Найти угол между градиентами онлайн. Векторный анализ скалярное поле поверхности и линии уровня производная по направлению производная градиент скалярного поля основные свойства градиента инвариантное определение градиента правила вычисления градиента

Представьте стаю воробьёв с выпученными глазами. Нет, это не гром, не ураган и даже не маленький мальчик с рогаткой в руках. Просто в самую гущу птенчиков летит огромное-огромное пушечное ядро. Именно так правила Лопиталя расправляются с пределами, в которых имеет место неопределённость или .

Правила Лопиталя – очень мощный метод, позволяющий быстро и эффективно устранить указанные неопределенности, не случайно в сборниках задач, на контрольных работах, зачётах часто встречается устойчивый штамп: «вычислить предел, не пользуясь правилом Лопиталя ». Выделенное жирным шрифтом требование можно с чистой совестью приписать и к любому пределу уроков Пределы. Примеры решений , Замечательные пределы . Методы решения пределов , Замечательные эквивалентности , где встречается неопределённость «ноль на ноль» либо «бесконечность на бесконечность». Даже если задание сформулировано коротко – «вычислить пределы», то негласно подразумевается, что вы будете пользоваться всем, чем угодно, но только не правилами Лопиталя.

Всего правил два, и они очень похожи друг на друга, как по сути, так и по способу применения. Кроме непосредственных примеров по теме, мы изучим и дополнительный материал, который будет полезен в ходе дальнейшего изучения математического анализа.

Сразу оговорюсь, что правила будут приведены в лаконичном «практическом» виде, и если вам предстоит сдавать теорию, рекомендую обратиться к учебнику за более строгими выкладками.

Первое правило Лопиталя

Рассмотрим функции , которые бесконечно малЫ в некоторой точке . Если существует предел их отношений , то в целях устранения неопределённости можно взять две производные – от числителя и от знаменателя. При этом: , то есть .

Примечание : предел тоже должен существовать, в противном случае правило не применимо.

Что следует из вышесказанного?

Во-первых, необходимо уметь находить производные функций , и чем лучше – тем лучше =)

Во-вторых, производные берутся ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. Пожалуйста, не путайте с правилом дифференцирования частного !!!

И, в-третьих, «икс» может стремиться куда угодно, в том числе, к бесконечности – лишь бы была неопределённость .

Вернёмся к Примеру 5 первой статьи о пределах , в котором был получен следующий результат:

К неопределённости 0:0 применим первое правило Лопиталя:

Как видите, дифференцирование числителя и знаменателя привело нас к ответу с пол оборота: нашли две простые производные, подставили в них «двойку», и оказалось, что неопределённость бесследно исчезла!

Не редкость, когда правила Лопиталя приходится применять последовательно два или бОльшее количество раз (это относится и ко второму правилу). Вытащим на ретро-вечер Пример 2 урока о замечательных пределах :

На двухъярусной кровати снова прохлаждаются два бублика. Применим правило Лопиталя:

Обратите внимание, что на первом шаге в знаменателе берётся производная сложной функции . После этого проводим ряд промежуточных упрощений, в частности, избавляемся от косинуса, указывая, что он стремится к единице. Неопределённость не устранена, поэтому применяем правило Лопиталя ещё раз (вторая строчка).

Я специально подобрал не самый простой пример, чтобы вы провели небольшое самотестирование. Если не совсем понятно, как найдены производные , следует усилить свою технику дифференцирования, если не понятен фокус с косинусом, пожалуйста, вернитесь к замечательным пределам . Не вижу особого смысла в пошаговых комментариях, так как о производных и пределах я уже рассказал достаточно подробно. Новизна статьи состоит в самих правилах и некоторых технических приёмах решения.

Как уже отмечалось, в большинстве случаев правила Лопиталя использовать не нужно, но их зачастую целесообразно применять для черновой проверки решения. Зачастую, но далеко не всегда. Так, например, только что рассмотренный пример значительно выгоднее проверить через замечательные эквивалентности .

