин-ками-молекулами.

Секрет белков спрятан в особен-ностях этих самых бусинок. Боль-шинство полимеров не принимает устойчивой формы в пространстве, уподобляясь тем же бусам, у которых и не может быть пространственной структуры: повесишь их на шею — они примут форму кольца или овала, положишь в коробку — свернутся в клубок неопределённой формы. А те-перь представим себе, что некоторые бусинки могут «слипаться» друг с другом. Например, красные притяги-ваются к жёлтым. Тогда вся цепочка примет определённую форму, обязан-ную своим существованием «слипа-нию» жёлтых и красных бусинок

Нечто подобное происходит и в белках. Отдельные маленькие моле-кулы, входящие в состав белка, обла-дают способностью «слипаться», так как между ними действуют силы при-тяжения. В результате у любой белко-вой цепи есть характерная только для неё пространственная структура. Именно она определяет чудесные свойства белков. Без такой структуры они не могли бы выполнять те функ-ции, которые осуществляют в живой клетке.

При длительном кипячении бел-ков в присутствии сильных кислот или щелочей белковые цепи распада-ются на составляющие их молекулы,

Называемые аминокислотами. Амино-кислоты — это и есть те «бусинки», из которых состоит белок, и устроены они сравнительно просто.

КАК УСТРОЕНА АМИНОКИСЛОТА

В каждой молекуле аминокислоты есть атом углерода, связанный с четырьмя заместителями. Один из них — атом водорода, второй — кар-боксильная группа —СООН. Она лег-ко «отпускает на волю» ион водоро-да Н+, благодаря чему в названии аминокислот и присутствует слово «кислота». Третий заместитель — ами-ногруппа — NH 2 и, наконец, четвёр-тый заместитель — группа атомов, ко-торую в общем случае обозначают R . У всех аминокислот R-группы разные, и каждая из них играет свою, очень важную роль.

Свойства «бусинок», отличающие одну аминокислоту от другой, скры-ты в R-группах (их ещё называют бо-ковыми цепями). Что же касается группы — СООН, то химики-органи-ки относятся к ней с большим почте-нием: всем другим атомам углерода в молекуле даются обозначения в зави-симости от степени их удалённости от карбоксильной группы. Ближай-ший к ней атом именуют а-атомом, второй — в-атомом, следующий — у -атомом и т. д. Атом углерода в ами-нокислотах, который находится бли-же всех к карбоксильной группе, т. е. а-атом, связан также с аминогруппой, поэтому природные аминокислоты, входящие в состав белка, называют а-аминокислотами.

В природе встречаются также ами-нокислоты, в которых NH^-группа связана с более отдалёнными от кар-боксильной группы атомами углеро-да. Однако для построения белков природа выбрала именно а-аминокислоты. Это обусловлено прежде всего тем, что только а-аминокислоты, соединённые в длинные цепи, способны обеспечить достаточную прочность и устойчивость структуры больших белковых молекул.

Число а-аминокислот, различа-ющихся R-группой, велико. Но чаще других в белках встречается всего 20 разных аминокислот. Их можно рас-сматривать как алфавит «языка» бел-ковой молекулы. Химики называют эти главные аминокислоты стандарт-ными, основными или нормальными. Условно основные аминокислоты де-лят на четыре класса.

В первый входят аминокислоты с неполярными боковыми цепями. Во второй — аминокислоты, со-держащие полярную группу. Следую-щие два составляют аминокислоты с боковыми цепями, которые могут заряжаться положительно (они объе-диняются в третий класс) или отрица-тельно (четвёртый). Например, диссо-циация карбоксильной группы даёт анион — СОО-, а протонирование ато-ма азота — катион, например — NH 3 + . Боковые цепи аспарагиновой и глута-миновой кислот имеют ещё по одной карбоксильной группе —СООН, кото-рая при значениях рН, характерных для живой клетки (рН = 7), расстаётся с ионом водорода (Н+) и приобрета-ет отрицательный заряд. Боковые це-пи аминокислот лизина, аргинина и гистидина заряжены положительно, поскольку у них есть атомы азота, ко-торые, наоборот, могут ион водорода присоединять.

Каждая а-аминокислота (кроме глицина) в зависимости от взаимно-го расположения четырёх заместите-лей может существовать в двух фор-мах. Они отличаются друг от друга, как предмет от своего зеркального от-ражения или как правая рука от ле-вой. Такие соединения получили название хоральных (от грен. «хир» — «рука»). Хиральные молекулы открыл в 1848 г. великий французский учё-ный Луи Пастер. Два типа оптических изомеров органических молекул по-лучили названия Д-форма (от лат. dexter — «правый») и Z-форма (от лат. laevus — «левый»). Кстати, одно из названий других хиральных моле-кул — глюкозы и фруктозы — декст-роза и левулоза. Примечательно, что в состав белков входят только Z-ами нокислоты, и вся белковая жизнь на Земле — «левая».

Для нормальной жизнедеятельно-сти организм нуждается в полном на-боре из 20 основных a-Z-аминокислот. Но одни из них могут быть синтезиро-ваны в клетках самого организма, а другие — должны поступать в готовом виде из пищевых продуктов. В пер-вом случае аминокислоты называют заменимыми, а во втором — незамени-мыми. Набор последних для разных организмов различен. Например, для белой крысы незаменимыми являют-ся 10 аминокислот, а для молочнокислых бактерий — 16. Растения могут са-мостоятельно синтезировать самые разнообразные аминокислоты, созда-вать такие, которые не встречаются в белках.

