Кодирование генов. Генетический код как способ записи наследственной информации. Что такое генетический код

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код - это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки - природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

ДНК и РНК

Дезоксирибонуклеиновая кислота - это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности - "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований - это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан - 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Генетические функции ДНК заключаются в том, что она обеспечивает хранение, передачу и реализацию наследственной информации, которая представляет собой информацию о первичной структуре белков (т.е. их аминокислотном составе). Связь ДНК с синтезом белка была предсказана биохимиками Дж. Бидлом и Э. Тейтумом еще в 1944 г. при изучении механизма мутаций у плесневого грибка Neurospora. Информация записана в виде определенной последовательности азотистых оснований в молекуле ДНК с помощью генетического кода. Расшифровку генетического кода считают одним из великих открытий естествознания ХХ в. и по значимости приравнивают к открытию ядерной энергии в физике. Успех в этой области связан с именем американского ученого М. Ниренберга, в лаборатории которого был расшифрован первый кодон — YYY. Однако весь процесс расшифровки занял более 10 лет, в нем участвовало много известных ученых из разных стран, и не только биологи, но и физики, математики, кибернетики. Решающий вклад в разработку механизма записи генетической информации был внесен Г. Гамовым, который первым предположил, что кодон состоит из трех нуклеотидов. Совместными усилиями ученых была дана полная характеристика генетического кода.

Буквы во внутреннем круге — основания в 1-й позиции в кодоне, буквы во втором круге —
основания во 2-й позиции и буквы снаружи второго круга — основания в 3-й позиции.
В последнем круге — сокращенные названия аминокислот. НП — неполярные,
П — полярные аминокислотные остатки.

Основными свойствами генетического кода являются: триплетность , вырожденность и неперекрываемость . Триплетность означает, что последовательность из трех оснований определяет включение в молекулу белка специфической аминокислоты (например, АУГ — метионин). Вырожденность кода заключается в том, что одна и та же аминокислота может кодироваться двумя или несколькими кодонами. Неперекрываемость означает, что одно и то же основание не может входить в состав двух соседних кодонов.

Установлено, что код является универсальным , т.е. принцип записи генетической информации одинаков у всех организмов.

Триплеты, кодирующие одну и ту же аминокислоту, называются кодонами-синонимами. Обычно они имеют одинаковые основания в 1-й и 2-й позициях и различаются только по третьему основанию. Например, включение аминокислоты аланина в молекулу белка кодируют кодоны-синонимы в молекуле РНК — GCA, GCC, GCG, GCY. В составе генетического кода имеются три некодирующих триплета (нонсенс-кодоны — UAG, UGA, UAA), которые играют роль stop-сигналов в процессе считывания информации.

Установлено, что универсальность генетического кода не является абсолютной. При сохранении общего для всех организмов принципа кодирования и особенностей кода в ряде случаев наблюдается изменение смысловой нагрузки отдельных кодовых слов. Это явление получило название неоднозначности генетического кода, а сам код был назван квазиуниверсальным .

Читайте также другие статьи темы 6 "Молекулярные основы наследственности" :

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы" .

Генетический код – система записи генетической информации в ДНК (РНК) в виде определенной последовательности нуклеотидов.Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тиминаурацил – У (U). Последовательность нуклеотидов определяет последовательность включения АК в синтезируемый белок.

Свойства генетического кода:

1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон) .
2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки) .
4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotescrassus кодирует две аминокислоты - цистеин и селеноцистеин)
5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже) .

Условия биосинтеза

Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК - переносчик этой информации из ядра к месту синтеза; рибосомы - органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ - вещество, обеспечивающее энергией процесс кодирования и биосинтеза.

Этапы

Транскрипция - процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.

Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.

После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.


Трансляция - процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.

Биосинтез белка состоит из ряда реакций.

1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК-аминокислота, который поступает на рибосомы.

2. Образование комплекса иРНК-рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.

3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК - аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.

Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15-20 с.

Нуклеотиды ДНК и РНК
  1. Пуриновые: аденин, гуанин
  2. Пиримидиновые: цитозин, тимин (урацил)

Кодон - триплет нуклеотидов, кодирующих определенную аминокислоту.

таб. 1. Аминокислоты, которые обычно встречаются в белках
Название Сокращенное обозначение
1. Аланин Ala
2. Аргинин Arg
3. Аспарагин Asn
4. Аспарагиновая кислота Asp
5. Цистеин Cys
6. Глутаминовая кислота Glu
7. Глутамин Gln
8. Глицин Gly
9. Гистидин His
10. Изолейцин Ile
11. Лейцин Leu
12. Лизин Lys
13. Метионин Met
14. Фенилаланин Phe
15. Пролин Pro
16. Серии Ser
17. Треонин Thr
18. Триптофан Trp
19. Тирозин Tyr
20. Валин Val

Генетический код, который еще называют аминокислотным кодом, - это система записи информации о последовательности расположения аминокислот в белке с помощью последовательности расположения нуклеотидных остатков в ДНК, которые содержат одно из 4-х азотистых оснований: аденин (А), гуанин (G), цитозин (C) и тимин (Т). Однако, поскольку двунитчатая спираль ДНК не принимает непосредственного участия в синтезе белка, который кодируется одной из этих нитей (т.е. РНК), то код записывается на языке РНК, в котором вместо тимина входит урацил (U). По этой же причине принято говорить, что код - это последовательность нуклеотидов, а не пар нуклеотидов.

Генетический код представлен определенными кодовыми словами, - кодонами.