Второе правило Лопиталя

Брат-2 борется с двумя спящими восьмёрками . Аналогично:

Если существует предел отношения бесконечно больших в точке функций: , то в целях устранения неопределённости можно взять две производные – ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. При этом: , то есть при дифференцировании числителя и знаменателя значение предела не меняется .

Примечание : предел должен существовать

Опять же, в различных практических примерах значение может быть разным , в том числе, бесконечным. Важно, чтобы была неопределённость .

Проверим Пример №3 первого урока: . Используем второе правило Лопиталя:

Коль скоро речь зашла о великанах, разберём два каноничных предела:

Пример 1

Вычислить предел

Получить ответ «обычными» методами непросто, поэтому для раскрытия неопределённости «бесконечность на бесконечность» используем правило Лопиталя:

Таким образом, линейная функция более высокого порядка роста , чем логарифм с основанием бОльшим единицы ( и т.д.). Разумеется, «иксы» в старших степенях тоже будут «перетягивать» такие логарифмы. Действительно, функция растёт достаточно медленно и её график является более пологим относительно того же «икса».

Пример 2

Вычислить предел

Ещё один примелькавшийся кадр. В целях устранения неопределённости , используем правило Лопиталя, причём, два раза подряд:

Показательная функция, с основанием, бОльшим единицы ( и т.д.) более высокого порядка роста , чем степенная функция с положительной степенью .

Похожие пределы встречаются в ходе полного исследования функции , а именно, при нахождении асимптот графиков . Также замечаются они и в некоторых задачах по теории вероятностей . Советую взять на заметку два рассмотренных примера, это один из немногих случаев, когда лучше дифференцирования числителя и знаменателя ничего нет.

Далее по тексту я не буду разграничивать первое и второе правило Лопиталя, это было сделано только в целях структурирования статьи. Вообще, с моей точки зрения, несколько вредно излишне нумеровать математические аксиомы, теоремы, правила, свойства, поскольку фразы вроде «согласно следствию 3 по теореме 19…» информативны только в рамках того или иного учебника. В другом источнике информации то же самое будет «следствием 2 и теоремой 3». Такие высказывания формальны и удобны разве что самим авторам. В идеале лучше ссылаться на суть математического факта. Исключение – исторически устоявшиеся термины, например, первый замечательный предел или второй замечательный предел .

Продолжаем разрабатывать тему, которую нам подкинул член Парижской академии наук маркиз Гийом Франсуа де Лопиталь. Статья приобретает ярко выраженную практическую окраску и в достаточно распространённом задании требуется:

Для разминки разберёмся с парой небольших воробушков:

Пример 3

Предел можно предварительно упростить, избавившись от косинуса, однако проявим уважение к условию и сразу продифференцируем числитель и знаменатель:

В самом процессе нахождения производных нет чего-то нестандартного, так, в знаменателе использовано обычное правило дифференцирования произведения .

Рассмотренный пример разруливается и через замечательные пределы , похожий случай разобран в конце статьи Сложные пределы .

Пример 4

Вычислить предел по правилу Лопиталя

Это пример для самостоятельного решения. Нормально пошутил =)

Типична ситуация, когда после дифференцирования получаются трех- или четырёхэтажные дроби:

Пример 5

Вычислить предел, используя правило Лопиталя

Напрашивается применение замечательной эквивалентности , но путь жёстко предопределён по условию:

После дифференцирования настоятельно рекомендую избавляться от многоэтажности дроби и проводить максимальные упрощения . Конечно, более подготовленные студенты могут пропустить последний шаг и сразу записать: , но в некоторых пределах запутаются даже отличники.