Для удобства 20 главных амино-кислот обозначают символами, ис-пользуя одну или первые три буквы русского или английского названия аминокислоты, например аланин — Ала или А, глицин — Гли или G .

ЧТО ТАКОЕ ПЕПТИД

Полимерная молекула белка образует-ся при соединении в длинную цепоч-ку бусинок-аминокислот. Они нани-зываются на нить химических связей благодаря имеющимся у всех амино-кислот амино- и карбоксильной груп-пам, присоединённым к а-атому угле-рода.

Образующиеся в результате такой реакции соединения называются пеп-тидами; (—СО— NH —группировка в них — это пептидная группа, а связь между атомами углерода и азота — пептидная связь (её ещё называют амидной). Соединяя аминокислоты посредством пептидных связей, мож-но получить пептиды, состоящие из остатков очень многих аминокислот. Такие соединения получили название полипептиды. Полипептидное стро-ение белковой молекулы доказал в 1902 г. немецкий химик Эмиль Гер-ман Фишер.

На концах аминокислотной це-почки находятся свободные амино-и карбоксильная группы; эти концы цепочки называют N - и С-концами. Аминокислотные остатки в полипеп-тидной цепочке принято нумеровать с N-конца.

Общее число аминокислотных ос-татков в белковой молекуле изменя-ется в очень широких пределах. Так, человеческий инсулин состоит из 51 аминокислотного остатка, а лизо-цим молока кормящей матери — из 130. В гемоглобине человека 4 ами-нокислотные цепочки, каждая из которых построена из примерно 140 аминокислот. Существуют белки, имеющие почти 3 тыс. аминокис-лотных остатков в единой цепи.

Молекулярные массы белков лежат в диапазоне примерно от 11 тыс. для малых белков, состоящих из 100 ами-нокислотных остатков, до 1 млн и бо-лее для белков с очень длинными полипептидными цепями или для белков, состоящих из нескольких по-липептидных цепей.

Возникает вопрос: как же всё ог-ромное многообразие белков с раз-личными функциями и свойствами может быть создано всего из 20 мо-лекул? А разгадка этого секрета при-роды проста — каждый белок имеет свой неповторимый аминокислот-ный состав и уникальный порядок со-единения аминокислот, называемый первичной структурой белка.

СПИРАЛИ И СЛОИ

В начале 50-х гг. XX в. американские химики Лайнус Карл Полинг (1901— 1994), награждённый Нобелевской премией за исследования природы химической связи, и Роберт Кори (1897—1971) предположили, что не-которые участки аминокислотной це-почки в белках закручены в спираль. Благодаря совершенствованию экс-периментальных методов (структуру белков изучают с помощью рентгенов-ских лучей) через несколько лет эта гениальная догадка подтвердилась.

Действительно, полипептидные цепи очень часто образуют спираль, закрученную в правую сторону. Это первый, самый низкий уровень про-странственной организации белко-вых цепочек Здесь-то и начинают иг-рать роль слабые взаимодействия «бусинок»-аминокислот: группа С=0 и группа N — H из разных пептидных связей могут образовывать между со-бой водородную связь. Оказалось, что в открытой Полингом и Кори спирали такая связь образована меж-ду группой С=0 каждой г-й аминокис-лоты и группой N — H (i + 4)-й амино-кислоты, т. е. между собой связаны аминокислотные остатки, отстоящие друг от друга на четыре «бусинки». Эти водородные связи и стабилизиру-ют такую спираль в целом. Она полу-чила название a.-спирали.

Позднее выснилось, что а-спираль — не единственный способ ук-ладки аминокислотных цепочек. По-мимо спиралей они образуют ещё и слои. Благодаря всё тем же водород-ным связям между группами С=0 и N — H друг с другом могут «слипаться» сразу несколько разных фрагментов одной полипептидной цепи. В резуль-тате получается целый слой — его на-звали ^-слоем.

В большинстве белков а-спирали и р-слои перемежаются всевозможными изгибами и фрагментами цепи без какой-либо определённой структуры. Когда имеют дело с пространствен-ной структурой отдельных участков белка, говорят о вторичной структу-ре белковой молекулы.

БЕЛОК В ПРОСТРАНСТВЕ

Для того чтобы получить полный «портрет» молекулы белка, знания первичной и вторичной структуры недостаточно. Эти сведения ещё не дают представления ни об объёме, ни о форме молекулы, ни тем более о расположении участков цепи по отношению друг к другу. А ведь все спирали и слои каким-то образом размещены в пространстве. Общая пространственная структура поли-пептидной цепи называется третич-ной структурой белка.

Первые пространственные модели молекул белка — миоглобина и гемо-глобина — построили в конце 50-х гг. XX в. английские биохимики Джон Ко-удери Кендрю (родился в 1917 г.) и Макс Фердинанд Перуц (родился в 1914 г.). При этом они использовали данные экспериментов с рентгенов-скими лучами. За исследования в об-ласти строения белков Кендрю и Перуц в 1962 г. были удостоены Нобе-левской премии. А в конце столетия была определена третичная структура уже нескольких тысяч белков.

При образовании третичной струк-туры белка наконец-то проявляют активность R-группы — боковые це-пи аминокислот. Именно благодаря им «слипаются» между собой боль-шинство «бусинок»-аминокислот, придавая цепи определённую форму в пространстве.

В живом организме белки всегда находятся в водной среде. А самое большое число основных аминокис-лот — восемь — содержат неполяр-ные R-группы. Разумеется, белок стремится надёжно спрятать внутрь своей молекулы неполярные боковые цепи, чтобы ограничить их контакт с водой. Учёные называют это воз-никновением гидрофобных взаимо-действий (см. статью «Мельчайшая единица живого»).