Первое кодовое слово было расшифровано Ниренбергом и Маттеи в 1961 г. Они получили из кишечной палочки экстракт, содержащий рибосомы и прочие факторы, необходимые для синтеза белка. Получилась бесклеточная система для синтеза белка, которая могла бы осуществлять сборку белка из аминокислот, если в среду добавить необходимую мРНК. Добавив в среду синтетическую РНК, состоящую только из урацилов, они обнаружили, что образовался белок, состоящий только из фенилаланина (полифенилаланин). Так было установлено, что триплет нуклеотидов УУУ (кодон) соответствует фенилаланину. В течение последующих 5-6 лет были определены все кодоны генетического кода.

Генетический код - своеобразный словарь, переводящий текст, записанный с помощью четырех нуклеотидов, в белковый текст, записанный с помощью 20 аминокислот. Остальные аминокислоты, встречающиеся в белке, являются модификациями одной из 20 аминокислот.

Свойства генетического кода

Генетический код имеет следующие свойства.

  1. Триплетность - каждой аминокислоте соответствует тройка нуклеотидов. Легко подсчитать, что существуют 4 3 = 64 кодона. Из них 61 является смысловым и 3 - бессмысленными (терминирующими, stop-кодонами).
  2. Непрерывность (нет разделительных знаков между нуклеотидами) - отсутствие внутригенных знаков препинания;

    Внутри гена каждый нуклеотид входит в состав значащего кодона. В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его непрерывность (компактость) [показать]

    Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида.

    Одиночная мутация ("+" или "-") в начале гена или двойная мутация ("+" или "-") - портит весь ген.

    Тройная мутация ("+" или "-") в начале гена портит лишь часть гена.

    Четверная "+" или "-" мутация опять портит весь ген.

    Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, что

    1. код триплетен и внутри гена нет знаков препинания
    2. между генами есть знаки препинания
  3. Наличие межгенных знаков препинания - наличие среди триплетов инициирующих кодонов (с них начинается биосинтез белка), кодонов - терминаторов (обозначают конец биосинтеза белка);

    Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

    В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

  4. Колинеарность - соответствие линейной последовательности кодонов мРНК и аминокислот в белке.
  5. Специфичность - каждой аминокислоте соответствуют только определенные кодоны, которые не могут использоваться для другой аминокислоты.
  6. Однонаправленность - кодоны считываются в одном направлении - от первого нуклеотида к последующим
  7. Вырожденность, или избыточность ,- одну аминокислоту может кодировать несколько триплетов (аминокислот – 20, возможных триплетов – 64, 61 из них смысловой, т. е. в среднем каждой аминокислоте соответствует около 3 кодонов); исключение составляет метионин (Met) и триптофан (Trp).

    Причина вырожденности кода состоит в том, что главную смысловую нагрузку несут два первых нуклеотида в триплете, а третий не так важен. Отсюда правило вырожденности кода : если два кодона имеют два одинаковых первых нуклеотида, а их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

    Однако из этого идеального правила есть два исключения. Это кодон АUА, который должен соответствовать не изолейцину, а метионину и кодон UGА, который является терминирующим, тогда как должен соответствовать триптофану. Вырожденность кода имеет, очевидно, приспособительное значение.

  8. Универсальность - все перечисленные выше свойства генетического кода характерны для всех живых организмов.
    Кодон Универсальный код Митохондриальные коды
    Позвоночные Беспозвоночные Дрожжи Растения
    UGA STOP Trp Trp Trp STOP
    AUA Ile Met Met Met Ile
    CUA Leu Leu Leu Thr Leu
    AGA Arg STOP Ser Arg Arg
    AGG Arg STOP Ser Arg Arg

    В последнее время принцип универсальности кода был поколеблен в связи c открытием Береллом в 1979 г. идеального кода митохондрий человека, в котором выполняется правило вырожденности кода. В коде митохондрий кодон UGA соответствует триптофану, а AUA - метионину, как того требует правило вырожденности кода.

    Возможно, в начале эволюции у всех простейших организмов был такой же код, как и у митохондрий, а затем он претерпел небольшие отклонения.

  9. Неперекрываемость - каждый из триплетов генетического текста независим друг от друга, один нуклеотид входит в состав только одного триплета; На рис. показана разница между перекрывающимся и неперекрывающимся кодом.

    В 1976г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

    Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D. Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D. Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

  10. Помехоустойчивость - отношение числа консервативных замен к числу радикальных замен.

    Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

    Так как одна и та же аминокислота может кодироваться разными триплетами, то некоторые замены в триплетах не приводят к замене кодируемой аминокислоты (например UUU -> UUC оставляет фенилаланин). Некоторые замены меняют аминокислоту на другую из того же класса (неполярный, полярный, основной, кислотный), остальные замены меняют и класс аминокислоты.

    В каждом триплете можно провести 9 однократных замен, т.е. выбрать, какую из позиций меняем - можно тремя способами (1-я или 2-я или 3-я), причем выбранную букву (нуклеотид) можно поменять на 4-1=3 других буквы (нуклеотида). Общее количество возможных замен нуклеотидов - 61 по 9 = 549.

    Прямым подсчетом по таблице генетического кода можно убедиться, что из них: 23 замены нуклеотидов приводят к появлению кодонов - терминаторов трансляции. 134 замены не меняют кодируемую аминокислоту. 230 замен не меняют класс кодируемой аминокислоты. 162 замены приводят к смене класса аминокислоты, т.е. являются радикальными. Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляции, а 176 - консервативны. Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны. Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 - консервативны, 102 - радикальны.


Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000