Фигуры называются равными если. IV. Шаг вперёд! Равновеликие и равносоставленные фигуры

Какие фигуры называются равными?

    Равными называют фигуры , которые совпадают при наложении.

    Частой ошибкой на этот вопрос является ответ, в котором упоминаются равные стороны и углы геометрической фигуры. Однако при этом не принимается в учет, что стороны геометрической фигуры не обязательно бывают прямыми. Поэтому только совпадение геометрических фигур при наложении может быть признаком их равенства.

    На практике это легко проверить с помощью наложения, они должны совпасть.

    Все очень просто и доступно, обычно равные фигуры видно сразу.

    Равными называются те фигуры, у которых совпадают параметры геометрии. Эти параметры: длина сторон, величина углов, толщина.

    Проще всего понять что фигуры равны можно с помощью наложения. Если величины фигур одинаковы - их называют равными.

    Равными называют только те геометрические фигуры, которые имеют абсолютно одинаковые параметры:

    1) периметр;

    2) площадь;

    4) размеры.

    То есть, если одну фигуру наложить на другую, то они совпадут.

    Ошибочно полагать, что если фигуры имеют одинаковые периметр или площадь, то они равны. На самом деле, геометрические фигуры, у которых равна площадь называются равновеликими.

    Фигуры называются равными, если они совпадают при наложении друг на друга.Равные фигуры имеют одинаковые размеры, форму, площадь и периметр. А вот равные по площади фигуры могут быть и не равными между собой.

    В геометрии, по правилам, равные фигуры должны иметь одинаковую площадь и периметр, то есть у них должны быть абсолютно одиноковые формы и размеры. И они должны полностью совпадать при их наложении друг на друга. Если же есть какие-то расхождения, то эти фигуры уже нельзя будет назвать равными.

    Фигуры можно назвать равными при условии, если они полностью совпадают при наложении друг на друга, т.е. они имеют одинаковые размеры, форму и следовательно площадь и периметр, а также другие характеристики. В противном случае говорить о равности фигур нельзя.

    В самом слове равные заложена суть.

    Это фигуры которые полностью идентичные друг другу. То есть полностью совпадают. Если фигуру положить одну на одну тогда фигуры будут перекрывать себя со всех сторон.

    Они одинаковые то есть равные.

    В отличие от равных треугольников (для определения которых достаточно выполнения одного из условий - признаков равенства), равными фигурами называют такие, которые имеют одинаковую не только форму, но и размеры.

    Определить, равна ли одна фигура другой, можно методом наложения. При этом фигуры должны совпасть и сторонами и углами. Это и будут равные фигуры.

    Равными могут быть только такие фигуры, которые при их наложении полностью совпадут сторонами и углами. На самом деле для всех простейших многоугольников равенство их площади свидетельствует и о равенстве самих фигур. Пример: квадрат со стороной а всегда будет равен другому квадрату с той же стороной а. Тоже касается и прямоугольников и ромбов - если их стороны равны сторонам другого прямоугольника, они равны. Более сложный пример: треугольники будут равными, если у них равны стороны и соответствующие углы. Но это только частные случаи. В более общих случаях, равенство фигур доказывается все-таки наложением, а это наложение в планиметрии высокопарно именуют движением.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Повторить тему «Площадь параллелограмма». Вывести формулу площади треугольник, ввести понятие равновеликих фигур. Решение задач по теме «Площади равновеликих фигур».

Ход урока

I. Повторение.

1) Устно по готовому чертежу вывести формулу площади параллелограмма.

2) Какова зависимость между сторонами параллелограмма и высотами, опущенными на них?

(по готовому чертежу)

зависимость обратно пропорциональная.

3) Найти вторую высоту (по готовому чертежу)

4) Найти площадь параллелограмма по готовому чертежу.

Решение:

5) Сравните площади параллелограммов S1, S2, S3 . (Они имеют равные площади, у всех основание a и высота h).

Определение: Фигуры, имеющие равные площади, называются равновеликими.

II. Решение задач.

1) Доказать, что всякая прямая, проходящая через точку пересечения диагоналей, делит его на 2 равновеликие части.

Решение:

2) В параллелограмме ABCD CF и CE высоты. Доказать, что AD ∙ CF = AB ∙ CE.