Пример 6

Вычислить предел, используя правило Лопиталя

Пример 7

Вычислить предел, используя правило Лопиталя

Это примеры для самостоятельного решения. В Примере 7 можно ничего не упрощать, слишком уж простой получается после дифференцирования дробь. А вот в Примере 8 после применения правила Лопиталя крайне желательно избавиться от трёхэтажности, поскольку вычисления будут не самыми удобными. Полное решение и ответ в конце урока. Если возникли затруднения – тригонометрическая таблица в помощь.

И, упрощения совершенно необходимы, когда после дифференцирования неопределённость не устранена .

Пример 8

Вычислить предел, используя правило Лопиталя

Поехали:

Интересно, что первоначальная неопределённость после первого дифференцирования превратилась в неопределённость , и правило Лопиталя невозмутимо применяется дальше. Также заметьте, как после каждого «подхода» устраняется четырёхэтажная дробь, а константы выносятся за знак предела. В более простых примерах константы удобнее не выносить, но когда предел сложный, упрощаем всё-всё-всё. Коварство решённого примера состоит ещё и в том, что при , а , поэтому в ходе ликвидации синусов немудрено запутаться в знаках. В предпоследней строчке синусы можно было и не убивать, но пример довольно тяжелый, простительно.

На днях мне попалось любопытное задание:

Пример 9

Если честно, немного засомневался, чему будет равен данный предел. Как демонстрировалось выше, «икс» более высокого порядка роста, чем логарифм, но «перетянет» ли он логарифм в кубе? Постарайтесь выяснить самостоятельно, за кем будет победа.

Да, правила Лопиталя – это не только пальба по воробьям из пушки, но ещё и кропотливая работа….

В целях применения правил Лопиталя к бубликам или уставшим восьмёркам сводятся неопределённости вида .

Расправа с неопределённостью подробно разобрана в Примерах №№9-13 урока Методы решения пределов . Давайте для проформы ещё один:

Пример 10

Вычислить предел функции, используя правило Лопиталя

На первом шаге приводим выражение к общему знаменателю, трансформируя тем самым неопределённость в неопределённость . А затем заряжаем правило Лопиталя:

Здесь, к слову, тот случай, когда четырёхэтажное выражение трогать бессмысленно.

Неопределённость тоже не сопротивляется превращению в или :

Пример 11

Вычислить предел функции с помощью правила Лопиталя

Предел здесь односторонний, и о таких пределах уже шла речь в методичке Графики и свойства функций . Как вы помните, графика «классического» логарифма не существует слева от оси , таким образом, мы можем приближаться к нулю только справа.

Правила Лопиталя для односторонних пределов работают, но сначала необходимо разобраться с неопределённостью . На первом шаге делаем дробь трёхэтажной, получая неопределённость , далее решение идёт по шаблонной схеме:

После дифференцирования числителя и знаменателя избавляемся от четырёхэтажной дроби, чтобы провести упрощения. В результате нарисовалась неопределённость . Повторяем трюк: снова делаем дробь трёхэтажной и к полученной неопределённости применяем правило Лопиталя ещё раз:

Готово.

Исходный предел можно было попытаться свести к двум бубликам:

Но, во-первых, производная в знаменателе труднее, а во-вторых, ничего хорошего из этого не выйдет.

Таким образом, перед решением похожих примеров нужно проанализировать (устно либо на черновике), К КАКОЙ неопределённости выгоднее свести – к «нулю на ноль» или к «бесконечности на бесконечность».

В свою очередь на огонёк подтягиваются собутыльники и более экзотические товарищи . Метод трансформации прост и стандартен.