Благодаря гидрофобным взаимо-действиям вся полипептидная цепоч-ка принимает определённую форму в пространстве, т. е. образует третич-ную структуру.

В молекуле белка действуют и дру-гие силы. Часть боковых цепей основ-ных аминокислот заряжена отрица-тельно, а часть — положительно. Так как отрицательные заряды притяги-ваются к положительным, соответст-вующие «бусинки» «слипаются». Элек-тростатические взаимодействия, или, как их называют иначе, солевые мос-тики, — ещё одна важная сила, ста-билизирующая третичную структуру.

У семи основных аминокислот есть полярные боковые цепи. Между ними могут возникать водородные связи, тоже играющие немалую роль в поддержании пространственной структуры белка.

Между двумя аминокислотными остатками цистеина иногда образу-ются ковалентные связи (— S —S—), которые очень прочно фиксируют расположение разных участков бел-ковой цепи по отношению друг к другу. Такие связи называют дисуль-фидными мостиками. Это самые не-многочисленные взаимодействия в белках (в некоторых случаях они во-обще отсутствуют), зато по прочно-сти они не имеют равных.

ВЫСШИЙ УРОВЕНЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ БЕЛКОВ

Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субь-единицу. Например, белок гемогло-бин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти пра-вильного тетраэдра. Субъединицы «прилипают» друг к другу благодаря тем же самым силам, что стабилизи-руют третичную структуру. Это гид-рофобные взаимодействия, солевые мостики и водородные связи.

Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой моле-кулы. В отличие от первых трёх уров-ней четвертичная структура есть дале-ко не у всех белков. Приблизительно половина из известных на сегодняш-ний день белков её не имеют.

ПОЧЕМУ БЕЛКИ БОЯТСЯ ТЕПЛА

Связи, поддерживающие пространст-венную структуру белка, довольно лег-ко разрушаются. Мы с детства знаем, что при варке яиц прозрачный яич-ный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за раз-рушения пространственной структуры белков альбумина в яичном белке и ка-зеина (огглат. caseus — «сыр») в моло-ке. Такой процесс называется денату-рацией. В первом случае её вызывает нагревание, а во втором — значи-тельное увеличение кислотности (в результате жизнедеятельности обита-ющих в молоке бактерий). При дена-турации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процес-са: от лат. denaturare — «лишать при-родных свойств»). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов яв-ляется денатурация белков.

ЗАЧЕМ НУЖНА ПРОСТРАНСТВЕННАЯ СТРУКТУРА

В природе почти ничего не происхо-дит случайно. Если белок принял определённую форму в пространстве, это должно служить достижению ка-кой-то цели. Действительно, только бе-лок с «правильной» пространственной структурой может обладать опреде-лёнными свойствами, т. е. выполнять те функции в организме, которые ему предписаны. А делает он это с помо-щью всё тех же R-групп аминокислот. Оказывается, боковые цепи не толь-ко поддерживают «правильную» фор-му молекулы белка в пространстве. R-группы могут связывать другие орга-нические и неорганические молекулы, принимать участие в химических ре-акциях, выступая, например, в роли ка-тализатора.

Часто сама пространственная ор-ганизация полипептидной цепи как раз" и нужна для того, чтобы сосредо-точить в определённых точках про-странства необходимый для выполне-ния той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не прохо-дит без участия белков.

В ЧЁМ СЕКРЕТ ФЕРМЕНТОВ

Все химические реакции, протекаю-щие в клетке, происходят благодаря особому классу белков — фермен-там. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реак-ции в миллиарды раз.

Предположим, что несколько при-ятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как резуль-тат не заставил себя ждать: все оказа-лись в одном месте в назначенное время.

Чтобы встреча состоялась, понадо-билось подтолкнуть друзей к контак-ту. То же самое делает и фермент. В его молекуле есть так называемые центры связывания. В них расположе-ны привлекательные для определён-ного типа химических соединений (и только для них!) «уютные кресла» — R-группы, связывающие какие-то уча-стки молекул реагирующих веществ. Например, если одна из молекул име-ет неполярную группу, в центре свя-зывания находятся гидрофобные бо-ковые цепи. Если же в молекуле есть отрицательный заряд, его будет под-жидать в молекуле фермента R-груп па с положительным зарядом.

В результате обе молекулы реаген-тов связываются с ферментом и ока-зываются в непосредственной близо-сти друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентирова-ны в пространстве нужным для реак-ции образом. Теперь за дело прини-маются боковые цепи фермента, играющие роль катализаторов. В фер-менте все «продумано» таким обра-зом, что R-группы-катализаторы тоже расположены вблизи от места собы-тий, которое называют активным центром. А после завершения реак-ции фермент «отпускает на волю» мо-лекулы-продукты (см. статью «Фер-менты — на все руки мастера»).

ОТКУДА БЕРЁТСЯ ИММУНИТЕТ

Белки выполняют в организме мно-жество функций; они, например, за-щищают клетки от нежелательных вторжений, предохраняют их от по-вреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные поли-мерные молекулы и нейтрализовывать их.

У высших позвоночных от чуже-родных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторг-лись такие «агрессоры» — антигены, начинает вырабатывать антитела. Молекула антитела прочно связыва-ется с антигеном: у антител, как и у ферментов, тоже есть центры связы-вания. Боковые цепи аминокислот расположены в центрах таким обра-зом, что антиген, попавший в эту ло-вушку, уже не сможет вырваться из «железных лап» антитела. После свя-зывания с антителом враг выдворяет-ся за пределы организма.