3) Дана трапеция с основаниями a и 4a. Можно ли через одну из её вершин провести прямые, разбивающие трапецию на 5 равновеликих треугольников?

Решение: Можно. Все треугольники равновеликие.

4) Доказать, что если на стороне параллелограмма взять точку A и соединить её с вершинами, то площадь получившегося треугольника ABC равна половине площади параллелограмма.

Решение:

5) Торт имеет форму параллелограмма. Малыш и Карлсон делят его так: Малыш указывает на поверхности торта точку, а Карлсон по прямой, проходящей через эту точку, разрезает торт на 2 куска и один из кусков забирает себе. Каждый хочет получить кусок побольше. Где Малыш должен поставить точку?

Решение: В точке пересечения диагоналей.

6) На диагонали прямоугольника выбрали точку и провели через неё прямые, параллельные сторонам прямоугольника. По разные стороны образовались 2 прямоугольника. Сравните их площади.

Решение:

III. Изучение темы «Площадь треугольника»

начать с задачи:

«Найти площадь треугольника, у которого основание a, а высота h».

Ребята, используя понятие равновеликих фигур, доказывают теорему.

Достроим треугольник до параллелограмма.

Площадь треугольника равна половине площади параллелограмма.

Задание: Начертите равновеликие треугольники.

Используется модель (из бумаги вырезаны 3 цветных треугольника и склеены у оснований).

Упражнение №474. «Сравните площади двух треугольников, на которые разделяется данный треугольник его медианой».

У треугольников одинаковые основания a и одна и та же высота h. Треугольники имеют одинаковую площадь

Вывод: Фигуры, имеющие равные площади, называются равновеликими.

Вопросы к классу:

  1. Равновелики ли равные фигуры?
  2. Сформулируйте обратное утверждение. Верно ли оно?
  3. Верно ли:
    а) Равносторонние треугольники равновелики?
    б) Равносторонние треугольники с равными сторонами равновелики?
    в) Квадраты с равными сторонами равновелики?
    г) Докажите, что параллелограммы, образованные при пересечении двух полос одинаковой ширины под разными углами наклона друг к другу, равновелики. Найдите параллелограмм наименьшей площади, образующийся при пересечении двух полос одинаковой ширины. (Показать на модели: полоски одинаковой ширины)

IV. Шаг вперёд!

На доске написаны задания по выбору:

1. «Разрежьте треугольник двумя прямыми линиями так, чтобы можно было из частей сложить прямоугольник».

Решение:

2. «Разрежьте прямоугольник по прямой линии на 2 части, из которых можно сложить прямоугольный треугольник».

Решение:

3) В прямоугольнике проведена диагональ. В одном из получившихся треугольников проведена медиана. Найдите соотношения между площадями фигур .

Решение:

Ответ:

3. Из олимпиадных задач:

«В четырёхугольнике ABCD точка E- середина AB, соединена с вершиной D, а F – середина CD, с вершиной B. Доказать, что площадь четырёхугольника EBFD в 2 раза меньше площади четырёхугольника ABCD.

Решение: провести диагональ BD.

Упражнение №475.

«Начертите треугольник ABC. Через вершину В проведите 2 прямые так, чтобы они разделили этот треугольник на 3 треугольника, имеющие равные площади».

Использовать теорему Фалеса (разделить АC на 3 равные части).

V. Задача дня.

Для неё отвела крайнюю правую часть доски, на которой пишу задачу сегодняшнего дня. Ребята могут решать её, а могут и не решать. На уроке данную задачу мы сегодня не решаем. Просто те, кому они интересны, могут списать её, решить её дома или в перемену. Обычно уже в перемену многие ребята начинают решать задачу, если решили, то показывают решение, и я фиксирую это в специальной таблице. На следующем уроке к этой задаче обязательно возвращаемся, уделяя её решению небольшую часть урока (а на доске может быть записана новая задача).

«В параллелограмме вырезан параллелограмм. Разделите оставшуюся часть на 2 равновеликие фигуры».

Решение: Секущая AB проходит через точку пересечения диагоналей параллелограммов O и O1.