Если в каждой точке пространства или части пространства определено значение некоторой величины, то говорят, что задано поле данной величины. Поле называется скалярным, если рассматриваемая величина скалярна, т.е. вполне характеризуется своим числовым значением. Например, поле температур. Скалярное поле задается скалярной функцией точки и = /(М). Если в пространстве введена декартова система координат, то и есть функция трех переменных х, yt z - координат точки М: Определение. Поверхностью уровня скалярного поля называется множество точек, в которых функция f(M) принимает одно и то же значение. Уравнение поверхности уровня Пример 1. Найти поверхности уровня скалярного поля ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента -4 Согласно определению уравнением поверхности уровня будет. Это уравнение сферы (с Ф 0) с центром в начале координат. Скалярное поле называется плоским, если во всех плоскостях, параллельных некоторой плоскости, поле одно и то же. Если указанную плоскость принять за плоскость хОу, то функция поля не будет зависеть от координаты z, т. е. будет функцией только аргументов х и у, Плоское поле можно характеризовать помощьюлиний уровня - множестваточек плоскости, в которых функция /(ж, у) имеетодно и тоже значение. Уравнение линии уровня - Пример 2. Найти линии уровня скалярного поля Линии уровня задаются уравнениями При с = 0 получаем пару прямых получаем семейство гипербол (рис. 1). 1.1. Производная по направлению Пусть имеется скалярное поле, определяемое скалярной функцией и = /(Af). Возьмем точку Afo и выберем направление, определяемое вектором I. Возьмем другую точку М так, чтобы вектор М0М был параллелен вектору 1 (рис. 2). Обозначим длину вектора МоМ через А/, а приращение функции /(Af) - /(Afo), соответствующее перемещению Д1, через Ди. Отношение определяет среднюю скорость изменения скалярного поля на единицу длины поданному направлению Пусть теперь стремится к нулю так, чтобы вектор М0М все время оставался параллельным вектору I. Определение. Если при Д/ О существует конечный предел отношения (5), то его называют производной функции в данной точке Afo поданному направлению I и обозначают символом зг!^ . Так что, по определению, Это определение не связано с выбором системы координат, т. е. носит**вариантный характер. Найдем выражение для производной по направлению в декартовой системе координат. Пусть функция / дифференцируема в точке. Рассмотрим значение /(Af) в точке. Тогда полное приращение функции можно записать в следующем виде: где а символы означают, что частные производные вычислены в точке Afo. Отсюда Здесь величины jfi, ^ суть направляющие косинусы вектора. Так как векторы МоМ и I сонаправлены, то их направляющие косинусы одинаковы: Так как M Afo, осгавая сь все время на прямой, параллельной вектору 1, то углы постоянные потому Окончательно из равенств (7) и (8) получаем Эамуан ис 1. Частные производные, являются производными функции и по направлениям координатныхосей ссчлвешне нно- Пример 3. Найти производную функции по направлению к точке Вектор имеет длину. Его направляющие косинусы: По формуле (9) будем иметь Тот факт, что, означает, что скалярное поле в точке в данном направлении возраста- Для плоского поля производная по направлению I в точке вычисляется по формуле где а - угол, образованный вектором I с осью Ох. Зммчмм 2. Формула (9) для вычисления производной по направлению I в данной точке Afo остается в силе и тогда, когда точка М стремится к точке Мо по кривой, для которой вектор I является касательным в точке ПрИШр 4. Вычислить производную скалярного поля в точке Afo(l, 1). принадлежащей параболе по направлению этой кривой (в направлении возрастания абсциссы). Направлением ] параболы в точке считается направление касательной к параболе в этой точке (рис.3). Пусть касательная к параболе в точке Afo образует с осью Ох угол о. Тогда откуда направляющие косинусы касательной Вычислим значения и в точке. Имеем Теперь по формуле (10) получаем. Найти производную скалярного поля в точке по направлению окружности Векторное уравнение окружности имеет вид. Находим единичный вектор т касательной к окружности Точке соответствует значение параметра Значение г в точке Afo будет равно Отсюда получаем направляющие косинусы касательной к окружности в точке Вычислим значения частных производных данного скалярного поля в точке Значит, искомая производная. Градиент скалярного поля Пусть скалярное поле определяется скалярной функцией которая предполагается дифференцируемой. Определение. Градиентом скалярного поля » в данной точке М называется вектор, обозначаемый символом grad и и определяемый равенством Ясно, что этот вектор зависиткак от функции /, так и отточки М, в которой вычисляется ее производная. Пусгь 1 - единичный вектор в направлении Тогда формулу дл я производной