Можно ввести в организм неболь-шое количество некоторых полимер-ных молекул, входящих в состав бак-терий или вирусов-возбудителей какой-либо инфекционной болезни.

В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «насто-ящий» болезнетворный микроб тот-час же подвергнется атаке этих анти-тел, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекци-онным болезням.

ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО

В природе существуют белки, в ко-торых помимо аминокислот содер-жатся другие химические компонен-ты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполне-нии белком его биологической функ-ции. Так, перенос молекул и ионов из одного органа в другой осуществля-ют транспортные белки плазмы крови. Белок гемоглобин (от греч. «гема» — «кровь» и лат. globus — «шар», «шарик»), содержащийся в кровяных клетках — эритроцитах (от греч. «эритрос» — «красный» и «китос» — «клетка»), доставляет кис-лород от лёгких к тканям. В молеку-ле гемоглобина есть комплекс иона железа Fe 24 " со сложной органической молекулой, называемый гемам. Гемо-глобин состоит из четырёх белковых субъединиц, и каждая из них содер-жит по одному гему.

В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединя-ется кислород, сам ион тут же чуть-чуть меняет своё расположение в мо-лекуле белка. Движение железа «про-воцирует» движение всей аминокис-лотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру.

Другая субъеди-ница, ещё не присоединившая кислород, «чувствует», что произошло с со-седкой. Её структура тоже начинает меняться. В итоге вторая субъедини-ца связывает кислород легче, чем пер-вая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудно-стями. Как видно, субъединицы помо-гают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в про-сторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку ли-шает гемоглобин возможности при-соединять кислород.

А ЕЩЁ БЕЛКИ...

Служат питательными веществами. В семенах многих растений (пшени-цы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся так-же альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных свя-зей. Белки «разбираются» на отдель-ные аминокислоты, из которых орга-низм в дальнейшем «строит» новые пептиды или использует для полу-чения энергии. Отсюда и название:

Греческое слово «пептос» означает «переваренный». Интересно, что гид-ролизом пептидной связи управляют тоже белки — ферменты.

Участвуют в регуляции клеточ-ной и физиологической активности. К подобным белкам относятся мно-гие гормоны (от греч. «гормао» — «по-буждаю»), такие, как инсулин, регули-рующий обмен глюкозы, и гормон роста.

Наделяют организм способно-стью изменять форму и передвигать-ся. За это отвечают белки актин и ми-озин, из которых построены мышцы.

Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чис-тый белок коллаген, а волосы, ногти и перья состоят из прочного нерас-творимого белка кератина.

ЧТО ЗАПИСАНО В ГЕНАХ

Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной инфор-мации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположе-ния аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание на-следственной информации. Следо-вательно, и выполняемые белками функции запрограммированы гене-тически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, кото-рое передаётся в природе от поколе-ния к поколению.

Интерес человека к этим органи-ческим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пыта-ются определить взаимосвязь функ-ций со структурой. Установление сходства и различий у белков, выпол-няющих аналогичные функции у раз-ных живых организмов, позволяет глубже проникать в тайны эволюции.

АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА

D - и L -формы аминокислот обладают способностью очень медленно превращаться друг в друга. За определённый (весьма длительный) период времени чистая D- или I-форма может стать смесью равных количеств обеих форм. Такая смесь называется раиемагом, а сам процесс —раие-мизаиией. Скорость рацемизации зависит от температуры и типа амино-кислоты. Данное свойство можно использовать для определения возрас-та ископаемых остатков организмов, а при необходимости — и живых существ. Например, в белке дентина (дентин — костная ткань зубов) 1-ас-парагиновая кислота самопроизвольно раиемизуется со скоростью 0,1 % в год. У детей в период формирования зубов в дентине содержится толь-ко 1-аспарагиновая кислота. Дентин выделяют из зуба и определяют В нём содержание 0-формы. Результаты теста достаточно точны. Так, для 97-лет-ней женщины, возраст которой был документально засвидетельствован, тест показал возраст 99 лет. Данные исследований, выполненных на ис-копаемых остатках доисторических животных — слонов, дельфинов, мед-ведей, — хорошо согласуются с результатами датирования, полученными радионуклидным методом.

ЗА ЧТО СЕНГЕР ПОЛУЧИЛ НОБЕЛЕВСКИЕ ПРЕМИИ

При гидролизе белков до аминокислот (разрушении пептидной связи во-дой) теряется информация о последовательности их соединения. Поэто-му долгое время считали, что определение первичной структуры белка представляет собой совершенно безнадежную задачу. Но в 50-х гг. XX в. английский биохимик Фредерик Сенгер (родился в 1918 г.) смог расшиф-ровать последовательность аминокислот в полипептидных цепях гормо-на инсулина. За эту работу, на выполнение которой ушло несколько лет, в 1958 г. Сенгер был удостоен Нобелевской премии по химии (двадца-тью годами позже он совместно с У. Гилбертом получил вторую премию за вклад в установление первичной структуры ДНК).

Принципы определения аминокислотной последовательности, впервые сформулированные Сенгером, используются и ныне, правда, со всевоз-можными вариациями и усовершенствованиями. Процедура установле-ния первичной структуры белка сложна и многоступенчата: в ней около десятка различных стадий. Сначала белок расщепляют до отдельных ами-нокислот и устанавливают их тип и количество в данном веществе. На сле-дующей стадии длинную белковую молекулу расщепляют уже не полно-стью, а на фрагменты. Затем в этих фрагментах определяют порядок соединения аминокислот, последовательно отделяя их одну за другой. Расшепление белка на фрагменты проводят несколькими способами, что-бы в разных фрагментах были перекрывающиеся участки. Выяснив поря-док расположения аминокислот во всех фрагментах, получают полную ин-формацию о том, как аминокислоты расположены в белке. К концу XX в. созданы специальные приборы, определяющие последовательность амино-кислот в молекуле белка в автоматическом режиме — секвенаторы (от англ. sequence — «последовательность»).