Дополнительные задачи (из олимпиадных задач):

1) «В трапеции ABCD (AD || BC) вершины A и B соединены с точкой M – серединой стороны CD. Площадь треугольника ABM равна m. Найти площадь трапеции ABCD».

Решение:

Треугольники ABM и AMK – равновеликие фигуры, т.к. AM – медиана.
S ∆ABK = 2m, ∆BCM = ∆MDK, S ABCD = S ∆ABK = 2m.

Ответ: S ABCD = 2m.

2) «В трапеции ABCD (AD || BC) диагонали пересекаются в точке O. Доказать, что треугольники AOB и COD равновеликие».

Решение:

S ∆BCD = S ∆ABC , т.к. у них общее основание BC и одинаковая высота .

3) Сторона АВ произвольного треугольника АВС продолжена за вершину В так, что ВР = АВ, сторону АС за вершину А так, что АМ = СА, сторону ВС за вершину С так, что КС = ВС. Во сколько раз площадь треугольника РМК больше площади треугольника АВС?

Решение:

В треугольнике МВС : МА = АС, значит, площадь треугольника ВАМ равна площади треугольника АВС. В треугольнике АРМ : ВР = АВ, значит, площадь треугольника ВАМ равна площади треугольника АВР. В треугольнике АРС : АВ = ВР, значит, площадь треугольника ВАС равна площади треугольника ВРС. В треугольнике ВРК : ВС = СК, значит, площадь треугольника ВРС равна площади треугольника РКС. В треугольнике АВК : ВС = СК, значит, площадь треугольника ВАС равна площади треугольника АСК. В треугольнике МСК: МА = АС, значит, площадь треугольника КАМ равна площади треугольника АСК. Получаем 7 равновеликих треугольников. Значит,

Ответ: Площадь треугольника МРК в 7 раз больше площади треугольника АВС.

4) Сцепленные параллелограммы.

2 параллелограмма расположены так, как показано на рисунке: они имеют общую вершину и ещё по одной вершине у каждого из параллелограммов лежит на сторонах другого параллелограмма. Доказать, что площади параллелограммов равны.

Решение:

и , значит,

Список использованной литературы :

  1. Учебник «Геометрия 7-9» (авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев (Москва, «Просвещение», 2003).
  2. Олимпиадные задачи разных лет, в частности из учебного пособия «Лучшие задачи математических олимпиад» (составитель А.А. Корзняков, Пермь, «Книжный мир», 1996).
  3. Подборка задач, накопленных за много лет работы.

Одним из основных понятий в геометрии является фигура. Под этим термином подразумевается множество точек на плоскости, ограниченное конечным числом линий. Некоторые фигуры могут рассматриваться как равные, что тесно связано с понятием движения. Геометрические фигуры могут рассматриваться не изолированно, а в том или ином соотношении друг с другом – их взаимное расположение, соприкосновение и прилегание, положение «между», «внутри», соотношение, выраженное в понятиях «больше», «меньше», «равно».Геометрия изучает инвариантные свойства фигур, т.е. те, которые остаются неизменными при тех или иных геометрических преобразованиях. Такое преобразование пространства, при котором остается неизменным расстояние между точками, составляющими ту или иную фигуру, называется движением.Движение может выступать в разных вариантах: параллельный перенос, тождественное преобразование, поворот вокруг оси, симметрия относительно прямой или плоскости, центральная, поворотная, переносная симметрия.

Движение и равные фигуры

Если возможно такое движение, которое приведет к совмещению одной фигуры с другой, такие фигуры называют равными (конгруэнтными). Две фигуры, равные третьей, равны и между собою – такое утверждение было сформулировано еще Евклидом, основоположником геометрии.Понятие конгруэнтных фигур может быть объяснено и более простым языком: равными называются такие фигуры, которые полностью совпадут при наложении их друг на друга.Это достаточно легко определить, если фигуры даны в виде неких предметов, которыми можно манипулировать – например, вырезаны из бумаги, поэтому в школе на уроках нередко прибегают к такому способу объяснения данного понятия. Но две фигуры, начерченные на плоскости, нельзя физически наложить друг на друга. В данном случае доказательством равенства фигур выступает доказательство равенства всех элементов, составляющих эти фигуры: длина отрезков, размер углов, диаметр и радиус, если речь идет об окружности.