по направлению можно записать в следующем виде: . тем самым производная от функ ии и по направлению 1 равна скалярному произведению градиента функ ии и(М) на орт 1° направления I. 2.1. Основные свойства градиента Теорема 1. Градиент скалярного поля перпендикулярен к поверхности уровня (или к линии уровня, если поле плоское). (2) Проведем через произвольную точку М поверхность уровня и = const и выберем на этой поверхности гладкую кривую L, проходящую через точку М (рис. 4). Пусть I - векгор, касательный к кривой L в точке М. Так как на поверхности уровня и(М) = и(М|) для любой точки Мj е L, то С другой стороны, = (gradu, 1°). Поэтому. Это означает, что векторы grad и и 1° ортогональны, Итак, векгор grad и ортогонален к любой касательной к поверхности уровня в точке М. Тем самым он ортогонален к самой поверхности уровня в точке М. Теорема 2. Градиент направлен в сторону возрастания функции поля. Ранее мы доказали, что градиент скалярного поля направлен по нормали к поверхности уровня, которая может быть ориентирована либо в сторону возрастания функции и(М), либо в сторону ее убывания. Обозначим через п нормальк поверхности уровня, ориентированную в сторону возрастания функции ti(M), и найдем производную функции и в направлении этой нормали (рис. 5). Имеем Так как по условию рис.5 и поэтому ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента Отсюда следует, что grad и направлен в ту же сторону, что и выбранная нами нормаль п, т. е. в сторону возрастания функции и(М). Теорема 3. Длина градиента равна наибольшей производной по направлению в данной точке поля, (здесь шах $ берется по всевозможным направлениям в данной точке М паю). Имеем где - угол между векторами 1 и grad п. Так как наибольшее значени Пример 1. Найти направление наибольшего иэмонония скалярного поля в точке а также величину этого наибольшего изменения в указанной точке. Направление наибольшего изменения скалярного поля указывается вектором. Имеем так что Этот вектор определяет направление наибольшего возрастания поля в точко. Величина наибольшого изменения поля в этой точке равна 2.2. Инвариантное определение градиента Величины, характеризующие свойства изучаемого объекта и не зависящие от выбора системы координат, называются инвариантами данного объекта. Например, длина кривой - инвариант этой кривой, а угол касательной к кривой с осью Ох - не инвариант. Основываясь на доказанных выше трех свойствах градиента скалярного поля, можно дать следующее инвариантное определение градиента. Определение. Градиент скалярного поля есть вектор, направленный по нормали к поверхности уровня в сторону возрастания функции поля и имеющий длину, равную наибольшей производной по направлению (в данной точке). Пусть - единичный вектор нормали, направленный в сторону возрастания поля. Тогда Пример 2. Найти градиент расстояния - некоторая фиксированная точка, a M(x,y,z) - текущая. 4 Имеем где - единичный вектор направления. Правила вычисления градиента где с - постоянное число. Приведенные формулы получаются непосредственно из определения градиента и свойств производных. По правилу дифференцирования произведения Доказательство аналогично доказательству свойства Пусть F(и) - дифференцируемая скалярная функция. Тогда 4 По определению фадиента имеем Применим ко всем слагаемым правой части правило дифференцирования сложной функции. Получим В частности, Формула (6) следует из формулы Пример 3. Майти производную по направлению радиус-воктора г от функции По формуле (3) а по формуле В результате получим, что Пример 4. Пусть дано плоское скалярное поле - расстояния от некоторой точки плоскости до двух фиксированных точек этой плоскости. Рассмотрим произвольный эллипс с фокусами Fj и F] и докажем, что всякий луч свота, вышедший из одного фокуса эллипса, после отражения от эллипса попадает в другой его фокус. Линии уровня функции (7) суть ВЕКТОРНЫЙ АНАЛИЗ Скалярное поле Поверхности и линии уровня Производная по направлению Производная Градиент скалярного поля Основные свойства градиента Инвариантное определение градиента Правила вычисления градиента Уравнения (8) описывают семейство эллипсов с фокусами в точках F) и Fj. Согласно результату примера 2 имеем Тем самым градиент заданного поля равен вектору PQ диагонали ромба, построенного на ортах г? и радиус-векторов. проведенных к точке Р(х, у) из фокусов F| и Fj, и значит, лежит на биссектрисе угла можду этими радиус-векторами (рис. 6). По тооромо 1 градиент PQ перпендикулярен к эллипсу (8) в точке. Следова- Рис.6 тельно. нормаль к эллипсу (8) в любой ого точке делит пополам угол между радиус-векторами, проведенными в эту точку. Отсюда и из того, что угол падения равон углу отражения, получаем: луч света, вышедший из одного фокуса эллипса, отразившись от него, непременно попадает в другой фокус этого эллипса.