МОЛОКО И КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ

Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.

В коровьем молоке обычно содержится от 3 до 6 % жиров (в основном это сложные эфиры глицерина и насыщенных карбоновых кислот - пальмитиновой, стеариновой), около 3 % белков, а ешё углеводы, органические кислоты, витамины и минеральные вещества.

Белок казеин в молоке присутствует в связанном виде - ковалентно присоединённые к аминокислоте сери-ну фосфатные группы образуют соли с ионами кальция. При подкислении молока эти соли разрушаются, и казеин выделяется в виде белой творожистой массы. В желудке человека под действием особых ферментов происходит процесс, называемый “створажива-нием казеина”. Створоженный казеин выпадает в осадок и медленнее выводится из организма, а потому полнее усваивается. Казеин высоко питателен:

В нём есть почти все аминокислоты, необходимые человеку для построения собственных белков. В чистом виде он представляет собой безвкусный белый порошок, не растворимый в воде. Помимо него в молоке содержатся и другие белки, например лактальбумин. При кипячении этот белок превращается в нерастворимую форму, образуя на поверхности кипячёного молока характерную белую плёнку - пенку.

Входящий в состав молока сахар лактоза С^НддО, изомерен сахарозе. В организме человека под действием фермента лактазы этот сахар расщепляется на моносахариды глюкозу и галактозу, которые легко усваиваются. За счёт этого, например, грудные дети пополняют запасы углеводов. Интересно, что у многих людей (в основном у представителей монголоидной расы) организм в зрелом возрасте утрачивает способность расщеплять лактозу.

Проходя через пищеварительный тракт, лактоза не усваивается, а становится питательной средой для развития различных болезнетворных микроорганизмов, что приводит к общему недомоганию. Именно поэтому народы Дальнего Востока (японцы, китайцы) практически не употребляют в пишу молочные продукты.

В промышленных условиях молоко подвергают тепловой обработке, цель которой - подавить развитие микроорганизмов и продлить срок его хранения. Для этого молоко пастеризуют - выдерживают 30 мин при 65 °С, а также используют кратковременную термообработку - нагревают в течение 10-20 с до 71 °С. По сравнению с пастеризацией термообработка лучше сохраняет питательные вещества, в первую очередь витамины. Чтобы молоко не расслаивалось на сливки и сыворотку, его гомогенизируют - пропускают под давлением через небольшие отверстия. Жировые шарики дробятся, уменьшаются в размерах, а молоко становится более вязким.

Значительная часть молока идёт на переработку - для производства сливочного масла, сыра и кисломолочных продуктов (кефира, ряженки, простокваши, сметаны).

Чтобы получить кефир, молоко сквашивают - выдерживают в течение 8-10 ч при 20-25 °С, добавляя затравку молочнокислых бактерий. Под их действием лактоза распадается до молочной кислоты:

С„н„о„ + н,о =лактоза == 4СНзСН(ОН)СООН. молочная (2-гидроксипропановая) кислота

Именно молочная кислота определяет специфический вкус кефира. По мере того как она накапливается в растворе, происходит коагуляция (свёртывание)казеина, который выделяется в свободном виде. Поэтому кефир имеет более густую консистенцию, чем молоко. Молочнокислое сбраживание лактозы сопровождается спиртовым брожением, из-за чего в кисломолочных продуктах, в частности в кефире, есть небольшое количество алкоголя (до 0,03 %). В кисломолочных продуктах содержатся также микроорганизмы, которые подавляют развитие болезнетворных бактерий и тем самым улучшают пишеварение.

Творог тоже получают сквашиванием молока молочнокислыми бактериями. Его главной составной частью является белок казеин.

Чтобы приготовить сливочное масло, от молочной сыворотки необходимо отделить капельки жира, входящие в состав молока. Для этого сбивают сливки - верхний, более жирный слой, образующийся при отстаивании молока.

Казеин входит также в состав сыров. Их делают, добавляя в молоко бактериальную закваску и специальные ферменты, а затем подогревая смесь до определённой температуры. В выделившийся сгусток вновь вводят ферменты и подогревают. При этом происходит частичное изменение структуры и состава казеина. Затем смесь раскладывают по формам и длительное время - до шести месяцев - выдерживают при низкой температуре (не выше 15 °С). Во время созревания казеин под действием ферментов распадается на поли-пептиды и свободные аминокислоты. Часть аминокислот окисляется кислородом воздуха, при этом образуются аммиак, альдегиды, а также кетокислоты, придающие сыру характерный аромат.

Скисание молока - привычный пример денатурации белка.

МЕДНАЯ КРОВЬ

В холодных водах Перуанского течения в Тихом океане обитает кальмар Dosidicus gigas. Его сигарообразное тело вместе со щупальцами достигает в длину 3,5 м, а масса гиганта может превышать 150 кг. Мощные мышиы выбрасывают струю воды с силой, с какой она бьёт из пожарного рукава, благодаря чему кальмар способен двигаться со скоростью до 40 км/ч. Клювом, очень крепким и острым, он может перебить стальной кабель. По свидетельству очевидцев, кальмар буквально в клочья раздирает 20-килограммовую рыбину. Этот свирепый хишник очень опасен и для человека. В книге Франка Лейна “Царство осьминога” утверждается, что “человек, упавший за борт в местах, где обитает много кальмаров, не проживёт и полминуты”.