Равновеликие и равносоставленные фигуры

С равными фигурами не следует смешивать равновеликие и равносоставленные фигуры – при всей близости данных понятий.
Равновеликими называются такие фигуры, которые имеют равную площадь, если это фигуры на плоскости, или равный объем, если речь идет о трехмерны телах. Совпадение всех элементов, составляющих данные фигуры, не является обязательным. Равные фигуры будут равновеликими всегда, но не всякие равновеликие фигуры можно назвать равными.Понятие равносоставленности чаще всего применяют к многоугольникам. Оно подразумевает, что многоугольники можно разбить на одинаковое количество соответственно равных фигур. Равносоставленные многоугольники всегда являются равновеликими.

Фигуры называют равными, если совпадает их форма и размеры. Из этого определения следует, например, что если заданные прямоугольник и квадрат имеют равные площади, то они всё-равно не становятся равными фигурами, так как это разные фигуры по форме. Или, два круга однозначно имеют одну и туже форму, но если их радиусы различны, то это тоже не равные фигуры, так как не совпадают их размеры. Равными фигурами являются, например, два отрезка одинаковой длины, два круга с одинаковым радиусом, два прямоугольника с попарно равными сторонами (короткая сторона одного прямоугольника равна короткой стороне другого, длинная сторона одного прямоугольника равна длинной стороне другого).

На глаз бывает трудно определить, равны ли фигуры, имеющие одинаковую форму. Поэтому для определения равенства простых фигур их измеряют (с помощью линейки, циркуля). У отрезков длину, у кругов радиус, у прямоугольников длину и ширину, у квадратов только одну любую сторону. Тут следует отметить, что не все фигуры можно сравнивать. Нельзя, например, определить равенство прямых, т. к. любая прямая бесконечна и, следовательно, все прямые, можно сказать, равны между собой. То же самое касается лучей. Хотя у них есть начало, но нет конца.

Если же мы имеем дело со сложными (произвольными) фигурами, то бывает даже сложно определить, имеют ли они одинаковую форму. Ведь фигуры могут быть перевернуты в пространстве. Посмотрите на рисунок ниже. Трудно сказать, одинаковые ли это по форме фигуры или нет.

Таким образом, нужно иметь надежный принцип сравнения фигур. Он таков: равные фигуры при наложении друг на друга совпадают .

Чтобы сравнить две изображенные фигуры наложением, на одну из них накладывают кальку (прозрачную бумагу) и копируют (срисовывают) на нее форму фигуры. Копию на кальке пытаются наложить на вторую фигуру так, чтобы фигуры совпали. Если это удастся, то заданные фигуры равные. Если нет, то фигуры не равные. При наложении кальку можно поворачивать как угодно, а также переворачивать.

Если можно вырезать сами фигуры (или они представляют собой отдельные плоские объекты, а не нарисованы) то калька не нужна.

При изучении геометрических фигур можно заметить множество их особенностей, связанных с равенством их частей. Так, если сложить круг вдоль диаметра, то две его половинки окажутся равными (они совпадут наложением). Если разрезать прямоугольник по диагонали, то получится два прямоугольных треугольника. Если один из них повернуть на 180 градусов по часовой или против часовой стрелки, то он совпадет со вторым. То есть диагональ разбивает прямоугольник на две равные части.

При вычислении площадей многоугольников используется простой прием, называемый методом разбиения. Рассмотрим многоугольники и , изображенные на рис. 1, где показано, как разбить эти многоугольники на одинаковое число соответственно равных частей (равные части отмечены одинаковыми цифрами). О многоугольниках и говорят, что они равносоставлены. Вообще, многоугольники и называются равносоставленными, если, определенным образом разрезав многоугольник на конечное число частей, можно, располагая эти части иначе, составить из них многоугольник . Легко видеть, что справедлива следующая теорема: равносоставленные многоугольники имеют одинаковую площадь, или, как говорят, равновелики. Например, параллелограмм равносоставлен с прямоугольником (рис. 2), и потому, зная формулу площади прямоугольника, находим, что площадь параллелограмма равна произведению длин его стороны и соответствующей высоты.