1 0 Градиент направлен по нормали к поверхности уровня (или к линии уровня, если поле плоское).

2 0 Градиент направлен в сторону возрастания функции поля.

3 0 Модуль градиента равен наибольшей производной по направлениювданной точке поля:

Эти свойства дают инвариантную характеристику градиента. Они говорят о том, что вектор gradU указывает направление и величину наибольшего изменения скалярного поля в данной точке.

Замечание 2.1. Если функция U(x,y) есть функция двух переменных, то вектор

(2.3)

лежит в плоскости oxy.

Пусть U=U(x,y,z) и V=V(x,y,z) дифференцируемых в точке М 0 (x,y,z) функции. Тогда имеет место следующие равенства:

а) grad()= ; б) grad(UV)=VgradU+UgradV;

в) grad(U V)=gradU gradV; г) г) grad = , V ;

д) gradU( = gradU, где , U=U() имеет производную по .

Пример 2.1. Дана функция U=x 2 +y 2 +z 2 . Определить градиент функции в точке М(-2;3;4).

Решение. Согласно формуле (2.2) имеем

.

Поверхностями уровня данного скалярного поля являются семейство сфер x 2 +y 2 +z 2 , вектор gradU=(-4;6;8) есть нормальный вектор плоскостей.

Пример 2.2. Найти градиент скалярного поля U=x-2y+3z.

Решение. Согласно формуле (2.2) имеем

Поверхностями уровня данного скалярного поля являются плоскости

x-2y+3z=С; вектор gradU=(1;-2;3) есть нормальный вектор плоскостей этого семейства.

Пример 2.3. Найти наибольшую крутизну подъема поверхности U=x y в точке М(2;2;4).

Решение. Имеем:

Пример 2.4. Найти единичный вектор нормали к поверхности уровня скалярного поля U=x 2 +y 2 +z 2 .

Решение. Поверхности уровня данного скалярного Поля-сфера x 2 +y 2 +z 2 =С (С>0).

Градиент направлен по нормали к поверхности уровня, так что

Определяет вектор нормали к поверхности уровня в точке М(x,y,z). Для единичного вектора нормали получаем выражение

, где

.

Пример 2.5. Найти градиент поля U= , где и постоянные векторы, r –радиус вектор точки.

Решение. Пусть

Тогда:
. По правилу дифференцирования определителя получаем

Следовательно,

Пример 2.6. Найти градиент расстояния , где P(x,y,z) - изучаемая точка поля, P 0 (x 0 ,y 0 ,z 0) - некоторая фиксированная точка.

Решение. Имеем - единичный вектор направления .

Пример 2.7. Найти угол между градиентами функций в точке М 0 (1,1).

Решение. Находим градиенты данных функций в точке М 0 (1,1), имеем

; Угол между gradU и gradV в точке М 0 определяется из равенства

Отсюда =0.