Чтобы “зарядиться” энергией, этому обитателю океана требуется много кислорода - не менее 50 л в час. По-ступаюший из морской воды кислород разносится по телу кальмара с помошью особого белка, содержащего медь, - гемоиианина (от греч. “гема” - “кровь” и “кианос” - “лазурный”, “голубой”).

Стоит заметить, что в крови позвоночных кислород “транспортируют” атомы железа в составе гема - особой сложной молекулы, которая входит в состав белка гемоглобина. Им буквально нашпигованы красные кровяные клетки - эритроциты. Молекула гемоглобина содержит четыре гемовых фрагмента, каждый из которых способен связать молекулу кислорода. В отличие от гемоглобина, в гемоиианине атомы меди непосредственно связаны с белковыми молекулами, которые не включены ни в какие клетки, а свободно “плавают” в крови. Зато одна молекула гемоииани

На способна связать до 200 атомов меди. И ешё одна особенность гемоииани-на - его молекулы имеют огромные даже для белков размеры. У “обычных” белков, входящих в состав яиц, молока, мыши, молекулярная масса колеблется в пределах от б тыс. до 1 млн, а молекулярная масса гемоиианина может достигать 10 млн! Это один из самых крупных белков; больше по размеру и массе только белковые комплексы у вирусов.

Гемоиианин - очень древний белок. Он устроен проще, чем гемоглобин и не так эффективен. Тем не менее при малом содержании кислорода в морской воде гемоиианин довольно успешно снабжает им ткани холоднокровных животных. Так, давление кислорода в жабрах лангуста составляет всего 7 мм рт. ст. (930 Па), а в тканях - 3 мм рт. ст.; причём концентрация этого газа в крови лангуста в 20 раз выше, чем в морской воде.

Кроме кальмаров, кислород переносится “голубой кровью” также у де-сятиногих ракообразных (омары, крабы, креветки). Гемоиианин найден у всех головоногих моллюсков (осьминоги, кальмары, каракатицы), разнообразных улиток, пауков и др. А вот у морских гребешков, устриц и других двустворчатых моллюсков его нет.

Количество гемоиианина в крови может быть самым разным. Так, у шустрых осьминога и мечехвоста (морское животное типа членистоногих) концентрация этого необычного белка доходит до 10 г в 100 мл крови - почти столько же гемоглобина в крови человека. В то же время, у малоподвижного съедобного моллюска морское ушко Hatiotis tuberculata в 100 мл крови всего 0,03 г гемоиианина. Это и понятно: чем более активно животное,

Чем больше кислорода необходимо ему для восполнения энергетических затрат, тем выше в крови концентрация белка, переносящего кислород.

Гемоиианин был открыт в 60-х гг. XIX в., когда биологи заметили, что кровь головоногих моллюсков при прохождении через жабры окрашивается в голубой цвет. А в 1878 г. бельгийский физиолог Леон Фредерик доказал, что голубой цвет вызван реакцией кислорода с медьсодержащим белком, который он назвал гемоиианином. Когда последний теряет кислород, он, в отличие от гемоглобина, становится бесцветным. Примечательно, что всю работу по изучению нового белка Фредерик выполнил в течение одного дня.

Из гемоиианина нетрудно полностью извлечь медь. Аля этого достаточно обработать белок в отсутствие кислорода реактивом, который прочно связывается с ионами одновалентной меди. Таким же способом можно определить содержание меди в гемоиианине. Лишённый этого металла, он теряет способность переносить кислород. Но если потом ввести в раствор белка ионы Си"1", гемоиианин восстанавливает свою физиологическую активность.

Так было доказано, что в отсутствие кислорода медь гемоиианина находится в степени окисления +1. При избытке же этого газа происходит частичное окисление металла. При этом всегда на одну связанную гемоиианином молекулу кислорода приходится два атома меди. Таким образом, кислород окисляет ровно половину атомов меди. Это ещё одно отличие гемоиианина от значительно более распространённого в животном мире гемоглобина, в котором все атомы железа равноценны и имеют заряд +2 как в свободном состоянии, так и в комплексе с кислородом.

Как известно, белки - основа зарождения жизни на нашей планете. По именно коацерватная капля, состоящая из молекул пептидов, стала основой зарождения живого. Это и не вызывает сомнений, ведь анализ внутреннего состава любого представителя биомассы показывает, что эти вещества есть во всем: растениях, животных, микроорганизмах, грибах, вирусах. Причем они очень разнообразны и макромолекулярны по природе.

Названий у этих структур четыре, все они являются синонимами:

  • белки;
  • протеины;
  • полипептиды;
  • пептиды.

Белковые молекулы

Их количество поистине неисчислимо. При этом все белковые молекулы можно разделить на две большие группы:

  • простые - состоят только из аминокислотных последовательностей, соединенных пептидными связями;
  • сложные - строение и структура белка характеризуются дополнительными протолитическими (простетическими) группами, называемыми еще кофакторами.

При этом сложные молекулы также имеют свою классификацию.