Этот пример иллюстрирует метод разбиения, состоящий в том, что для вычисления площади многоугольника пытаются разбить его на конечное число частей таким образом, чтобы из этих частей можно было составить более простой многоугольник, площадь которого нам уже известна. Например, треугольник равносоставлен с параллелограммом, имеющим то же основание и вдвое меньшую высоту (рис. 3); из этого легко выводится формула площади треугольника. Этот способ вычисления площадей многоугольников был известен еще Евклиду, который жил более 2000 лет назад.

Замечательно, что для приведенной выше теоремы справедлива и обратная теорема: если два многоугольника равновелики, то они равносоставлены. Эту теорему, доказанную в первой половине XIX в. венгерским математиком Ф. Бойяи и немецким офицером и любителем математики П. Гервином, можно пояснить так: если имеется пряник в форме многоугольника и многоугольная коробка совершенно другой формы, но той же площади, то можно так разрезать пряник на конечное число кусков, что их удастся вложить в эту коробку.

В связи с теоремой Бойяи-Гервина возникает вопрос о наложении дополнительных ограничений на число или расположение частей, из которых составляются равновеликие многоугольники. Например, представим себе плоскость в виде листа цветной бумаги, у которого одна сторона красная, а другая - белая. Если из такой бумаги вырезаны два равновеликих красных многоугольника, то возникает вопрос, можно ли один из них разрезать на части, из которых удастся сложить красный многоугольник, равный второму. Части разрешается перекладывать, не переворачивая их на белую, изнаночную сторону. Ответ на этот вопрос также утвердителен.

Вариант этой задачи был предложен на одной из московских математических олимпиад в следующей шуточной форме. Чудак-кондитер испек торт (а у торта, в отличие от пряника, верхняя сторона покрыта кремом) в форме разностороннего треугольника. Сделали и коробку к торту, но по недосмотру склеили ее неверно, так что торт и коробка оказались симметричными друг другу (рис. 4). Нужно (по возможности экономно) разрезать торт на части, которые удалось бы уложить в эту коробку. Разумеется, части торта нельзя укладывать кремом вниз.

Интересный результат, связанный с наложением дополнительных требований на расположение частей, был получен в 1952 г. швейцарскими математиками Г. Хадвигером и П. Глюром: равносоставленность двух равновеликих многоугольников может быть установлена при помощи таких разбиений, в которых соответствующие части имеют параллельные стороны. На первый взгляд это кажется даже неправдоподобным: трудно поверить, что два равных треугольника, повернутые друг относительно друга на произвольный угол (рис. 5), всегда можно разбить на равные части с соответственно параллельными сторонами. Тем не менее существует такое разбиение этих треугольников, что части, на которые разбит один треугольник, получаются из соответствующих частей второго треугольника параллельными переносами или центральными симметриями. То же справедливо для любых двух равновеликих многоугольников. Однако одними только параллельными переносами частей обойтись не удается. Например, как бы мы ни разрезали параллелограмм на части, невозможно параллельными переносами составить из этих частей треугольник.

Интерес к этим вопросам был пробужден знаменитым докладом «Математические проблемы», который был прочитан выдающимся математиком Д. Гильбертом на Втором Международном конгрессе математиков, состоявшемся на рубеже XIX и XX вв. Из двадцати трех поставленных Гильбертом проблем большинство относится к новым, быстро развивающимся разделам математики. И лишь одна проблема – третья - связана с вопросами школьной геометрии. Гильберт обращает внимание на то, что при вычислении объема треугольной пирамиды еще со времен Евклида используется довольно сложный предельный переход (см. Предел) (а в настоящее время - интегрирование), тогда как при вычислении площади треугольника мы обходимся без аналогичного предельного перехода. Существо проблемы Гильберта состоит в том, чтобы обосновать использование этого «лишнего» (по сравнению с планиметрией) предельного перехода, т.е. доказать, что без него теория объемов многогранников не может быть построена. В 1900 г. М. Ден решил третью проблему Гильберта, доказав, что правильный тетраэдр и равновеликий ему куб не равносоставлены. Гильберт предвидел, что этот вопрос может привести к созданию математически интересной и богатой результатами теории равносоставленности многоугольников и многогранников. Предвидение Гильберта блестяще оправдалось; красивое здание современной теории равносоставленности является достойным памятником ученому.