Пример 2.8. Найти производную по направлению, радиус- вектор равен

(2.4)

Решение. Находим градиент этой функции:

Подставляя (2.5) в (2.4), получим

Пример 2.9. Найти в точке М 0 (1;1;1) направление наибольшего изменения скалярного поля U=xy+yz+xz и величину этого наибольшего изменения в этой точке.


Решение. Направление наибольшего изменения поля указывается вектором grad U(M). Находим его:

И, значит, . Это вектор определяет направление наибольшего возрастания данного поля в точке М 0 (1;1;1). Величина наибольшего изменения поля в этой точке равна

.

Пример 3.1. Найти векторные линии векторного поля где -постоянный вектор.

Решение. Имеем так что

(3.3)

Умножим числитель и знаменатель первой дроби на х, второй-на у, третий- на z и сложим почленно. Используя свойство пропорций, получим

Отсюда xdx+ydy+zdz=0, а значит

x 2 +y 2 +z 2 =A 1 , A 1 -const>0. Умножив теперь числитель и знаменатель первой дроби (3.3) на с 1 , второй –на с 2 , третий на с 3 и сложив почленно, получим

Откуда с 1 dx+c 2 dy+c 3 dz=0

И, следовательно, с 1 x+c 2 y+c 3 z=A 2 . A 2 -const.

Искомые уравнения векторных линий

Эти уравнения показывают, что векторные линии получаются в результате пересечения сфер, имеющих общий центр в начале координат, с плоскостями, перпендикулярными вектору . Отсюда следует, что векторные линии являются окружностями, центры которых находятся на прямой, проходящей через начало координат в направлении вектора с. Плоскости окружностей перпендикулярны указанной прямой.

Пример 3.2. Найти векторную линию поля проходящую через точку (1,0,0).

Решение. Дифференциальные уравнения векторных линий

отсюда имеем . Решая первое уравнение . Или если ввести параметр t, то будем иметь В этом случае уравнение принимает вид или dz=bdt, откуда z=bt+c 2 .

Задача 2. Найти косинус угла a между градиентами поля в точках А(1, 2, 2) и В(-3, 1, 0). Решение.

Задача 3. Для функции найти производную по направлению внутренней нормали к цилиндрической поверхности x 2 + z 2 = a 2 + c 2 в точке M 0(a, b, c). Решение. Пусть f(x, y, z) = x 2 + z 2. Данная в условии поверхность – это поверхность уровня для f, проходящая через точку M 0. Имеем Функция f в точке M 0 растет быстрее всего по направлению grad f, значит, по направлению нормали к заданной поверхности.

Исходя из вида функции f, заключаем, что это – направление внешней нормали. Следовательно, единичный вектор внутренней нормали в точке M 0 будет равен

Задача 5. Вычислить поток векторного поля a = (z 2 – x, 1, y 5) через внутреннюю поверхность S: y 2 = 2 x, отсеченную плоскостями: x = 2, z = 0, z = 3. Решение.

Решение. I способ Контур L - окружность радиуса R, лежащая в плоскости z = 3. Выберем ориентацию как показано на рисунке, т. е. против часовой стрелки. Параметрические уравнения окружности имеют вид

II способ. Для вычисления циркуляции по теореме Стокса выберем какую-нибудь поверхность S, натянутую на контур. Естественно в качестве S взять круг, имеющий контур L своей границей. Уравнение поверхности S имеет вид: Согласно выбранной ориентации контура нормаль к поверхности необходимо взять равной

Задача 7. С помощью теоремы Стокса найти циркуляцию векторного поля По сечению x 2 + y 2 + z 2 = R 2 плоскостью z = 0. Решение. По формуле Стокса

Задача 8. Найти поток вектора через часть сферы x 2 + y 2 + z 2 = R 2 , при x ≥ 0, y ≥ 0, z ≥ 0, в направлении внешней нормали. Решение. По определению потока вектора через поверхность, находим