Градация сложных пептидов

  1. Гликопротеиды - тесно связанные соединения белка и углевода. В структуру молекулы вплетаются простетические группы мукополисахаридов.
  2. Липопротеиды - комплексное соединение из белка и липида.
  3. Металлопротеиды - в качестве простетической группы выступают ионы металлов (железо, марганец, медь и другие).
  4. Нуклеопротеиды - связь белка и нуклеиновых кислот (ДНК, РНК).
  5. Фосфопротеиды - конформация протеина и остатка ортофосфорной кислоты.
  6. Хромопротеиды - очень схожи с металлопротеидами, однако элемент, входящий в состав простетической группы, представляет собой целый окрашенный комплекс (красный - гемоглобин, зеленый - хлорофилл и так далее).

У каждой рассмотренной группы строение и свойства белков различны. Функции, которые они выполняют, также варьируются в зависимости от типа молекулы.

Химическое строение белков

С данной точки зрения протеины - это длинная, массивная цепь аминокислотных остатков, соединяющихся между собой специфическими связями, называемыми пептидными. От боковых структур кислот отходят ответвления - радикалы. Такое строение молекулы было открыто Э. Фишером в начале XXI века.

Позже более подробно были изучены белки, строение и функции белков. Стало ясно, что аминокислот, образующих структуру пептида, всего 20, но они способны комбинироваться самым разным способом. Отсюда и разнообразие полипептидных структур. Кроме того, в процессе жизнедеятельности и выполнения своих функций белки способны претерпевать ряд химических превращений. В результате они меняют структуру, и появляется уже совсем новый тип соединения.

Чтобы разорвать пептидную связь, то есть нарушить белок, строение цепей, нужно подобрать очень жесткие условия (действие высоких температур, кислот или щелочей, катализатора). Это объясняется высокой прочностью в молекуле, а именно в пептидной группе.

Обнаружение белковой структуры в условиях лаборатории проводится при помощи биуретовой реакции - воздействия на полипептид свежеосажденным (II). Комплекс пептидной группы и иона меди дает ярко-фиолетовую окраску.

Существует четыре основные структурные организации, каждая из которых имеет свои особенности строения белков.

Уровни организации: первичная структура

Как уже упоминалось выше, пептид - это последовательность аминокислотных остатков с включениями, коферментами или же без них. Так вот первичной называют такую структуру молекулы, которая является природной, естественной, представляет собой истинно аминокислоты, соединенные пептидными связями, и больше ничего. То есть полипептид линейного строения. При этом особенности строения белков такого плана - в том, что такое сочетание кислот является определяющим для выполнения функций белковой молекулы. Благодаря наличию данных особенностей возможно не только идентифицировать пептид, но и предсказать свойства и роль совершенно нового, еще не открытого. Примеры пептидов, обладающих природным первичным строением, - инсулин, пепсин, химотрипсин и другие.

Вторичная конформация

Строение и свойства белков этой категории несколько меняются. Такая структура может сформироваться изначально от природы либо при воздействии на первичную жестким гидролизом, температурой или иными условиями.

Данная конформация имеет три разновидности:

  1. Ровные, правильные, стереорегулярные витки, построенные из остатков аминокислот, которые закручиваются вокруг основной оси соединения. Удерживаются вместе только возникающими между кислородом одной пептидной группировки и водородом другой. Причем строение считается правильным из-за того, что витки равномерно повторяются через каждые 4 звена. Такая структура может быть как левозакрученной, так и правозакрученной. Но в большинстве известных белков преобладает правовращающий изомер. Такие конформации принято называть альфа-структурами.
  2. Состав и строение белков следующего типа отличается от предыдущего тем, что водородные связи образуются не между рядом стоящими по одной стороне молекулы остатками, а между значительно удаленными, причем на достаточно большое расстояние. По этой причине вся структура принимает вид нескольких волнообразных, извитых змейкой полипептидных цепочек. Есть одна особенность, которую должен проявлять белок. Строение аминокислот на ответвлениях должно быть максимально коротким, как у глицина или аланина, например. Этот тип вторичной конформации носит название бета-листов за способность будто слипаться при образовании общей структуры.
  3. Относящееся к третьему типу строение белка биология обозначает как сложные, разноразбросанные, неупорядоченные фрагменты, не обладающие стереорегулярностью и способные изменять структуру под воздействием внешних условий.

Примеров белков, имеющих вторичную структуру от природы, не выявлено.

Третичное образование

Это достаточно сложная конформация, имеющая название "глобула". Что собой представляет такой белок? Строение его основывается на вторичной структуре, однако добавляются новые типы взаимодействий между атомами группировок, и вся молекула словно сворачивается, ориентируясь, таким образом, на то, чтобы гидрофильные группировки были направлены внутрь глобулы, а гидрофобные - наружу.

Этим объясняется заряд белковой молекулы в коллоидных растворах воды. Какие же типы взаимодействий здесь присутствуют?

  1. Водородные связи - остаются без изменений между теми же самыми частями, что и во вторичной структуре.
  2. взаимодействия - возникают при растворении полипептида в воде.
  3. Ионные притяжения - образуются между разнозаряженными группами аминокислотных остатков (радикалов).
  4. Ковалентные взаимодействия - способны формироваться между конкретными кислотными участками - молекулами цистеина, вернее, их хвостами.

Таким образом, состав и строение белков, обладающих третичной структурой, можно описать как свернутые в глобулы полипептидные цепи, удерживающие и стабилизирующие свою конформацию за счет разных типов химических взаимодействий. Примеры таких пептидов: фосфоглицераткеназа, тРНК, альфа-кератин, фиброин шелка и другие.

Четвертичная структура

Это одна из самых сложных глобул, которую образуют белки. Строение и функции белков подобного плана очень многогранны и специфичны.

Что собой представляет такая конформация? Это несколько (в некоторых случаях десятки) крупных и мелких полипептидных цепей, которые формируются независимо друг от друга. Но затем за счет тех же взаимодействий, что мы рассматривали для третичной структуры, все эти пептиды скручиваются и переплетаются между собой. Таким образом получаются сложные конформационные глобулы, которые могут содержать и атомы металлов, и липидные группировки, и углеводные. Примеры таких белков: ДНК-полимераза, белковая оболочка табачного вируса, гемоглобин и другие.

Все рассмотренные нами структуры пептидов имеют свои методы идентификации в лабораторных условиях, основанные на современных возможностях использования хроматографии, центрифугирования, электронной и оптической микроскопии и высоких компьютерных технологиях.

Выполняемые функции

Строение и функции белков тесно коррелируют друг с другом. То есть каждый пептид играет определенную роль, уникальную и специфическую. Встречаются и такие, которые способны выполнять в одной живой клетке сразу несколько значительных операций. Однако можно в обобщенном виде выразить основные функции белковых молекул в организмах живых существ:

  1. Обеспечение движения. Одноклеточные организмы, либо органеллы, или некоторые виды клеток способны к передвижениям, сокращениям, перемещениям. Это обеспечивается белками, входящими в состав структуры их двигательного аппарата: ресничек, жгутиков, цитоплазматической мембраны. Если же говорить о неспособных к перемещениям клетках, то белки могут способствовать их сокращению (миозин мышц).
  2. Питательная или резервная функция. Представляет собой накопление белковых молекул в яйцеклетках, зародышах и семенах растений для дальнейшего восполнения недостающих питательных веществ. При расщеплении пептиды дают аминокислоты и биологически активные вещества, которые необходимы для нормального развития живых организмов.
  3. Энергетическая функция. Помимо углеводов, силы организму могут давать и белки. При распаде 1 г пептида высвобождается 17,6 кДж полезной энергии в форме аденозинтрифосфорной кислоты (АТФ), которая расходуется на процессы жизнедеятельности.
  4. Сигнальная и Заключается в осуществлении тщательного контроля за происходящими процессами и передачи сигналов от клеток к тканям, от них к органам, от последних к системам и так далее. Типичным примером может служить инсулин, который строго фиксирует количество глюкозы в крови.
  5. Рецепторная функция. Осуществляется путем изменения конформации пептида с одной стороны мембраны и вовлечения в реструктуризацию другого конца. При этом и происходит передача сигнала и необходимой информации. Чаще всего такие белки встраиваются в цитоплазматические мембраны клеток и осуществляют строгий контроль над всеми веществами, проходящими через нее. Также оповещают о химических и физических изменениях окружающей среды.
  6. Транспортная функция пептидов. Ее осуществляют белки-каналы и белки-переносчики. Роль их очевидна - транспортировка необходимых молекул к местам с низкой концентрацией из частей с высокой. Типичным примером служит перенос кислорода и диоксида углерода по органам и тканям белком гемоглобином. Ими же осуществляется доставка соединений с невысокой молекулярной массой через мембрану клетки внутрь.
  7. Структурная функция. Одна из важнейших из тех, которые выполняет белок. Строение всех клеток, их органелл обеспечивается именно пептидами. Они подобно каркасу задают форму и структуру. Кроме того, они же ее поддерживают и видоизменяют в случае необходимости. Поэтому для роста и развития всем живым организмам необходимы белки в рационе питания. К таким пептидам можно отнести эластин, тубулин, коллаген, актин, кератин и другие.
  8. Каталитическая функция. Ее выполняют ферменты. Многочисленные и разнообразные, они ускоряют все химические и биохимические реакции в организме. Без их участия обычное яблоко в желудке смогло бы перевариться только за два дня, с большой вероятностью загнив при этом. Под действием каталазы, пероксидазы и других ферментов этот процесс происходит за два часа. В целом именно благодаря такой роли белков осуществляется анаболизм и катаболизм, то есть пластический и

Защитная роль

Существует несколько типов угроз, от которых белки призваны оберегать организм.

Во-первых, травмирующих реагентов, газов, молекул, веществ различного спектра действия. Пептиды способны вступать с ними в химическое взаимодействие, переводя в безобидную форму или же просто нейтрализуя.

Во-вторых, физическая угроза со стороны ран - если белок фибриноген вовремя не трансформируется в фибрин на месте травмы, то кровь не свернется, а значит, закупорка не произойдет. Затем, наоборот, понадобится пептид плазмин, способный сгусток рассосать и восстановить проходимость сосуда.

В-третьих, угроза иммунитету. Строение и значение белков, формирующих иммунную защиту, крайне важны. Антитела, иммуноглобулины, интерфероны - все это важные и значимые элементы лимфатической и иммунной системы человека. Любая чужеродная частица, вредоносная молекула, отмершая часть клетки или целая структура подвергается немедленному исследованию со стороны пептидного соединения. Именно поэтому человек может самостоятельно, без помощи лекарственных средств, ежедневно защищать себя от инфекций и несложных вирусов.

Физические свойства

Строение белка клетки весьма специфично и зависит от выполняемой функции. А вот физические свойства всех пептидов схожи и сводятся к следующим характеристикам.

  1. Вес молекулы - до 1000000 Дальтон.
  2. В водном растворе формируют коллоидные системы. Там структура приобретает заряд, способный варьироваться в зависимости от кислотности среды.
  3. При воздействии жестких условий (облучение, кислота или щелочь, температура и так далее) способны переходить на другие уровни конформаций, то есть денатурировать. Данный процесс в 90% случаев необратим. Однако существует и обратный сдвиг - ренатурация.

Это основные свойства физической характеристики пептидов.